Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Neuromyelitis Optica Spectrum Disorder: Pathogenesis, Mechanisms and Potential Treatments

Author(s): Yi Du, Kaijun Li, Wei Liu, Ruitong Song, Meifeng Luo, Jianfeng He, Xiaoyu Xu* and Xiaosheng Qu*

Volume 28, Issue 4, 2022

Published on: 29 March, 2021

Page: [272 - 279] Pages: 8

DOI: 10.2174/1381612827666210329101335

Price: $65

Abstract

Neuromyelitis optica spectrum disorder (NMOSD) is an acute or subacute demyelinating disease that affects mainly the optic nerve and spinal cord. A major proportion of NMOSD cases have a relationship with autoimmunity to aquaporin 4 (AQP4) found on the central nervous system. NMOSD can occur repeatedly, causing symptoms such as decreased vision and weakness of limbs. The main goal of the current therapy is to relieve acute symptoms and prevent recurrence of the disease. Without timely and appropriate treatment, the recurrence and disability rates are high. In the present work, we review recent advances in the diagnosis and treatment of patients with NMOSD, as well as the pathogenesis and mechanisms of AQP4-IgG-seropositive NMOSD.

Keywords: Devic’s disease, AQP4, autoimmunity, pathogenesis, therapy, NMOSD

[1]
Toosy AT, Mason DF, Miller DH. Optic neuritis. Lancet Neurol 2014; 13(1): 83-99.
[http://dx.doi.org/10.1016/S1474-4422(13)70259-X] [PMID: 24331795]
[2]
Estrada K, Whelan CW, Zhao F, et al. A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat Commun 2018; 9(1): 1929.
[http://dx.doi.org/10.1038/s41467-018-04332-3] [PMID: 29769526]
[3]
Nagaishi A, Takagi M, Umemura A, et al. Clinical features of neuromyelitis optica in a large Japanese cohort: comparison between phenotypes. J Neurol Neurosurg Psychiatry 2011; 82(12): 1360-4.
[http://dx.doi.org/10.1136/jnnp-2011-300403] [PMID: 21665917]
[4]
Pugliatti M, Sotgiu S, Rosati G. The worldwide prevalence of multiple sclerosis. Clin Neurol Neurosurg 2002; 104(3): 182-91.
[http://dx.doi.org/10.1016/S0303-8467(02)00036-7] [PMID: 12127652]
[5]
Mori M, Kuwabara S, Paul F. Worldwide prevalence of neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2018; 89(6): 555-6.
[http://dx.doi.org/10.1136/jnnp-2017-317566] [PMID: 29436488]
[6]
Woung LC, Chung HC, Jou JR, Wang KC, Peng PH. A comparison of optic neuritis in asian and in western countries. Neuroophthalmology 2011; 35(2): 65-72.
[http://dx.doi.org/10.3109/01658107.2011.557851] [PMID: 30151023]
[7]
Zhang X, Wang W, Wang Q, Cui SL, Wei W. Clinical features of optic neuritis in China. Neuroophthalmology 2007; 31: 133-6.
[http://dx.doi.org/10.1080/01658100701647506]
[8]
Du Y, Li K, Yang J, et al. Disc swelling and mild initial visual acuity loss predict a better short-term visual acuity outcome in bilateral acute optic neuritis. J Clin Neurosci 2012; 19(10): 1380-2.
[http://dx.doi.org/10.1016/j.jocn.2011.10.020] [PMID: 22819060]
[9]
Du Y, Yang J, Li JJ, Zhou RW, He JF. Unilateral optic neuritis in a Chinese population in three centers. J Clin Neurosci 2011; 18(7): 902-4.
[http://dx.doi.org/10.1016/j.jocn.2010.11.011] [PMID: 21550249]
[10]
Du Y, Lin YC, He JF. The etiology of optic neuritis in Asian population. Med Hypotheses 2008; 71(5): 821-2.
[http://dx.doi.org/10.1016/j.mehy.2008.07.015] [PMID: 18715724]
[11]
Du Y, Ling Y, Zhou CX, Song QX, Wang DM, He JF. Why we should treat idiopathic optic neuritis with high-dose and long-term corticosteroids in China. Med Hypotheses 2009; 72(4): 478-9.
[http://dx.doi.org/10.1016/j.mehy.2008.11.011] [PMID: 19091484]
[12]
Zhao G, Chen Q, Huang Y, et al. Clinical characteristics of myelin oligodendrocyte glycoprotein seropositive optic neuritis: a cohort study in Shanghai, China. J Neurol 2018; 265(1): 33-40.
[http://dx.doi.org/10.1007/s00415-017-8651-4] [PMID: 29101456]
[13]
Zhou H, Xu Q, Zhao S, et al. Distinct clinical characteristics of atypical optic neuritis with seronegative aquaporin-4 antibody among Chinese patients. Br J Ophthalmol 2017; 101(12): 1720-4.
[http://dx.doi.org/10.1136/bjophthalmol-2017-310157] [PMID: 28404667]
[14]
Ishikawa H, Kezuka T, Shikishima K, et al. Epidemiologic and clinical characteristics of optic neuritis in Japan. Ophthalmology 2019; 126(10): 1385-98.
[http://dx.doi.org/10.1016/j.ophtha.2019.04.042] [PMID: 31196727]
[15]
Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85(2): 177-89.
[http://dx.doi.org/10.1212/WNL.0000000000001729] [PMID: 26092914]
[16]
Pandit L, Asgari N, Apiwattanakul M, et al. Demographic and clinical features of neuromyelitis optica: A review. Mult Scler 2015; 21(7): 845-53.
[http://dx.doi.org/10.1177/1352458515572406] [PMID: 25921037]
[17]
Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007; 6(9): 805-15.
[http://dx.doi.org/10.1016/S1474-4422(07)70216-8] [PMID: 17706564]
[18]
Sun H, Sun X, Li J, et al. Gender differences among Chinese patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2017; 17: 5-8.
[http://dx.doi.org/10.1016/j.msard.2017.06.008] [PMID: 29055474]
[19]
Ochi H, Fujihara K. Demyelinating diseases in Asia. Curr Opin Neurol 2016; 29(3): 222-8.
[http://dx.doi.org/10.1097/WCO.0000000000000328] [PMID: 27070217]
[20]
Yang CS, Zhang DQ, Wang JH, et al. Clinical features and sera anti-aquaporin 4 antibody positivity in patients with demyelinating disorders of the central nervous system from Tianjin, China. CNS Neurosci Ther 2014; 20(1): 32-9.
[http://dx.doi.org/10.1111/cns.12156] [PMID: 23890015]
[21]
Hor JY, Lim TT, Chia YK, et al. Prevalence of neuromyelitis optica spectrum disorder in the multi-ethnic Penang Island, Malaysia, and a review of worldwide prevalence. Mult Scler Relat Disord 2018; 19: 20-4.
[http://dx.doi.org/10.1016/j.msard.2017.10.015] [PMID: 29100047]
[22]
Matiello M, Kim HJ, Kim W, et al. Familial neuromyelitis optica. Neurology 2010; 75(4): 310-5.
[http://dx.doi.org/10.1212/WNL.0b013e3181ea9f15] [PMID: 20660861]
[23]
Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364(9451): 2106-12.
[http://dx.doi.org/10.1016/S0140-6736(04)17551-X] [PMID: 15589308]
[24]
Seay M, Rucker JC. Neuromyelitis optica: review and utility of testing aquaporin-4 antibody in typical optic neuritis. Asia Pac J Ophthalmol (Phila) 2018; 7(4): 229-34.
[PMID: 29766684]
[25]
Ketelslegers IA, Modderman PW, Vennegoor A, Killestein J, Hamann D, Hintzen RQ. Antibodies against aquaporin-4 in neuromyelitis optica: distinction between recurrent and monophasic patients. Mult Scler 2011; 17(12): 1527-30.
[http://dx.doi.org/10.1177/1352458511412995] [PMID: 21828202]
[26]
Jarius S, Aboul-Enein F, Waters P, et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 2008; 131(Pt 11): 3072-80.
[http://dx.doi.org/10.1093/brain/awn240] [PMID: 18945724]
[27]
Nishiyama S, Ito T, Misu T, et al. A case of NMO seropositive for aquaporin-4 antibody more than 10 years before onset. Neurology 2009; 72(22): 1960-1.
[http://dx.doi.org/10.1212/WNL.0b013e3181a82621] [PMID: 19487655]
[28]
Kessler RA, Mealy MA, Jimenez-Arango JA, et al. Anti-aquaporin-4 titer is not predictive of disease course in neuromyelitis optica spectrum disorder: A multicenter cohort study. Mult Scler Relat Disord 2017; 17: 198-201.
[http://dx.doi.org/10.1016/j.msard.2017.08.005] [PMID: 29055457]
[29]
Ruiz-Gaviria R, Baracaldo I, Castañeda C, Ruiz-Patiño A, Acosta-Hernandez A, Rosselli D. Specificity and sensitivity of aquaporin 4 antibody detection tests in patients with neuromyelitis optica: A meta-analysis. Mult Scler Relat Disord 2015; 4(4): 345-9.
[http://dx.doi.org/10.1016/j.msard.2015.06.003] [PMID: 26195055]
[30]
Waters P, Vincent A. Detection of anti-aquaporin-4 antibodies in neuromyelitis optica: current status of the assays. Int MS J 2008; 15(3): 99-105.
[PMID: 18808744]
[31]
Marignier R, Bernard-Valnet R, Giraudon P, et al. Aquaporin-4 antibody-negative neuromyelitis optica: distinct assay sensitivity-dependent entity. Neurology 2013; 80(24): 2194-200.
[http://dx.doi.org/10.1212/WNL.0b013e318296e917] [PMID: 23658379]
[32]
Kim W, Lee JE, Li XF, et al. Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. Mult Scler 2012; 18(5): 578-86.
[http://dx.doi.org/10.1177/1352458511424590] [PMID: 21965418]
[33]
Melamed E, Levy M, Waters PJ, et al. Update on biomarkers in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2015; 2(4): e134.
[http://dx.doi.org/10.1212/NXI.0000000000000134] [PMID: 26236760]
[34]
Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 2004; 43(33): 4278-90.
[http://dx.doi.org/10.1002/anie.200460804] [PMID: 15368374]
[35]
Agre P, King LS, Yasui M, et al. Aquaporin water channels-from atomic structure to clinical medicine. J Physiol 2002; 542(Pt 1): 3-16.
[http://dx.doi.org/10.1113/jphysiol.2002.020818] [PMID: 12096044]
[36]
Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003; 4(12): 991-1001.
[http://dx.doi.org/10.1038/nrn1252] [PMID: 14682361]
[37]
Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 2005; 118(Pt 15): 3225-32.
[http://dx.doi.org/10.1242/jcs.02519] [PMID: 16079275]
[38]
González C, González-Buitrago JM, Izquierdo G. Aquaporins, anti-aquaporin-4 autoantibodies and neuromyelitis optica. Clin Chim Acta 2013; 415: 350-60.
[http://dx.doi.org/10.1016/j.cca.2012.04.027] [PMID: 22580368]
[39]
Verkman AS. Aquaporins. Curr Biol 2013; 23(2): R52-5.
[http://dx.doi.org/10.1016/j.cub.2012.11.025] [PMID: 23347934]
[40]
Jarius S, Paul F, Franciotta D, et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol 2008; 4(4): 202-14.
[http://dx.doi.org/10.1038/ncpneuro0764] [PMID: 18334978]
[41]
Hubbard JA, Binder DK. Astrocytes and epilepsy Acadenic press. Water Channels 2016; pp. 171-95.
[http://dx.doi.org/10.1016/B978-0-12-802401-0.00008-9]
[42]
Moe SE, Sorbo JG, Sogaard R, Zeuthen T, Petter Ottersen O, Holen T. New isoforms of rat Aquaporin-4. Genomics 2008; 91(4): 367-77.
[http://dx.doi.org/10.1016/j.ygeno.2007.12.003] [PMID: 18255256]
[43]
Silberstein C, Bouley R, Huang Y, et al. Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol 2004; 287(3): F501-11.
[http://dx.doi.org/10.1152/ajprenal.00439.2003] [PMID: 15149973]
[44]
Neely JD, Christensen BM, Nielsen S, Agre P. Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 1999; 38(34): 11156-63.
[http://dx.doi.org/10.1021/bi990941s] [PMID: 10460172]
[45]
Furman CS, Gorelick-Feldman DA, Davidson KG, et al. Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci USA 2003; 100(23): 13609-14.
[http://dx.doi.org/10.1073/pnas.2235843100] [PMID: 14597700]
[46]
Nicchia GP, Rossi A, Mola MG, et al. Higher order structure of aquaporin-4. Neuroscience 2010; 168(4): 903-14.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.008] [PMID: 20153404]
[47]
Rossi A, Pisani F, Nicchia GP, Svelto M, Frigeri A. Evidences for a leaky scanning mechanism for the synthesis of the shorter M23 protein isoform of aquaporin-4: implication in orthogonal array formation and neuromyelitis optica antibody interaction. J Biol Chem 2010; 285(7): 4562-9.
[http://dx.doi.org/10.1074/jbc.M109.069245] [PMID: 20007705]
[48]
Sorbo JG, Moe SE, Ottersen OP, Holen T. The molecular composition of square arrays. Biochemistry 2008; 47(8): 2631-7.
[http://dx.doi.org/10.1021/bi702146k] [PMID: 18247481]
[49]
Crane JM, Van Hoek AN, Skach WR, Verkman AS. Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Mol Biol Cell 2008; 19(8): 3369-78.
[http://dx.doi.org/10.1091/mbc.e08-03-0322] [PMID: 18495865]
[50]
Crane JM, Bennett JL, Verkman AS. Live cell analysis of aquaporin-4 m1/m23 interactions and regulated orthogonal array assembly in glial cells. J Biol Chem 2009; 284(51): 35850-60.
[http://dx.doi.org/10.1074/jbc.M109.071670] [PMID: 19843522]
[51]
Suzuki H, Nishikawa K, Hiroaki Y, Fujiyoshi Y. Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim Biophys Acta 2008; 1778(4): 1181-9.
[http://dx.doi.org/10.1016/j.bbamem.2007.12.007] [PMID: 18179769]
[52]
Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol 2013; 23(6): 684-95.
[http://dx.doi.org/10.1111/bpa.12085] [PMID: 24118484]
[53]
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 2011; 287: 1-41.
[http://dx.doi.org/10.1016/B978-0-12-386043-9.00001-3] [PMID: 21414585]
[54]
Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005; 202(4): 473-7.
[http://dx.doi.org/10.1084/jem.20050304] [PMID: 16087714]
[55]
Owens GP, Ritchie AM, Gilden DH, Burgoon MP, Becker D, Bennett JL. Measles virus-specific plasma cells are prominent in subacute sclerosing panencephalitis CSF. Neurology 2007; 68(21): 1815-9.
[http://dx.doi.org/10.1212/01.wnl.0000262036.56594.7c] [PMID: 17515543]
[56]
Cepok S, Rosche B, Grummel V, et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 2005; 128(Pt 7): 1667-76.
[http://dx.doi.org/10.1093/brain/awh486] [PMID: 15800022]
[57]
Winges KM, Gilden DH, Bennett JL, Yu X, Ritchie AM, Owens GP. Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts. J Neuroimmunol 2007; 192(1-2): 226-34.
[http://dx.doi.org/10.1016/j.jneuroim.2007.10.009] [PMID: 17997491]
[58]
Cepok S, von Geldern G, Nolting T, et al. Viral load determines the B-cell response in the cerebrospinal fluid during human immunodeficiency virus infection. Ann Neurol 2007; 62(5): 458-67.
[http://dx.doi.org/10.1002/ana.21195] [PMID: 17703460]
[59]
Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 2002; 125(Pt 7): 1450-61.
[http://dx.doi.org/10.1093/brain/awf151] [PMID: 12076996]
[60]
Sabater L, Giralt A, Boronat A, et al. Cytotoxic effect of neuromyelitis optica antibody (NMO-IgG) to astrocytes: an in vitro study. J Neuroimmunol 2009; 215(1-2): 31-5.
[http://dx.doi.org/10.1016/j.jneuroim.2009.07.014] [PMID: 19695715]
[61]
Bennett JL, Lam C, Kalluri SR, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 2009; 66(5): 617-29.
[http://dx.doi.org/10.1002/ana.21802] [PMID: 19938104]
[62]
Veszeli N, Füst G, Csuka D, et al. A systematic analysis of the complement pathways in patients with neuromyelitis optica indicates alteration but no activation during remission. Mol Immunol 2014; 57(2): 200-9.
[http://dx.doi.org/10.1016/j.molimm.2013.09.010] [PMID: 24172223]
[63]
Phuan PW, Ratelade J, Rossi A, Tradtrantip L, Verkman AS. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays. J Biol Chem 2012; 287(17): 13829-39.
[http://dx.doi.org/10.1074/jbc.M112.344325] [PMID: 22393049]
[64]
Hinson SR, Romero MF, Popescu BF, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci USA 2012; 109(4): 1245-50.
[http://dx.doi.org/10.1073/pnas.1109980108] [PMID: 22128336]
[65]
Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007; 69(24): 2221-31.
[http://dx.doi.org/10.1212/01.WNL.0000289761.64862.ce] [PMID: 17928579]
[66]
Diebolder CA, Beurskens FJ, de Jong RN, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014; 343(6176): 1260-3.
[http://dx.doi.org/10.1126/science.1248943] [PMID: 24626930]
[67]
Soltys J, Liu Y, Ritchie A, et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J Clin Invest 2019; 129(5): 2000-13.
[http://dx.doi.org/10.1172/JCI122942] [PMID: 30958797]
[68]
Vincent T, Saikali P, Cayrol R, et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 2008; 181(8): 5730-7.
[http://dx.doi.org/10.4049/jimmunol.181.8.5730] [PMID: 18832732]
[69]
Ratelade J, Zhang H, Saadoun S, Bennett JL, Papadopoulos MC, Verkman AS. Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol 2012; 123(6): 861-72.
[http://dx.doi.org/10.1007/s00401-012-0986-4] [PMID: 22526022]
[70]
Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 2010; 133(Pt 2): 349-61.
[http://dx.doi.org/10.1093/brain/awp309] [PMID: 20047900]
[71]
Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007; 130(Pt 5): 1224-34.
[http://dx.doi.org/10.1093/brain/awm047] [PMID: 17405762]
[72]
Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 2007; 130: 1194-205.
[http://dx.doi.org/10.1093/brain/awl371]
[73]
Zhang H, Bennett JL, Verkman AS. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 2011; 70(6): 943-54.
[http://dx.doi.org/10.1002/ana.22551] [PMID: 22069219]
[74]
Duan T, Smith AJ, Verkman AS. Complement-independent bystander injury in AQP4-IgG seropositive neuromyelitis optica produced by antibody-dependent cellular cytotoxicity. Acta Neuropathol Commun 2019; 7(1): 112.
[http://dx.doi.org/10.1186/s40478-019-0766-7] [PMID: 31296268]
[75]
Tradtrantip L, Zhang H, Saadoun S, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 2012; 71(3): 314-22.
[http://dx.doi.org/10.1002/ana.22657] [PMID: 22271321]
[76]
Akaishi T, Nakashima I. Efficiency of antibody therapy in demyelinating diseases. Int Immunol 2017; 29(7): 327-35.
[http://dx.doi.org/10.1093/intimm/dxx037] [PMID: 28910968]
[77]
Uzawa A, Mori M, Sawai S, et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin Chim Acta 2013; 421: 181-3.
[http://dx.doi.org/10.1016/j.cca.2013.03.020] [PMID: 23535508]
[78]
Wang H, Wang K, Zhong X, et al. Notable increased cerebrospinal fluid levels of soluble interleukin-6 receptors in neuromyelitis optica. Neuroimmunomodulation 2012; 19(5): 304-8.
[http://dx.doi.org/10.1159/000339302] [PMID: 22777162]
[79]
Chihara N, Aranami T, Oki S, et al. Plasmablasts as migratory IgG-producing cells in the pathogenesis of neuromyelitis optica. PLoS One 2013; 8(12): e83036.
[http://dx.doi.org/10.1371/journal.pone.0083036] [PMID: 24340077]
[80]
Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci USA 2011; 108(9): 3701-6.
[http://dx.doi.org/10.1073/pnas.1017385108] [PMID: 21321193]
[81]
Ringelstein M, Ayzenberg I, Harmel J, et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol 2015; 72(7): 756-63.
[http://dx.doi.org/10.1001/jamaneurol.2015.0533] [PMID: 25985228]
[82]
Ayzenberg I, Kleiter I, Schröder A, et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol 2013; 70(3): 394-7.
[http://dx.doi.org/10.1001/jamaneurol.2013.1246] [PMID: 23358868]
[83]
Kieseier BC, Stüve O, Dehmel T, et al. Disease amelioration with tocilizumab in a treatment-resistant patient with neuromyelitis optica: implication for cellular immune responses. JAMA Neurol 2013; 70(3): 390-3.
[http://dx.doi.org/10.1001/jamaneurol.2013.668] [PMID: 23599943]
[84]
Araki M, Matsuoka T, Miyamoto K, et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 2014; 82(15): 1302-6.
[http://dx.doi.org/10.1212/WNL.0000000000000317] [PMID: 24634453]
[85]
Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol 2020; 19(5): 391-401.
[http://dx.doi.org/10.1016/S1474-4422(20)30070-3] [PMID: 32333897]
[86]
Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 2019; 381(22): 2114-24.
[http://dx.doi.org/10.1056/NEJMoa1901747] [PMID: 31774956]
[87]
Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 2020; 19(5): 402-12.
[http://dx.doi.org/10.1016/S1474-4422(20)30078-8] [PMID: 32333898]
[88]
Bennett JL, O’Connor KC, Bar-Or A, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2015; 2(3): e104.
[http://dx.doi.org/10.1212/NXI.0000000000000104] [PMID: 25977932]
[89]
Tedder TF. CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5(10): 572-7.
[http://dx.doi.org/10.1038/nrrheum.2009.184] [PMID: 19798033]
[90]
Gallagher S, Yusuf I, McCaughtry TM, et al. MEDI-551 treatment effectively depletes B cells and reduces serum titers of autoantibodies in mice transgenic for Sle1 and human CD19. Arthritis Rheumatol 2016; 68(4): 965-76.
[http://dx.doi.org/10.1002/art.39503] [PMID: 26606525]
[91]
Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019; 394(10206): 1352-63.
[http://dx.doi.org/10.1016/S0140-6736(19)31817-3] [PMID: 31495497]
[92]
Saadoun S, Waters P, MacDonald C, et al. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 2012; 71(3): 323-33.
[http://dx.doi.org/10.1002/ana.22686] [PMID: 22374891]
[93]
Jacob A, Saadoun S, Kitley J, et al. Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence. Mult Scler 2012; 18(12): 1801-3.
[http://dx.doi.org/10.1177/1352458512443994] [PMID: 22495946]
[94]
Zhang H, Verkman AS. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 2013; 123(5): 2306-16.
[http://dx.doi.org/10.1172/JCI67554] [PMID: 23563310]
[95]
Katz SI, Fabian MT, Telford R, et al. Open-label, add-on trial of cetirizine for neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2018; 5(2): e441.
[http://dx.doi.org/10.1212/NXI.0000000000000441] [PMID: 30426035]
[96]
Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol 2013; 12(6): 554-62.
[http://dx.doi.org/10.1016/S1474-4422(13)70076-0] [PMID: 23623397]
[97]
Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 2019; 381(7): 614-25.
[http://dx.doi.org/10.1056/NEJMoa1900866] [PMID: 31050279]
[98]
Dmytrijuk A, Robie-Suh K, Cohen MH, Rieves D, Weiss K, Pazdur R. FDA report: eculizumab (Soliris) for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Oncologist 2008; 13(9): 993-1000.
[http://dx.doi.org/10.1634/theoncologist.2008-0086] [PMID: 18784156]
[99]
Zelek WM, Xie L, Morgan BP, Harris CL. Compendium of current complement therapeutics. Mol Immunol 2019; 114: 341-52.
[http://dx.doi.org/10.1016/j.molimm.2019.07.030] [PMID: 31446305]
[100]
Shimizu F, Sano Y, Takahashi T, et al. Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J Neurol Neurosurg Psychiatry 2012; 83(3): 288-97.
[http://dx.doi.org/10.1136/jnnp-2011-300434] [PMID: 22100760]
[101]
Mealy MA, Shin K, John G, Levy M. Bevacizumab is safe in acute relapses of neuromyelitis optica. Clin Exp Neuroimmunol 2015; 6(4): 413-8.
[http://dx.doi.org/10.1111/cen3.12239] [PMID: 26834844]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy