Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of SIRT1 in Neuropathic Pain from the Viewpoint of Neuroimmunity

Author(s): Youjia Fan, Rong Dong, Honghai Zhang, Buwei Yu* and Han Lu*

Volume 28, Issue 4, 2022

Published on: 05 July, 2021

Page: [280 - 286] Pages: 7

DOI: 10.2174/1381612827666210705162610

Price: $65

Abstract

The current clinical first-line treatment of neuropathic pain still considers only the nervous system as the target, and its therapeutic effect is limited. An increasing number of studies support the opinion that neuropathic pain is a result of the combined action of the sensory nervous system and the related immune system. Under physiological conditions, both the nervous system and the immune system can maintain homeostasis by adjusting the mitochondrial function when sensing noxious stimulation. However, in the case of neuropathic pain, mitochondrial regulatory dysfunction occurs, which may result from the decreased expression of SIRT1. In this study, we review the role of SIRT1 in neuropathic pain from the viewpoint of neuroimmunity.

Keywords: Neuropathic pain, neuroimmunity, NADH/NAD(+), mitochondrial dysfunction, deacetylase, SIRT1.

[1]
Baron R, Binder A, Wasner G. Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010; 9(8): 807-19.
[http://dx.doi.org/10.1016/S1474-4422(10)70143-5] [PMID: 20650402]
[2]
Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nat Rev Dis Primers 2017; 3: 17002.
[http://dx.doi.org/10.1038/nrdp.2017.2] [PMID: 28205574]
[3]
Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 2019; 363(6424): 276-81.
[http://dx.doi.org/10.1126/science.aap8586] [PMID: 30655440]
[4]
Davis KD, Flor H, Greely HT, et al. Brain imaging tests for chronic pain: Medical, legal and ethical issues and recommendations. Nat Rev Neurol 2017; 13(10): 624-38.
[http://dx.doi.org/10.1038/nrneurol.2017.122] [PMID: 28884750]
[5]
Alles SRA, Smith PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev 2018; 70(2): 315-47.
[http://dx.doi.org/10.1124/pr.117.014399] [PMID: 29500312]
[6]
Sisignano M, Parnham MJ, Geisslinger G. Novel approaches to persistent pain therapy. Trends Pharmacol Sci 2019; 40(6): 367-77.
[http://dx.doi.org/10.1016/j.tips.2019.04.003] [PMID: 31078322]
[7]
Scholz J, Woolf CJ. The neuropathic pain triad: Neurons, immune cells and glia. Nat Neurosci 2007; 10(11): 1361-8.
[http://dx.doi.org/10.1038/nn1992] [PMID: 17965656]
[8]
Calvo M, Dawes JM, Bennett DL. The role of the immune system in the generation of neuropathic pain. Lancet Neurol 2012; 11(7): 629-42.
[http://dx.doi.org/10.1016/S1474-4422(12)70134-5] [PMID: 22710756]
[9]
Chung BY, Kim HB, Jung MJ, et al. Post-burn pruritus. Int J Mol Sci 2020; 21(11): 21.
[http://dx.doi.org/10.3390/ijms21113880] [PMID: 32485929]
[10]
Finnerup NB, Kuner R, Jensen TS Neuropathic pain: From mechanisms to treatment Physiol Rev 2021; 11(1): 259-301
[PMID: 32584191]
[11]
Sommer C, Leinders M, Üçeyler N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018; 159(3): 595-602.
[http://dx.doi.org/10.1097/j.pain.0000000000001122] [PMID: 29447138]
[12]
Trevisan G, Benemei S, Materazzi S, et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 2016; 139(Pt 5): 1361-77.
[http://dx.doi.org/10.1093/brain/aww038] [PMID: 26984186]
[13]
Gao W, Zan Y, Wang ZJ, Hu XY, Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin 2016; 37(9): 1166-77.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[14]
De Logu F, Nassini R, Materazzi S, et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 2017; 8(1): 1887.
[http://dx.doi.org/10.1038/s41467-017-01739-2] [PMID: 29192190]
[15]
Ntogwa M, Imai S, Hiraiwa R, et al. Schwann cell-derived CXCL1 contributes to human immunodeficiency virus type 1 gp120-induced neuropathic pain by modulating macrophage infiltration in mice. Brain Behav Immun 2020; 88: 325-39.
[http://dx.doi.org/10.1016/j.bbi.2020.03.027] [PMID: 32229220]
[16]
Morin N, Owolabi SA, Harty MW, et al. Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol 2007; 184(1-2): 164-71.
[http://dx.doi.org/10.1016/j.jneuroim.2006.12.009] [PMID: 17275921]
[17]
Yu X, Liu H, Hamel KA, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun 2020; 11(1): 264.
[http://dx.doi.org/10.1038/s41467-019-13839-2] [PMID: 31937758]
[18]
Lim H, Lee H, Noh K, Lee SJ. IKK/NF-κB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 2017; 158(9): 1666-77.
[http://dx.doi.org/10.1097/j.pain.0000000000000959] [PMID: 28722693]
[19]
Shepherd AJ, Copits BA, Mickle AD, et al. Angiotensin II triggers peripheral macrophage-to-sensory neuron redox crosstalk to elicit pain. J Neurosci 2018; 38(32): 7032-57.
[http://dx.doi.org/10.1523/JNEUROSCI.3542-17.2018] [PMID: 29976627]
[20]
Simeoli R, Montague K, Jones HR, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun 2017; 8(1): 1778.
[http://dx.doi.org/10.1038/s41467-017-01841-5] [PMID: 29176651]
[21]
Latremoliere A, Woolf CJ. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain 2009; 10(9): 895-926.
[http://dx.doi.org/10.1016/j.jpain.2009.06.012] [PMID: 19712899]
[22]
Masuda T, Ozono Y, Mikuriya S, et al. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 2016; 7: 12529.
[http://dx.doi.org/10.1038/ncomms12529] [PMID: 27515581]
[23]
Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005; 438(7070): 1017-21.
[http://dx.doi.org/10.1038/nature04223] [PMID: 16355225]
[24]
McKelvey R, Berta T, Old E, Ji RR, Fitzgerald M. Neuropathic pain is constitutively suppressed in early life by anti-inflammatory neuroimmune regulation. J Neurosci 2015; 35(2): 457-66.
[http://dx.doi.org/10.1523/JNEUROSCI.2315-14.2015] [PMID: 25589741]
[25]
Inoue K, Tsuda M. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 2018; 19(3): 138-52.
[http://dx.doi.org/10.1038/nrn.2018.2] [PMID: 29416128]
[26]
Mapplebeck JCS, Beggs S, Salter MW. Sex differences in pain: A tale of two immune cells. Pain 2016; 157(Suppl. 1): S2-6.
[http://dx.doi.org/10.1097/j.pain.0000000000000389] [PMID: 26785152]
[27]
Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 2017; 46(6): 927-42.
[http://dx.doi.org/10.1016/j.immuni.2017.06.008] [PMID: 28636960]
[28]
Rankin LC, Artis D. Beyond host defense: Emerging functions of the immune system in regulating complex tissue physiology. Cell 2018; 173(3): 554-67.
[http://dx.doi.org/10.1016/j.cell.2018.03.013] [PMID: 29677509]
[29]
Besedovsky HO. The immune system as a sensorial system that can modulate brain functions and reset homeostasis. Ann N Y Acad Sci 2019; 1437(1): 5-14.
[http://dx.doi.org/10.1111/nyas.13935] [PMID: 30126011]
[30]
Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci 2012; 15(8): 1063-7.
[http://dx.doi.org/10.1038/nn.3144] [PMID: 22837035]
[31]
Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 2017; 38(1): 5-19.
[http://dx.doi.org/10.1016/j.it.2016.10.001] [PMID: 27793571]
[32]
Flatters SJ. The contribution of mitochondria to sensory processing and pain. Prog Mol Biol Transl Sci 2015; 131: 119-46.
[http://dx.doi.org/10.1016/bs.pmbts.2014.12.004] [PMID: 25744672]
[33]
Ulmann L, Hirbec H, Rassendren F. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 2010; 29(14): 2290-300.
[http://dx.doi.org/10.1038/emboj.2010.126] [PMID: 20562826]
[34]
Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 1985; 82(17): 6010-3.
[http://dx.doi.org/10.1073/pnas.82.17.6010] [PMID: 3862113]
[35]
Sajic M, Mastrolia V, Lee CY, et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in in vivo. PLoS Biol 2013; 11(12)e1001754
[http://dx.doi.org/10.1371/journal.pbio.1001754] [PMID: 24391474]
[36]
Shutov LP, Kim MS, Houlihan PR, Medvedeva YV, Usachev YM. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J Physiol 2013; 591(10): 2443-62.
[http://dx.doi.org/10.1113/jphysiol.2012.249219] [PMID: 23381900]
[37]
Guo BL, Sui BD, Wang XY, et al. Significant changes in mitochondrial distribution in different pain models of mice. Mitochondrion 2013; 13(4): 292-7.
[http://dx.doi.org/10.1016/j.mito.2013.03.007] [PMID: 23542162]
[38]
Toyama S, Shimoyama N, Ishida Y, Koyasu T, Szeto HH, Shimoyama M. Characterization of acute and chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted antioxidant on the neuropathies. Anesthesiology 2014; 120(2): 459-73.
[http://dx.doi.org/10.1097/01.anes.0000435634.34709.65] [PMID: 24064792]
[39]
Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018; 124(11): 2289-98.
[http://dx.doi.org/10.1002/cncr.31248] [PMID: 29461625]
[40]
Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J Pineal Res 2017; 63(4): 63.
[http://dx.doi.org/10.1111/jpi.12444] [PMID: 28833461]
[41]
McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth 2016; 117(5): 659-66.
[http://dx.doi.org/10.1093/bja/aew309] [PMID: 27799181]
[42]
Xiao WH, Bennett GJ. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 2012; 153(3): 704-9.
[http://dx.doi.org/10.1016/j.pain.2011.12.011] [PMID: 22244441]
[43]
Zhao Y, Wang A, Zou Y, Su N, Loscalzo J, Yang Y. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state. Nat Protoc 2016; 11(8): 1345-59.
[http://dx.doi.org/10.1038/nprot.2016.074] [PMID: 27362337]
[44]
Xiao W, Wang RS, Handy DE, Loscalzo J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal 2018; 28(3): 251-72.
[http://dx.doi.org/10.1089/ars.2017.7216] [PMID: 28648096]
[45]
Marcu R, Wiczer BM, Neeley CK, Hawkins BJ. Mitochondrial matrix Ca2+ accumulation regulates cytosolic NAD+/NADH metabolism, protein acetylation, and sirtuin expression. Mol Cell Biol 2014; 34(15): 2890-902.
[http://dx.doi.org/10.1128/MCB.00068-14] [PMID: 24865966]
[46]
Köhler S, Winkler U, Sicker M, Hirrlinger J. NBCe1 mediates the regulation of the NADH/NAD+ redox state in cortical astrocytes by neuronal signals. Glia 2018; 66(10): 2233-45.
[http://dx.doi.org/10.1002/glia.23504] [PMID: 30208253]
[47]
Shetty PK, Galeffi F, Turner DA. Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia. Neurobiol Dis 2014; 62: 469-78.
[http://dx.doi.org/10.1016/j.nbd.2013.10.025] [PMID: 24184921]
[48]
Liu HW, Smith CB, Schmidt MS, et al. Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapy-induced degeneration. Proc Natl Acad Sci USA 2018; 115(42): 10654-9.
[http://dx.doi.org/10.1073/pnas.1809392115] [PMID: 30257945]
[49]
Minhas PS, Liu L, Moon PK, et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat Immunol 2019; 20(1): 50-63.
[http://dx.doi.org/10.1038/s41590-018-0255-3] [PMID: 30478397]
[50]
Shen Y, Kapfhamer D, Minnella AM, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun 2017; 8(1): 624.
[http://dx.doi.org/10.1038/s41467-017-00707-0] [PMID: 28935892]
[51]
Bernier LP, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 2020; 11(1): 1559.
[http://dx.doi.org/10.1038/s41467-020-15267-z] [PMID: 32214088]
[52]
Pacifici F, Di Cola D, Pastore D, et al. Proposed tandem effect of physical activity and sirtuin 1 and 3 activation in regulating glucose homeostasis. Int J Mol Sci 2019; 20(19): 20.
[http://dx.doi.org/10.3390/ijms20194748] [PMID: 31557786]
[53]
Madsen AS, Andersen C, Daoud M, et al. Investigating the sensitivity of nad+-dependent sirtuin deacylation activities to NADH. J Biol Chem 2016; 291(13): 7128-41.
[http://dx.doi.org/10.1074/jbc.M115.668699] [PMID: 26861872]
[54]
Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling. Cell 2013; 154(2): 430-41.
[http://dx.doi.org/10.1016/j.cell.2013.06.016] [PMID: 23870130]
[55]
Lin S, Xing H, Zang T, Ruan X, Wo L, He M. Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes. Ageing Res Rev 2018; 44: 22-32.
[http://dx.doi.org/10.1016/j.arr.2018.03.006] [PMID: 29580919]
[56]
Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron 2014; 81(3): 471-83.
[http://dx.doi.org/10.1016/j.neuron.2014.01.028] [PMID: 24507186]
[57]
Chandrasekaran K, Salimian M, Konduru SR, et al. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain 2019; 142(12): 3737-52.
[http://dx.doi.org/10.1093/brain/awz324] [PMID: 31754701]
[58]
Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 2011; 18(1): 153-8.
[http://dx.doi.org/10.1038/nm.2558] [PMID: 22179319]
[59]
Gleave JA, Arathoon LR, Trinh D, et al. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism. Neurobiol Dis 2017; 106: 133-46.
[http://dx.doi.org/10.1016/j.nbd.2017.06.009] [PMID: 28673739]
[60]
Rafalski VA, Ho PP, Brett JO, et al. Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol 2013; 15(6): 614-24.
[http://dx.doi.org/10.1038/ncb2735] [PMID: 23644469]
[61]
Li D, Liu N, Zhao HH, et al. Interactions between Sirt1 and MAPKs regulate astrocyte activation induced by brain injury in vitro and in in vivo. J Neuroinflammation 2017; 14(1): 67.
[http://dx.doi.org/10.1186/s12974-017-0841-6] [PMID: 28356158]
[62]
Rangarajan P, Karthikeyan A, Lu J, Ling EA, Dheen ST. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience 2015; 311: 398-414.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.048] [PMID: 26523980]
[63]
Shu L, Xu CQ, Yan ZY, Yan Y, Jiang SZ, Wang YR. Post-stroke microglia induce sirtuin2 expression to suppress the anti-inflammatory function of infiltrating regulatory t cells. Inflammation 2019; 42(6): 1968-79.
[http://dx.doi.org/10.1007/s10753-019-01057-3] [PMID: 31297748]
[64]
Chen H, Ji H, Zhang M, et al. An agonist of the protective factor sirt1 improves functional recovery and promotes neuronal survival by attenuating inflammation after spinal cord injury. J Neurosci 2017; 37(11): 2916-30.
[http://dx.doi.org/10.1523/JNEUROSCI.3046-16.2017] [PMID: 28193684]
[65]
Li T, Garcia-Gomez A, Morante-Palacios O, et al. SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Res 2020; 48(2): 665-81.
[http://dx.doi.org/10.1093/nar/gkz1127] [PMID: 31799621]
[66]
Lim HW, Kang SG, Ryu JK, et al. SIRT1 deacetylates RORγt and enhances Th17 cell generation. J Exp Med 2015; 212(5): 607-17.
[http://dx.doi.org/10.1084/jem.20132378] [PMID: 25918343]
[67]
Ilari S, Giancotti LA, Lauro F, et al. Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control. Pharmacol Res 2020; 157104851
[http://dx.doi.org/10.1016/j.phrs.2020.104851] [PMID: 32423865]
[68]
Tillu DV, Melemedjian OK, Asiedu MN, et al. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 2012; 8: 5.
[http://dx.doi.org/10.1186/1744-8069-8-5] [PMID: 22269797]
[69]
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: Mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2021; 21(1): 45-63.
[http://dx.doi.org/10.1080/14737175.2021.1847645] [PMID: 33161784]
[70]
Picchione KE, Bhattacharjee A. Viral genome silencing by neuronal sirtuin 1. J Neurovirol 2011; 17(2): 184-8.
[http://dx.doi.org/10.1007/s13365-010-0012-3] [PMID: 21165789]
[71]
Shao H, Xue Q, Zhang F, et al. Spinal SIRT1 activation attenuates neuropathic pain in mice. PLoS One 2014; 9(6)e100938
[http://dx.doi.org/10.1371/journal.pone.0100938] [PMID: 24959710]
[72]
Yin Q, Lu FF, Zhao Y, et al. Resveratrol facilitates pain attenuation in a rat model of neuropathic pain through the activation of spinal Sirt1. Reg Anesth Pain Med 2013; 38(2): 93-9.
[http://dx.doi.org/10.1097/AAP.0b013e3182795b23] [PMID: 23337935]
[73]
Wang LL, Shi DL, Gu HY, et al. Resveratrol attenuates inflammatory hyperalgesia by inhibiting glial activation in mice spinal cords. Mol Med Rep 2016; 13(5): 4051-7.
[http://dx.doi.org/10.3892/mmr.2016.5027] [PMID: 27035673]
[74]
He X, Ou P, Wu K, et al. Resveratrol attenuates morphine antinociceptive tolerance via SIRT1 regulation in the rat spinal cord. Neurosci Lett 2014; 566: 55-60.
[http://dx.doi.org/10.1016/j.neulet.2014.02.022] [PMID: 24561089]
[75]
Wuertz K, Quero L, Sekiguchi M, et al. The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in in vivo. Spine 2011; 36(21): E1373-84.
[http://dx.doi.org/10.1097/BRS.0b013e318221e655] [PMID: 21587103]
[76]
Gui Y, Li A, Chen F, et al. Involvement of AMPK/SIRT1 pathway in anti-allodynic effect of troxerutin in CCI-induced neuropathic pain. Eur J Pharmacol 2015; 769: 234-41.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.023] [PMID: 26601804]
[77]
Heyn J, Luchting B, Hinske LC, Hübner M, Azad SC, Kreth S. miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with neuropathic pain. J Neuroinflammation 2016; 13(1): 248.
[http://dx.doi.org/10.1186/s12974-016-0712-6] [PMID: 27646435]
[78]
Liu Y, Ni Y, Zhang W, et al. Anti-nociceptive effects of caloric restriction on neuropathic pain in rats involves silent information regulator 1. Br J Anaesth 2018; 120(4): 807-17.
[http://dx.doi.org/10.1016/j.bja.2017.09.009] [PMID: 29576121]
[79]
Yin Q, Wang JF, Xu XH, Xie H. Effect of lycopene on pain facilitation and the SIRT1/mTOR pathway in the dorsal horn of burn injury rats. Eur J Pharmacol 2020; 889173365
[http://dx.doi.org/10.1016/j.ejphar.2020.173365] [PMID: 32712090]
[80]
Mo Y, Liu B, Qiu S, et al. Down-regulation of microRNA-34c-5p alleviates neuropathic pain via the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve. J Neurochem 2020; 154(3): 301-15.
[http://dx.doi.org/10.1111/jnc.14998] [PMID: 32126145]
[81]
Jia Q, Dong W, Zhang L, Yang X. Activating Sirt1 by resveratrol suppresses Nav1.7 expression in DRG through miR-182 and alleviates neuropathic pain in rats. Channels (Austin) 2020; 14(1): 69-78.
[http://dx.doi.org/10.1080/19336950.2020.1732003] [PMID: 32089065]
[82]
Zhu H, Ding J, Wu J, et al. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy. Acta Biochim Biophys Sin (Shanghai) 2017; 49(11): 1008-14.
[http://dx.doi.org/10.1093/abbs/gmx103] [PMID: 29036449]
[83]
Li MY, Ding JQ, Tang Q, et al. SIRT1 activation by SRT1720 attenuates bone cancer pain via preventing Drp1-mediated mitochondrial fission. Biochim Biophys Acta Mol Basis Dis 2019; 1865(3): 587-98.
[http://dx.doi.org/10.1016/j.bbadis.2018.12.017] [PMID: 30579931]
[84]
Yang C, Kang F, Wang S, Han M, Zhang Z, Li J. SIRT1 activation attenuates bone cancer pain by inhibiting mgluR1/5. Cell Mol Neurobiol 2019; 39(8): 1165-75.
[http://dx.doi.org/10.1007/s10571-019-00710-7] [PMID: 31270711]
[85]
Chen K, Fan J, Luo ZF, Yang Y, Xin WJ, Liu CC. Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J Neuroinflammation 2018; 15(1): 292.
[http://dx.doi.org/10.1186/s12974-018-1327-x] [PMID: 30342528]
[86]
Zhang Z, Ding X, Zhou Z, et al. Sirtuin 1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons. Pain 2019; 160(5): 1082-92.
[http://dx.doi.org/10.1097/j.pain.0000000000001489] [PMID: 30649099]
[87]
Zhong X, Wang W, Mao Z, et al. Activation of liver x receptors prevents the spinal LTP induced by skin/muscle retraction in the thigh via SIRT1/NF-Kb pathway. Neurochem Int 2019; 128: 106-14.
[http://dx.doi.org/10.1016/j.neuint.2019.04.002] [PMID: 31018150]
[88]
Gui Y, Zhang J, Chen L, et al. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. Mol Pain 2018; 141744806918768970
[http://dx.doi.org/10.1177/1744806918768970] [PMID: 29623757]
[89]
Li X, Yang S, Wang L, et al. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J Pain Res 2019; 12: 879-90.
[http://dx.doi.org/10.2147/JPR.S185873] [PMID: 30881098]
[90]
Yang C, Huang X, Wang S, et al. Intrathecal administration of SRT1720 relieves bone cancer pain by inhibiting the CREB/CRTC1 signalling pathway. Neurosci Lett 2020; 715134623
[http://dx.doi.org/10.1016/j.neulet.2019.134623] [PMID: 31722235]
[91]
Chen S, Gu Y, Dai Q, He Y, Wang J. Spinal miR-34a regulates inflammatory pain by targeting SIRT1 in complete Freund’s adjuvant mice. Biochem Biophys Res Commun 2019; 516(4): 1196-203.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.002] [PMID: 31296380]
[92]
Shinozaki S, Chang K, Sakai M, et al. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci Signal 2014; 7(351): ra106.
[http://dx.doi.org/10.1126/scisignal.2005375] [PMID: 25389371]
[93]
Recalde MD, Miguel CA, Noya-Riobó MV, González SL, Villar MJ, Coronel MF. Resveratrol exerts anti-oxidant and anti-inflammatory actions and prevents oxaliplatin-induced mechanical and thermal allodynia. Brain Res 2020; 1748147079
[http://dx.doi.org/10.1016/j.brainres.2020.147079] [PMID: 32866545]
[94]
Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ. SIRT1 decreases emotional pain vulnerability with associated camkiiα deacetylation in central amygdala. J Neurosci 2020; 40(11): 2332-42.
[http://dx.doi.org/10.1523/JNEUROSCI.1259-19.2020] [PMID: 32005763]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy