Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Hofmann Rearrangement and Its Application to Natural Product Synthesis

Author(s): Pradip Debnath*

Volume 23, Issue 22, 2019

Page: [2402 - 2435] Pages: 34

DOI: 10.2174/1385272823666191021115508

Price: $65

Abstract

C-N bond formation reactions are the most important transformations in (bio)organic chemistry because of the widespread occurrence of amines in pharmaceuticals, natural products, and biologically active compounds. The Hofmann rearrangement is a well-known method used for the preparation of primary amines from amides. But, the traditional version of the Hofmann rearrangement often gave relatively poor yields due to over-oxidation or due to the poor solubility of some amides in aqueous base, and created an enormous amount of waste products. Developments over the last two decades, in particular, have focused on refining both of these factors affecting the reaction. This review covers both the description of recent advances (2000-2019) in the Hofmann rearrangements and its applications in the synthesis of heterocycles, natural products and complex molecules of biological interest. It is revealed that organo-catalytic systems especially hypervalent iodine-based catalysts have been developed for the green and environmentally friendly conversion of carboxamides to primary amines and carbamates.

Keywords: Amides, Hofmann rearrangement, hypervalent iodine, primary amines, carbamates, heterocycles, natural products.

Graphical Abstract

[1]
Sołoducho, J.; Olech, K.; Świst, A.; Zając, D.; Cabaj, J. Recent advances of modern protocol for C-C bonds-the Suzuki cross-coupling. Adv. Chem. Eng. Sci., 2013, 3(3A), 19-32.
[http://dx.doi.org/10.4236/aces.2013.33A1003]
[2]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereo-specific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20(36), 3437-3440.
[http://dx.doi.org/10.1016/S0040-4039(01)95429-2]
[3]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[4]
Miyaura, N. Cross-Coupling Reactions: A Practical Guide; Springer-Verlag. Top. Curr. Chem., 2002, 219, 11-59.
[http://dx.doi.org/10.1007/3-540-45313-X_2]
[5]
Tsuji, J. Palladium Reagents and Catalysis; Wiley: West Sussex, UK, 2004.
[http://dx.doi.org/10.1002/0470021209]
[6]
De Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, Germany, 2004.
[http://dx.doi.org/10.1002/9783527619535]
[7]
Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-Interscience: New York, NY, USA, 2002.
[8]
Suzuki, A. Cross-coupling reactions via organoboranes. J. Organomet. Chem., 2002, 653(1-2), 83-90.
[http://dx.doi.org/10.1016/S0022-328X(02)01269-X]
[9]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (e)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Chem. Commun., 1979, 1979(19), 866-867.
[10]
Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11(7), 513-519.
[http://dx.doi.org/10.1080/00397918108063618]
[11]
Suzuki, A. Organoboron compounds in new synthetic reactions. Pure Appl. Chem., 1985, 57(12), 1749-1758.
[http://dx.doi.org/10.1351/pac198557121749]
[12]
Sato, M.; Miyaura, N.; Suzuki, A. Cross-coupling reaction of alkyl- or arylboronic acid esters with organic halides induced by thallium(i) salts and palladium-catalyst. Chem. Lett., 1989, 18(8), 1405-1408.
[http://dx.doi.org/10.1246/cl.1989.1405]
[13]
Heravi, M.M.; Ghanbarian, M.; Ghalavand, N.; Nazari, N. Current applications of the sonogashira reaction in the synthesis of heterocyclic compounds: an update. Curr. Org. Chem., 2018, 22(14), 1420-1457.
[http://dx.doi.org/10.2174/1385272822666180322122232]
[14]
Heravi, M.M.; Dehghani, M.; Zadsirjan, V.M.G. Alkynes as privileged synthons in selected organic name reactions. Curr. Org. Chem., 2019, 16(2), 205-243.
[15]
Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-hartwig reaction: an overview. J. Organomet. Chem., 2018, 861, 17-104.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.023]
[16]
Heravi, M.M.; Hashemi, E.; Azimian, F. Recent developments of the stille reaction as a revolutionized method in total synthesis. Tetrahedron, 2014, 70(1), 7-21.
[http://dx.doi.org/10.1016/j.tet.2013.07.108]
[17]
Heravi, M.M.; Mohammadkhani, L. Recent applications of stille reaction in total synthesis of natural products: an Update. J. Organomet. Chem., 2018, 869, 106-200.
[http://dx.doi.org/10.1016/j.jorganchem.2018.05.018]
[18]
Anderson, K.W.; Buchwald, S.L. General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. Angew. Chem. Int. Ed. Engl., 2005, 44(38), 6173-6177.
[http://dx.doi.org/10.1002/anie.200502017] [PMID: 16097019]
[19]
Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. Suzuki-Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls. ChemSusChem, 2010, 3(5), 502-522.
[http://dx.doi.org/10.1002/cssc.200900221] [PMID: 20191633]
[20]
Cocuzza, A.J.; Chidester, D.R.; Culp, S.; Fitzgerald, L.; Gilligan, P. Use of the Suzuki reaction for the synthesis of aryl-substituted heterocycles as corticotropin-releasing hormone (CRH) antagonists. Bioorg. Med. Chem. Lett., 1999, 9(7), 1063-1066.
[http://dx.doi.org/10.1016/S0960-894X(99)00133-X] [PMID: 10230641]
[21]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[22]
Sniady, A.; Morreale, M.S.; Wheeler, K.A.; Dembinski, R. Room-temperature electrophilic 5-endo-dig chlorocyclization of alk-3-yn-1-ones with the use of pool sanitizer: synthesis of 3-chlorofurans and 5-chloro-furopyrimidine nucleosides. Eur. J. Org. Chem., 2008, 2008(20), 3449-3452.
[http://dx.doi.org/10.1002/ejoc.200800397]
[23]
Vitaglione, P.; Fogliano, V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 802(1), 189-199.
[http://dx.doi.org/10.1016/j.jchromb.2003.09.029] [PMID: 15036011]
[24]
Abdel-Wahab, B.F.; Awad, G.E.A.; Badria, F.A. Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. Eur. J. Med. Chem., 2011, 46(5), 1505-1511.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.062] [PMID: 21353349]
[25]
Talati, J.D.; Gandhi, D.K. N-heterocyclic compounds as corrosion inhibitors for aluminium-copper alloy in hydrochloric acid. Corros. Sci., 1983, 23(12), 1315-1332.
[http://dx.doi.org/10.1016/0010-938X(83)90081-1]
[26]
Raja, P.B.; Sethuraman, M.G. Natural products as corrosion inhibitor for metals in corrosive media-a review. Mater. Lett., 2008, 62(1), 113-116.
[http://dx.doi.org/10.1016/j.matlet.2007.04.079]
[27]
Guo, L.; Zhang, D. Cyclic poly(alpha-peptoid)s and their block copolymers from N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-carboxylanhydrides. J. Am. Chem. Soc., 2009, 131(50), 18072-18074.
[http://dx.doi.org/10.1021/ja907380d] [PMID: 19950948]
[28]
Butuc, E.; Gherasim, G.M. Ordered heterocyclic copolymers. Polyamide-imides with s-triazine rings. J. Polym. Sci., Polym. Phys. Ed., 1984, 22(2), 503-507.
[http://dx.doi.org/10.1002/pol.1984.170220220]
[29]
Stead, C.V. Halogenated heterocycles in reactive dyes. Dyes Pigments, 1982, 3(2), 161-171.
[http://dx.doi.org/10.1016/0143-7208(82)80019-3]
[30]
Leadbeater, N.E.; Marco, M. Transition-metal-free Suzuki-type coupling reactions. Angew. Chem. Int. Ed. Engl., 2003, 42(12), 1407-1409.
[http://dx.doi.org/10.1002/anie.200390362] [PMID: 12671982]
[31]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. Engl., 2005, 44(29), 4442-4489.
[http://dx.doi.org/10.1002/anie.200500368] [PMID: 15991198]
[32]
Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron, 2002, 58, 9633-9695.
[http://dx.doi.org/10.1016/S0040-4020(02)01188-2]
[33]
Mpungose, P.P.; Vundla, Z.P.; Maguire, G.E.M.; Friedrich, H.B. The current status of heterogeneous palladium catalysed Heck and Suzuki cross-coupling reactions. Molecules, 2018, 23(7), 1676-1700.
[http://dx.doi.org/10.3390/molecules23071676] [PMID: 29996491]
[34]
Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the Suzuki-Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem., 2019, 3(21), 381-405.
[http://dx.doi.org/10.1039/C8GC02860E]
[35]
Rocard, L.; Hudhomme, P. Recent developments in the Suzuki-Miyaura reaction using nitroarenes as electrophilic coupling reagents. Catalysts, 2019, 9(3), 213-221.
[http://dx.doi.org/10.3390/catal9030213]
[36]
Talaei, B.; Heravi, M.M. Diketene a Privileged Synthon in the Synthesis of Heterocycles. Part 2: Six-Membered Ring Heterocycles.Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A., Eds.; Elsevier, 2018, Vol. 125, pp. 1-106.
[37]
Heravi, M.M.; Zadsirjan, V. Chapter five - Recent advances in the synthesis of benzo[b]furans. In: Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A., Eds.; Elsevier,, 2015; 117, p. 261-376.
[38]
Heravi, M.M.; Vavsari, V.F. Recent Advances.Application Of Amino Acids: Key Building Blocks in Design and Syntheses of Heterocyclic Compounds. In: Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A., Eds.; Elsevier, 2015, Vol. 114, pp. 77-145.
[39]
Khaghaninejad, S.; Heravi, M.M. Paal-Knorr Reaction in the Synthesis of Heterocyclic Compounds.Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; , 2014, Vol. 111, pp. 95-146.
[40]
Heravi, M.M.; Khaghaninejad, S.; Nazari, N. Bischler–Napieralski Reaction in the Syntheses of Isoquinolines.Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Elsevier, 2014, Vol. 112, pp. 183-234.
[41]
Heravi, M.M.; Talaei, B. Ketenes as Privileged Synthons in the Synthesis of Heterocyclic Compounds Part 3: Six-Membered Heterocycles. In: Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A. Eds.; Elsevier,, 2016; 118, p. 195-291.
[42]
Heravi, M.M.; Rajabzadeh, G.; Bamoharram, F.F.; Seifi, N. An eco-friendly catalytic route for synthesis of 4-amino-pyrazolo [3, 4-d] pyrimidine derivatives by keggin heteropolyacids under classical heating and microwave irradiation. J. Mol. Catal. Chem., 2006, 256(1-2), 238-241.
[http://dx.doi.org/10.1016/j.molcata.2006.04.016]
[43]
Oskooie, H.A.; Heravi, M.M.; Behbahani, F.K.; Facile, A. A facile, mild and efficient one-pot synthesis of 2-substituted indole derivatives catalyzed by Pd(PPh3)2Cl2. Molecules, 2007, 12(7), 1438-1446.
[http://dx.doi.org/10.3390/12071438] [PMID: 17909499]
[44]
Mirsafaei, R.; Heravi, M.M.; Ahmadi, S.; Moslemin, M.H.; Hosseinnejad, T. In situ prepared copper nanoparticles on modified kit-5 as an efficient recyclable catalyst and its applications in click reactions in water. J. Mol. Catal. Chem., 2015, 402, 100-108.
[http://dx.doi.org/10.1016/j.molcata.2015.03.006]
[45]
Heravi, M.M.; Hashemi, E.; Beheshtiha, Y.S.; Ahmadi, S.; Hosseinnejad, T. Pdcl2 on modified poly (styrene-co-maleic anhydride): a highly active and recyclable catalyst for the Suzuki-Miyaura and Sonogashira reactions. J. Mol. Catal. Chem., 2014, 394, 74-82.
[http://dx.doi.org/10.1016/j.molcata.2014.07.001]
[46]
Heravi, M.M.; Mousavizadeh, F.; Ghobadi, N.; Tajbakhsh, M. A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett., 2014, 55(6), 1226-1228.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.004]
[47]
Heravi, M.M.; Nazari, N. Bischler-Napieralski reaction in total synthesis of isoquinoline-based natural products. An old reaction, a new application. Curr. Org. Chem., 2015, 19(24), 2358-2408.
[http://dx.doi.org/10.2174/1385272819666150730214506]
[48]
Heravi, M.M.; Zadsirjan, V.; Savadjani, Z.B. Applications of mannich reaction in total syntheses of natural products. Curr. Org. Chem., 2014, 18(22), 2857-2891.
[http://dx.doi.org/10.2174/1385272819666141014212254]
[49]
Heravi, M.M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H. Recent applications of the hetero Diels-Alder reaction in the total synthesis of natural products. RSC Adv, 2015, 5(123), 101999-102075.
[http://dx.doi.org/10.1039/C5RA17488K]
[50]
Heravi, M.M.; Asadi, S.; Nazari, N.; Lashkariani, B.M. Developments of Corey-Chaykovsky in organic reactions and total synthesis of natural products. Curr. Org. Chem., 2016, 13(3), 308-333.
[51]
Heravi, M.M.; Hashemi, E. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron, 2012, 68(45), 9145-9178.
[http://dx.doi.org/10.1016/j.tet.2012.08.058]
[52]
Heravi, M.M.; Hamidi, H.; Zadsirjan, V. Recent applications of click reaction in the syntheses of 1, 2, 3-triazoles. Curr. Org. Synth., 2014, 11(5), 647-675.
[http://dx.doi.org/10.2174/1570179411666140530210314]
[53]
Heravi, M.M.; Hashemi, E.; Nazari, N. Negishi coupling: an easy progress for C-C bond construction in total synthesis. Mol. Divers., 2014, 18(2), 441-472.
[http://dx.doi.org/10.1007/s11030-014-9510-1] [PMID: 24604702]
[54]
Heravi, M.M.; Zadsirjan, V. Oxazolidinones as chiral auxiliaries in asymmetric aldol reactions applied to total synthesis. Tetrahedron Asymmetry, 2013, 24(19), 1149-1188.
[http://dx.doi.org/10.1016/j.tetasy.2013.08.011]
[55]
Heravi, M.M.; Zadsirjan, V. Recent advances in the synthesis of biologically active compounds containing benzo [B] furans as a framework. Curr. Org. Chem., 2016, 13(6), 780-833.
[56]
Mohammadkhani, L.; Heravi, M.M. Synthesis of various N-heterocycles using the Ugi four-center three-component reaction. Chem. Select, 2019, 4(34), 10187-10196.
[57]
Heravi, M.M.; Daraie, M.; Zadsirjan, V. Current advances in the synthesis and biological potencies of tri- and tetra-substituted 1H-imidazoles. Mol. Divers., 2015, 19(3), 577-623.
[58]
Heravi, M.M.; Vavsari, V.F. Recent applications of intramolecular Diels–Alder reaction in total synthesis of natural products. RSC Adv, 2015, 5(63), 50890-50912.
[http://dx.doi.org/10.1039/C5RA08306K]
[59]
Heravi, M.M.; Hashemi, E. Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh. Chem., 2012, 2012(143), 861-880.
[60]
Jayaram, V.; Sridhar, T.; Sharma, G.V.M.; Berrée, F.; Carboni, B. Synthesis of 1-Amino-1H-Indenes via a sequential Suzuki-Miyaura coupling/petasis condensation sequence. J. Org. Chem., 2017, 82(3), 1803-1811.
[http://dx.doi.org/10.1021/acs.joc.6b02549] [PMID: 28056174]
[61]
Binder, R.J.; Hatfield, M.J.; Chi, L.; Potter, P.M. Facile synthesis of 1,2-dione-containing abietane analogues for the generation of human carboxylesterase inhibitors. Eur. J. Med. Chem., 2018, 149(149), 79-89.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.052] [PMID: 29499489]
[62]
Addla, D.; Bhima, B.; Sridhar, B.; Devi, A.; Kantevari, S. Design, synthesis and antimicrobial evaluation of novel 1-benzyl 2-butyl-4-chloroimidazole embodied 4-azafluorenones via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2012, 22(24), 7475-7480.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.042] [PMID: 23147074]
[63]
Suzuki, N.; Fujita, T.; Ichikawa, J. Method for the synthesis of dibenzo[g,p]chrysenes: Domino Friedel-crafts-type cyclization of difluoro-ethenes bearing two biaryl groups. Org. Lett., 2015, 17(20), 4984-4987.
[http://dx.doi.org/10.1021/acs.orglett.5b02426] [PMID: 26418965]
[64]
Prachayasittikul, S.; Manam, P.; Chinworrungsee, M.; Isarankura-Na-Ayudhya, C.; Ruchirawat, S.; Prachayasittikul, V. Bioactive azafluorenone alkaloids from Polyalthia debilis (Pierre) Finet & Gagnep. Molecules, 2009, 14(11), 4414-4424.
[http://dx.doi.org/10.3390/molecules14114414] [PMID: 19924075]
[65]
Mueller, D.; Davis, R.A.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial activity of azafluorenone alkaloids from the Australian tree Mitrephora diversifolia. J. Nat. Prod., 2009, 72(8), 1538-1540.
[http://dx.doi.org/10.1021/np900247f] [PMID: 19591451]
[66]
Koyama, J.; Morita, I.; Kobayashi, N.; Osakai, T.; Usuki, Y.; Taniguchi, M. Structure-activity relations of azafluorenone and azaanthraquinone as antimicrobial compounds. Bioorg. Med. Chem. Lett., 2005, 15(4), 1079-1082.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.059] [PMID: 15686916]
[67]
Kraus, G.A.; Kempema, A. Synthesis of azafluorenone antimicrobial agents. J. Nat. Prod., 2010, 73(11), 1967-1968.
[http://dx.doi.org/10.1021/np100536a] [PMID: 20964320]
[68]
Hufford, C.D.; Liu, S.; Clark, A.M.; Oguntimein, B.O. Anticandidal activity of eupolauridine and onychine, alkaloids from Cleistopholis patens. J. Nat. Prod., 1987, 50(5), 961-964.
[http://dx.doi.org/10.1021/np50053a037] [PMID: 3325614]
[69]
Wu, Y.C. Azafluorene and aporphine alkyloids from Polyalthia longifolia. Heterocycles, 1989, 29(3), 463-475.
[http://dx.doi.org/10.3987/COM-89-4768]
[70]
Manpadi, M.; Uglinskii, P.Y.; Rastogi, S.K.; Cotter, K.M.; Wong, Y-S.C.; Anderson, L.A.; Ortega, A.J.; Van Slambrouck, S.; Steelant, W.F.A.; Rogelj, S.; Tongwa, P.; Antipin, M.Y.; Magedov, I.V.; Kornienko, A. Three-component synthesis and anticancer evaluation of polycyclic indenopyridines lead to the discovery of a novel indenoheterocycle with potent apoptosis inducing properties. Org. Biomol. Chem., 2007, 5(23), 3865-3872.
[http://dx.doi.org/10.1039/b713820b] [PMID: 18004468]
[71]
Pumsalid, K.; Thaisuchat, H.; Loetchutinat, C.; Nuntasaen, N.; Meepowpan, P.; Pompimon, W. A new azafluorenone from the roots of Polyalthia cerasoides and its biological activity. Nat. Prod. Commun., 2010, 5(12), 1931-1934.
[http://dx.doi.org/10.1177/1934578X1000501219] [PMID: 21299123]
[72]
Marquise, N.; Dorcet, V.; Chevallier, F.; Mongin, F. Synthesis of substituted azafluorenones from dihalogeno diaryl ketones by palladium-catalyzed auto-tandem processes. Org. Biomol. Chem., 2014, 12(41), 8138-8141.
[http://dx.doi.org/10.1039/C4OB01629G] [PMID: 25233952]
[73]
Gao, J.; Shao, Y.; Zhu, J.; Zhu, J.; Mao, H.; Wang, X.; Lv, X. One-pot approach to 1,2-disubstituted indoles via Cu(II)-catalyzed coupling/cyclization under aerobic conditions and its application for the synthesis of polycyclic indoles. J. Org. Chem., 2014, 79(19), 9000-9008.
[http://dx.doi.org/10.1021/jo501250u] [PMID: 25211172]
[74]
Evoniuk, C.J.; Ly, M.; Alabugin, I.V. Coupling cyclizations with fragmentations for the preparation of heteroaromatics: quinolines from o-alkenyl arylisocyanides and boronic acids. Chem. Commun. (Camb.), 2015, 51(64), 12831-12834.
[http://dx.doi.org/10.1039/C5CC04391C] [PMID: 26165765]
[75]
Kim, H.S.; Goo, D-Y.; Woo, S.K. Efficient synthesis of aryl-substituted carbazoles via tandem double or triple Suzuki coupling and cadogan cyclization. Tetrahedron, 2017, 73(11), 1413-1423.
[http://dx.doi.org/10.1016/j.tet.2017.01.038]
[76]
Alcaide, B.; Almendros, P.; Aragoncillo, C.; Busto, E.; López-Calixto, C.G.; Liras, M.; de la Peña O’Shea, V.A.; García-Sánchez, A.; Stone, H.V. A facile synthesis of blue luminescent [7]helicenocarbazoles based on gold-catalyzed rearrangement-iodonium migration and Suzuki-Miyaura benzannulation reactions. Chemistry, 2018, 24(30), 7620-7625.
[http://dx.doi.org/10.1002/chem.201801179] [PMID: 29572999]
[77]
Lavrard, H.; Popowycz, F. Harnessing cascade Suzuki-Cyclization reactions of pyrazolo[3,4-b] pyridine for the synthesis of tetracyclic fused heteroaromatics. J. Org. Chem., 2016, 2017(3), 600-608.
[78]
Singha, R.; Roy, S.; Nandi, S.; Ray, P.; Ray, J.K. Palladium-catalyzed one-pot Suzuki–Miyaura cross coupling followed by oxidative lactonization: A novel and efficient route for the one-pot synthesis of benzo[C]chromene-6-ones. Tetrahedron Lett., 2013, 54(7), 657-660.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.144]
[79]
Wang, H.; Zhu, M.; Ye, S.; Wu, J. Generation of diverse isoquinoline N-Oxides in an aqueous system. RSC Adv, 2013, 3(33), 13626-13629.
[http://dx.doi.org/10.1039/c3ra42730g]
[80]
Li, Y.; Wang, K.; Ping, Y.; Wang, Y.; Kong, W. Nickel-catalyzed domino heck cyclization/Suzuki coupling for the synthesis of 3,3-disubstituted oxindoles. Org. Lett., 2018, 20(4), 921-924.
[http://dx.doi.org/10.1021/acs.orglett.7b03713] [PMID: 29373029]
[81]
Kim, H.D.; Kim, G. Study of Aza-cyclization Of A, B-unsaturated carbonyl moieties and synthetic application to hexahydroapoerysopine. Tetrahedron Lett., 2013, 54(13), 1765-1767.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.093]
[82]
Jana, S.; Rainier, J.D. The synthesis of indoline and benzofuran scaffolds using a Suzuki-Miyaura coupling/oxidative cyclization strategy. Org. Lett., 2013, 15(17), 4426-4429.
[http://dx.doi.org/10.1021/ol401974v] [PMID: 23952242]
[83]
Matsuoka, J.; Matsuda, Y.; Kawada, Y.; Oishi, S.; Ohno, H. Total synthesis of dictyodendrins by the gold-catalyzed cascade cyclization of conjugated diynes with pyrroles. Angew. Chem. Int. Ed. Engl., 2017, 56(26), 7444-7448.
[http://dx.doi.org/10.1002/anie.201703279] [PMID: 28561942]
[84]
Jana, N.; Nguyen, Q.; Driver, T.G. Development of a Suzuki cross-coupling reaction between 2-azidoarylboronic pinacolate esters and vinyl triflates to enable the synthesis of [2,3]-fused indole heterocycles. J. Org. Chem., 2014, 79(6), 2781-2791.
[http://dx.doi.org/10.1021/jo500252e] [PMID: 24571492]
[85]
Pham, N.N.; Janke, S.; Salman, G.A.; Dang, T.T.; Le, T.S.; Spannenberg, A.; Ehlers, P.; Langer, P. Convenient synthesis of 11-substituted 11h-indolo[3,2-C] quinolines by sequential chemoselective Suzuki reaction/double C–N coupling. Eur. J. Org. Chem., 2017, 2017(37), 5554-5565.
[http://dx.doi.org/10.1002/ejoc.201700913]
[86]
Bogányi, B.; Kámán, J. A concise synthesis of indoloquinoline skeletons applying two consecutive Pd-catalyzed reactions. Tetrahedron, 2013, 69(45), 9512-9519.
[http://dx.doi.org/10.1016/j.tet.2013.08.019]
[87]
Schempp, T.T.; Daniels, B.E.; Staben, S.T.; Stivala, C.E. A general strategy for the construction of functionalized azaindolines via domino palladium-catalyzed heck cyclization/Suzuki coupling. Org. Lett., 2017, 19(13), 3616-3619.
[http://dx.doi.org/10.1021/acs.orglett.7b01606] [PMID: 28653542]
[88]
Limbach, D.; Geffe, M.; Detert, H. Synthesis of carbolines via microwave-assisted cadogan reactions of aryl-nitropyridines. Chem. Select, 2017, 3(1), 12308-12311.
[89]
Salman, G.A.; Janke, S.; Pham, N.N.; Ehlers, P.; Langer, P. Convenient synthesis of 10h-indolo[3,2-B]quinolines and 6h-Indolo [2,3-B]quinolines by sequential chemoselective Suzuki reaction followed by double C-N coupling. Tetrahedron, 2018, 74(10), 1024-1032.
[http://dx.doi.org/10.1016/j.tet.2018.01.010]
[90]
Jiang, B.; Hu, L.; Gu, W. Facile synthesis of 2-amino-3-bromoquinolines by palladium-catalyzed isocyanide insertion and cyclization of gem-dibromovinylanilines. RSC Adv, 2012, 4(27), 13850-13853.
[http://dx.doi.org/10.1039/C4RA00821A]
[91]
Liu, B.; Gao, H.; Yu, Y.; Wu, W.; Jiang, H. Palladium-catalyzed intermolecular aerobic oxidative cyclization of 2-ethynylanilines with isocyanides: Regioselective synthesis of 4-halo-2-aminoquinolines. J. Org. Chem., 2013, 78(20), 10319-10328.
[http://dx.doi.org/10.1021/jo401707j] [PMID: 24060188]
[92]
Jiang, B.; Tao, K.; Shen, W.; Zhang, J. Facile synthesis of 2-bromoindoles by ligand-free cui-catalyzed intramolecular cross-coupling of gem-dibromoole-fins. Tetrahedron Lett., 2010, 51(48), 6342-6344.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.129]
[93]
Grassi, D.; Li, H.; Alexakis, A. Formation of chiral fluoroalkyl products through copper-free enantioselective allylic alkylation catalyzed by an NHC ligand. Chem. Commun. (Camb.), 2012, 48(93), 11404-11406.
[http://dx.doi.org/10.1039/c2cc36513h] [PMID: 23085621]
[94]
Rohlmann, R.; Daniliuc, C-G.; Mancheño, O.G. Highly enantioselective synthesis of chiral 7-ring O- and N-heterocycles by a one-pot nitro-Michael-cyclization tandem reaction. Chem. Commun. (Camb.), 2013, 49(99), 11665-11667.
[http://dx.doi.org/10.1039/c3cc47397j] [PMID: 24190160]
[95]
Mathias, F.; Crozet, M.D.; Kabri, Y.; Vanelle, P. Rapid synthesis of new 2-methyl-7-nitro-5-substituted-2,3-dihydroimidazo[5,1-B]oxazole as potential antibacterial drugs through one-pot cyclization and Suzuki-Miyaura coupling. Synth. Commun., 2018, 48(10), 1213-1219.
[http://dx.doi.org/10.1080/00397911.2018.1439177]
[96]
Irwin, R.L.; Smith, H.J., III Cholinesterase inhibition by galanthamine and lycoramine. Biochem. Pharmacol., 1960, 3, 147-148.
[http://dx.doi.org/10.1016/0006-2952(60)90030-7] [PMID: 13853036]
[97]
Lilienfeld, S. Galantamine- a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev., 2002, 8(2), 159-176.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[98]
Dong, B.; Zhou, B.; Ren, J.; Lu, L.; Lu, G.; Hu, P.; Zeng, B-B. Short and efficient synthesis of Guillou’s galanthamine intermediate. Tetrahedron, 2017, 73(32), 4719-4722.
[http://dx.doi.org/10.1016/j.tet.2017.06.019]
[99]
Castanheiro, T.; Donnard, M.; Gulea, M.; Suffert, J. Cyclocarbopalladation/cross-coupling cascade reactions in sulfide series: access to sulfur heterocycles. Org. Lett., 2014, 16(11), 3060-3063.
[http://dx.doi.org/10.1021/ol501165h] [PMID: 24820009]
[100]
Yabuuchi, Y.; Sakamoto, K.; Yoshimura, T.; Matsuo, J-I. Palladium-catalyzed stereoselective intramolecular cyclization and Suzuki coupling of N-arylsulfonyl-alpha-chloroenamides promoted by a G-hydroxy group. Tetrahedron, 2018, 74(30), 4053-4061.
[http://dx.doi.org/10.1016/j.tet.2018.06.010]
[101]
Liu, F.; Zhang, H.; Dong, J.; Wu, Y.; Li, W. Highly efficient synthesis of a ladder-T Ype Bn-heteroacene and polyheteroacene. Asian J. Org. Chem., 2018, 7(2), 465-470.
[http://dx.doi.org/10.1002/ajoc.201700571]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy