Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Pharmacotherapy for SARS-CoV-2 and Seizures for Drug Repurposing Presumed on Mechanistic Targets

Author(s): Divya Goel, Ankit Srivastava, Ángel Aledo-Serrano, Anuja Krishnan and Divya Vohora*

Volume 15, Issue 6, 2022

Published on: 17 January, 2022

Article ID: e131021197221 Pages: 14

DOI: 10.2174/1874467214666211013122528

Price: $65

Abstract

The currently circulating novel SARS-CoV-2 coronavirus disease (COVID-19) has brought the whole world to a standstill. Recent studies have deciphered the viral genome structure, epidemiology and are in the process of unveiling multiple mechanisms of pathogenesis. Apart from atypical pneumonia and lung disease manifestations, this disease has also been found to be associated with neurological symptoms, which include dizziness, headache, stroke, or seizures, among others. However, a possible direct or indirect association between SARS-CoV-2 and seizures is still not clear. In any manner, it may be of interest to analyze the drugs being used for viral infection in the background of epilepsy or vice versa.

To identify the most credible drug candidate for COVID-19 in persons with epilepsy or COVID-19 patients experiencing seizures.

A literature search for original and review articles was performed, and further, the Comparative Toxicogenomics Database was used to unearth the most credible drug candidate.

Our search based on common mechanistic targets affecting SARS-CoV-2 and seizures revealed ivermectin, dexamethasone, anakinra, and tocilizumab for protection against both COVID-19 and seizures. Amongst the antiseizure medications, we found valproic acid as the most probable pharmacotherapy for COVID-19 patients experiencing seizures.

These findings would hopefully provide the basis for initiating further studies on the pathogenesis and drug targeting strategies for this emerging infection accompanied with seizures or in people with epilepsy.

Keywords: SARS-CoV-2, epilepsy, valproic acid, ivermectin, dexamethasone, anakinra, tocilizumab, COVID-19, seizure.

Graphical Abstract

[1]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/
[3]
Carod-Artal, F.J. Neurological complications of coronavirus and COVID-19. Rev. Neurol., 2020, 70(9), 311-322.
[PMID: 32329044]
[4]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[5]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[6]
Chan, J.F.; Kok, K.H. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. 2020, 9(1), 221-226.
[http://dx.doi.org/10.1080/22221751.2020.1719902]
[7]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS- CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[8]
Sato, S.; Sugiyama, M.; Yamamoto, M.; Watanabe, Y.; Kawai, T.; Takeda, K.; Akira, S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol., 2003, 171(8), 4304-4310.
[http://dx.doi.org/10.4049/jimmunol.171.8.4304] [PMID: 14530355]
[9]
Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta, 2020, 509, 280-287.
[http://dx.doi.org/10.1016/j.cca.2020.06.017] [PMID: 32531256]
[10]
Kreye, J.; Reincke, S.M.; PrA1/4ss, H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat. Rev. Immunol., 2020, 20(11), 645-646.
[http://dx.doi.org/10.1038/s41577-020-00458-y] [PMID: 33024283]
[11]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[12]
Jacomy, H.; Talbot, P.J. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology, 2003, 315(1), 20-33.
[http://dx.doi.org/10.1016/S0042-6822(03)00323-4] [PMID: 14592756]
[13]
Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol., 2020, 77(8), 1018-1027.
[http://dx.doi.org/10.1001/jamaneurol.2020.2065] [PMID: 32469387]
[14]
Koralnik, I.J.; Tyler, K.L. COVID-19: A global threat to the nervous system. Ann. Neurol., 2020, 88(1), 1-11.
[http://dx.doi.org/10.1002/ana.25807] [PMID: 32506549]
[15]
Harry, A.; Eleni, M.; Kleopatra, B.; Nikolitsa, K.; Panayiotis, V.; Athanasios, T.; Anastasia, K. Anti–SARS-CoV-2 antibodies in the CSF, blood-brain barrier dysfunction, and neurological outcome. Neurol. Neuroimmunol. Neuroinflamm., 2020, 7(6), e893.
[http://dx.doi.org/10.1212/NXI.0000000000000893] [PMID: 32978291]
[16]
Poyiadji, N.; Shahin, G.; Noujaim, D.; Stone, M.; Patel, S.; Griffith, B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: Imaging features. Radiology, 2020, 296(2), E119-E120.
[http://dx.doi.org/10.1148/radiol.2020201187] [PMID: 32228363]
[17]
Zandifar, S.Z.Z. Acute viral encephalitis associated with SARSCoV-2. Ann. Clin. Case Rep., 2020, 5, 1845.
[18]
Patra, A.; Bhavesh, N.S. Virtual screening and molecular dynamics simulation suggest valproic acid Co-A could bind to SARS- CoV2 RNA depended RNA polymerase. OSF. OSF, 2020, 2020, 17605.
[19]
Vollono, C.; Rollo, E.; Romozzi, M.; Frisullo, G.; Servidei, S.; Borghetti, A.; Calabresi, P. Focal status epilepticus as unique clinical feature of COVID-19: A case report. Seizure, 2020, 78, 109-112.
[http://dx.doi.org/10.1016/j.seizure.2020.04.009] [PMID: 32344366]
[20]
Lahiri, D.; Ardila, A. COVID-19 pandemic: A neurological perspective. Cureus, 2020, 12(4), e7889.
[PMID: 32489743]
[21]
Vargas, G.; Medeiros G., L.H.; GedeAœo SalomAœo, N.; Viana P., M.; Regina, S. Lima, F.; Carvalho A. G., F. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain Behav Immun Health, 2020, 7, 100127.
[http://dx.doi.org/10.1016/j.bbih.2020.100127] [PMID: 32838339]
[22]
Zhou, H.; Fang, Y.; Xu, T. Potential therapeutic targets and promising drugs for combating. SARS-CoV-2., 2020, 177(14), 3147-3161.
[http://dx.doi.org/10.1111/bph.15092]
[23]
Vohora, D; Jain, S; Tripathi, M COVID-19 and seizures: Is there a link? Epilepsia., 2020, Sep 17.
[http://dx.doi.org/10.1111/epi.16656]
[24]
Aledo-Serrano, A?.; Mingorance, A.; JimA(c)nez-Huete, A.; Toledano, R.; GarcA-a-Morales, I.; Anciones, C.; Gil-Nagel, A. Genetic epilepsies and COVID-19 pandemic: Lessons from the caregiver perspective. Epilepsia, 2020, 61(6), 1312-1314.
[http://dx.doi.org/10.1111/epi.16537] [PMID: 32420620]
[25]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The comparative toxicogenomics database update 2019. Nucleic Acids Res., 2019, 47(D1), D948-D954.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[26]
Gordon, D.E.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Br. J. Pharmacol., 2020, 583, 459-468.
[27]
Faivre, E.J.; McDaniel, K.F.; Albert, D.H.; Mantena, S.R.; Plotnik, J.P.; Wilcox, D.; Zhang, L.; Bui, M.H.; Sheppard, G.S.; Wang, L.; Sehgal, V.; Lin, X.; Huang, X.; Lu, X.; Uziel, T.; Hessler, P.; Lam, L.T.; Bellin, R.J.; Mehta, G.; Fidanze, S.; Pratt, J.K.; Liu, D.; Hasvold, L.A.; Sun, C.; Panchal, S.C.; Nicolette, J.J.; Fossey, S.L.; Park, C.H.; Longenecker, K.; Bigelow, L.; Torrent, M.; Rosenberg, S.H.; Kati, W.M.; Shen, Y. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature, 2020, 578(7794), 306-310.
[http://dx.doi.org/10.1038/s41586-020-1930-8] [PMID: 31969702]
[28]
Durner, M.; Sander, T.; Greenberg, D.A.; Johnson, K.; Beck-Mannagetta, G.; Janz, D. Localization of idiopathic generalized epilepsy on chromosome 6p in families of juvenile myoclonic epilepsy patients. Neurology, 1991, 41(10), 1651-1655.
[http://dx.doi.org/10.1212/WNL.41.10.1651] [PMID: 1922810]
[29]
Pal, D.K.; Evgrafov, O.V.; Tabares, P.; Zhang, F.; Durner, M.; Greenberg, D.A. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am. J. Hum. Genet., 2003, 73(2), 261-270.
[http://dx.doi.org/10.1086/377006] [PMID: 12830434]
[30]
Velíšek, L.; Shang, E.; Velíšková, J.; Chachua, T.; Macchiarulo, S.; Maglakelidze, G.; Wolgemuth, D.J.; Greenberg, D.A. GABAergic neuron deficit as an idiopathic generalized epilepsy mechanism: the role of BRD2 haploinsufficiency in juvenile myoclonic epilepsy. PLoS One, 2011, 6(8), e23656.
[http://dx.doi.org/10.1371/journal.pone.0023656] [PMID: 21887291]
[31]
Shang, E.; Cui, Q.; Wang, X.; Beseler, C.; Greenberg, D.A.; Wolgemuth, D.J. The bromodomain-containing gene BRD2 is regulated at transcription, splicing, and translation levels. J. Cell. Biochem., 2011, 112(10), 2784-2793.
[http://dx.doi.org/10.1002/jcb.23192] [PMID: 21608014]
[32]
Chachua, T.; Goletiani, C.; Maglakelidze, G.; Sidyelyeva, G.; Daniel, M.; Morris, E.; Miller, J.; Shang, E.; Wolgemuth, D.J.; Greenberg, D.A.; VelA-kovA, J.; VelA-ek, L. Sex-specific behavioral traits in the Brd2 mouse model of juvenile myoclonic epilepsy. Genes Brain Behav., 2014, 13(7), 702-712.
[http://dx.doi.org/10.1111/gbb.12160] [PMID: 25130458]
[33]
Pathak, S.; Miller, J.; Morris, E.C.; Stewart, W.C.L.; Greenberg, D.A. DNA methylation of the BRD2 promoter is associated with juvenile myoclonic epilepsy in Caucasians. Epilepsia, 2018, 59(5), 1011-1019.
[http://dx.doi.org/10.1111/epi.14058] [PMID: 29608786]
[34]
Korb, E; Herre, M; Zucker-Scharff, I; Darnell, RB BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. 2015, 18(10), 1464-1473.
[http://dx.doi.org/10.1038/nn.4095]
[35]
Ramaiah, M.J. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. Gene Rep., 2020, 20, 100765.
[http://dx.doi.org/10.1016/j.genrep.2020.100765] [PMID: 32835132]
[36]
Tan, L.; Sato, N.; Shiraki, A.; Yanagita, M.; Yoshida, Y.; Takemura, Y.; Shiraki, K. Everolimus delayed and suppressed cytomegalovirus DNA synthesis, spread of the infection, and alleviated cytomegalovirus infection. Antiviral Res., 2019, 162, 30-38.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.004] [PMID: 30543830]
[37]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[38]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[PMID: 32171193]
[39]
Zegeye, M.M.; Lindkvist, M.; FAlker, K.; Kumawat, A.K.; Paramel, G.; Grenega, M.; SirsjA, A.; Ljungberg, L.U. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun. Signal., 2018, 16(1), 55.
[http://dx.doi.org/10.1186/s12964-018-0268-4] [PMID: 30185178]
[40]
Zheng, Y; Li, R. Immunoregulation with mTOR inhibitors to prevent COVID-19 severity: A novel intervention strategy beyond vaccines and specific antiviral medicines. J. Med. Virol., 2020, 1495-1500.
[http://dx.doi.org/10.1002/jmv.26009]
[41]
Procaccini, C.; De Rosa, V.; Galgani, M.; Abanni, L.; CalAª, G.; Porcellini, A.; Carbone, F.; Fontana, S.; Horvath, T.L.; La Cava, A.; Matarese, G. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity, 2010, 33(6), 929-941.
[http://dx.doi.org/10.1016/j.immuni.2010.11.024] [PMID: 21145759]
[42]
Kim, J.K.; Cho, J.; Kim, S.H.; Kang, H.C.; Kim, D.S.; Kim, V.N.; Lee, J.H. Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. J. Clin. Invest., 2019, 129(10), 4207-4223.
[http://dx.doi.org/10.1172/JCI127032] [PMID: 31483294]
[43]
Lee, J.H.; Huynh, M.; Silhavy, J.L.; Kim, S.; Dixon-Salazar, T.; Heiberg, A.; Scott, E.; Bafna, V.; Hill, K.J.; Collazo, A.; Funari, V.; Russ, C.; Gabriel, S.B.; Mathern, G.W.; Gleeson, J.G. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet., 2012, 44(8), 941-945.
[http://dx.doi.org/10.1038/ng.2329] [PMID: 22729223]
[44]
Kim, J.K.; Lee, J.H. Mechanistic target of rapamycin pathway in epileptic disorders. J. Korean Neurosurg. Soc., 2019, 62(3), 272-287.
[http://dx.doi.org/10.3340/jkns.2019.0027] [PMID: 31085953]
[45]
A Study Investigating the Anti-epileptic Efficacy of Afinitor (Everolimus) in Patients With Refractory Seizures Who Have Focal Cortical Dysplasia Type II (FCD II). Available from: https://clinicaltrials.gov/ct2/show/NCT03198949
[46]
Bruni, J.; Wilder, B.J. Valproic acid. Review of a new antiepileptic drug. Arch. Neurol., 1979, 36(7), 393-398.
[http://dx.doi.org/10.1001/archneur.1979.00500430023002] [PMID: 110294]
[47]
Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr. Neuropharmacol., 2019, 17(10), 926-946.
[http://dx.doi.org/10.2174/1570159X17666181227165722] [PMID: 30592252]
[48]
Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol., 2016, 15(2), 210-218.
[http://dx.doi.org/10.1016/S1474-4422(15)00314-2] [PMID: 26655849]
[49]
Gurwitz, D. Angiotensin receptor blockers as tentative SARS- CoV-2 therapeutics. Drug Dev. Res., 2020, 81(5), 537-540.
[http://dx.doi.org/10.1002/ddr.21656] [PMID: 32129518]
[50]
Cui, Q.; Huang, C.; Ji, X.; Zhang, W.; Zhang, F.; Wang, L. Possible Inhibitors of ACE2, the Receptor of 2019-nCoV. Preprints, 2020, 2020020047.2020
[http://dx.doi.org/10.20944/preprints202002.0047.v1]
[51]
Rajeshwari, T.; Raja, B.; Manivannan, J.; Silambarasan, T.; Dhanalakshmi, T. Valproic acid prevents the deregulation of lipid metabolism and renal renin-angiotensin system in L-NAME induced nitric oxide deficient hypertensive rats. Environ. Toxicol. Pharmacol., 2014, 37(3), 936-945.
[http://dx.doi.org/10.1016/j.etap.2014.02.008] [PMID: 24705342]
[52]
Lukawski, K.; Jakubus, T.; Janowska, A.; Czuczwar, S.J. Interactions between ACE inhibitors and classical antiepileptic drugs in the mouse maximal electroshock seizures. Pharmacol. Biochem. Behav., 2011, 100(1), 152-156.
[http://dx.doi.org/10.1016/j.pbb.2011.06.030] [PMID: 21741989]
[53]
Shafiq, M.M.; Menon, D.V.; Victor, R.G. Oral direct renin inhibition: premise, promise, and potential limitations of a new antihypertensive drug. Am. J. Med., 2008, 121(4), 265-271.
[http://dx.doi.org/10.1016/j.amjmed.2007.11.016] [PMID: 18374681]
[54]
Citraro, R.; Leo, A.; Santoro, M.; D’agostino, G.; Constanti, A.; Russo, E. Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis. Curr. Pharm. Des., 2017, 23(37), 5546-5562.
[http://dx.doi.org/10.2174/1381612823666171024130001] [PMID: 29076408]
[55]
Delcuve, G.P.; Khan, D.H.; Davie, J.R. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin. Epigenetics, 2012, 4(1), 5.
[http://dx.doi.org/10.1186/1868-7083-4-5] [PMID: 22414492]
[56]
Zhang, H.; Shang, Y.P.; Chen, H.Y.; Li, J. Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol. Res., 2017, 47(2), 149-159.
[http://dx.doi.org/10.1111/hepr.12757] [PMID: 27457249]
[57]
Machado-Vieira, R.; Ibrahim, L.; Zarate, C.A., Jr Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci. Ther., 2011, 17(6), 699-704.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00203.x] [PMID: 20961400]
[58]
Qureshi, I.A.; Mehler, M.F. Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol. Dis., 2010, 39(1), 53-60.
[http://dx.doi.org/10.1016/j.nbd.2010.02.005] [PMID: 20188170]
[59]
Mehler, M.F. Epigenetics and the nervous system. Ann. Neurol., 2008, 64(6), 602-617.
[http://dx.doi.org/10.1002/ana.21595] [PMID: 19107999]
[60]
Sng, J.C.; Taniura, H.; Yoneda, Y. Histone modifications in kainate-induced status epilepticus. Eur. J. Neurosci., 2006, 23(5), 1269-1282.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04641.x] [PMID: 16553789]
[61]
Henshall, D.C.; Kobow, K. Epigenetics and Epilepsy. Cold Spring Harb. Perspect. Med., 2015, 5(12), a022731.
[http://dx.doi.org/10.1101/cshperspect.a022731] [PMID: 26438606]
[62]
Szyndler, J.; Maciejak, P.; Turzyńska, D.; Sobolewska, A.; Taracha, E.; Skórzewska, A.; Lehner, M.; Bidziński, A.; Hamed, A.; Wisłowska-Stanek, A.; Krzaścik, P.; Płaźnik, A. Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav., 2009, 16(2), 216-224.
[http://dx.doi.org/10.1016/j.yebeh.2009.07.030] [PMID: 19713157]
[63]
Jessberger, S.; Nakashima, K.; Clemenson, G.D., Jr; Mejia, E.; Mathews, E.; Ure, K.; Ogawa, S.; Sinton, C.M.; Gage, F.H.; Hsieh, J. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J. Neurosci., 2007, 27(22), 5967-5975.
[http://dx.doi.org/10.1523/JNEUROSCI.0110-07.2007] [PMID: 17537967]
[64]
Yoo, Y.G.; Na, T.Y.; Seo, H.W.; Seong, J.K.; Park, C.K.; Shin, Y.K.; Lee, M.O. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene, 2008, 27(24), 3405-3413.
[http://dx.doi.org/10.1038/sj.onc.1211000] [PMID: 18264140]
[65]
Miura, K.; Taura, K.; Kodama, Y.; Schnabl, B.; Brenner, D.A. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology, 2008, 48(5), 1420-1429.
[http://dx.doi.org/10.1002/hep.22486] [PMID: 18671304]
[66]
Longworth, M.S.; Laimins, L.A. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J. Virol., 2004, 78(7), 3533-3541.
[http://dx.doi.org/10.1128/JVI.78.7.3533-3541.2004] [PMID: 15016876]
[67]
Williams, S.A.; Chen, L.F.; Kwon, H.; Ruiz-Jarabo, C.M.; Verdin, E.; Greene, W.C. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J., 2006, 25(1), 139-149.
[http://dx.doi.org/10.1038/sj.emboj.7600900] [PMID: 16319923]
[68]
Sorin, M.; Cano, J.; Das, S.; Mathew, S.; Wu, X.; Davies, K.P.; Shi, X.; Cheng, S.W.; Ott, D.; Kalpana, G.V. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication. PLoS Pathog., 2009, 5(6), e1000463.
[http://dx.doi.org/10.1371/journal.ppat.1000463] [PMID: 19503603]
[69]
VAzquez-Calvo, A.; Saiz, J.C.; Sobrino, F.; MartA-n-Acebes, M.A. Inhibition of enveloped virus infection of cultured cells by valproic acid. J. Virol., 2011, 85(3), 1267-1274.
[http://dx.doi.org/10.1128/JVI.01717-10] [PMID: 21106740]
[70]
Chen, S; Ye, J. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J. Neuroinflammation, 2018, 15(1), 150.
[http://dx.doi.org/10.1186/s12974-018-1193-6]
[71]
Seet, L.F.; Toh, L.Z.; Finger, S.N.; Chu, S.W.L.; Wong, T.T. Valproic acid exerts specific cellular and molecular anti-inflammatory effects in post-operative conjunctiva. J. Mol. Med. (Berl.), 2019, 97(1), 63-75.
[http://dx.doi.org/10.1007/s00109-018-1722-x] [PMID: 30456449]
[72]
Park, A.H.; Park, E.K.; Cho, Y.W.; Kim, S.; Kim, H.M.; Kim, J.A.; Kim, J.; Rhee, H.; Kang, S.G.; Kim, H.D. Concentration of Il-1Iý, Il-2, Il-6, TNFIñ in the blood serum in children with generalized epilepsy treated by valproate. Nat. Med., 2014, 66(6), 972-975.
[73]
Lehrman, G.; Hogue, I.B.; Palmer, S.; Jennings, C.; Spina, C.A.; Wiegand, A.; Landay, A.L.; Coombs, R.W.; Richman, D.D.; Mellors, J.W.; Coffin, J.M.; Bosch, R.J.; Margolis, D.M. Depletion of latent HIV-1 infection in vivo: A proof-of-concept study. Lancet, 2005, 366(9485), 549-555.
[http://dx.doi.org/10.1016/S0140-6736(05)67098-5] [PMID: 16099290]
[74]
Chiquete, E.; Cantu-Brito, C. Methods of an open-label proof-ofconcept trial of intravenous valproic acid for severe COVID-19; PAHO Preprint, 2020. Available from: https://covid19-evidence.paho.org/handle/20.500.12663/1615.
[75]
Azeem, S.; Ashraf, M.; Rasheed, M.A.; Anjum, A.A.; Hameed, R. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pak. J. Pharm. Sci., 2015, 28(2), 597-602.
[PMID: 25730813]
[76]
Mastrangelo, E.; Pezzullo, M.; De Burghgraeve, T.; Kaptein, S.; Pastorino, B.; Dallmeier, K.; de Lamballerie, X.; Neyts, J.; Hanson, A.M.; Frick, D.N.; Bolognesi, M.; Milani, M. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J. Antimicrob. Chemother., 2012, 67(8), 1884-1894.
[http://dx.doi.org/10.1093/jac/dks147] [PMID: 22535622]
[77]
Wagstaff, K.M.; Headey, S.; Telwatte, S.; Tyssen, D.; Hearps, A.C.; Thomas, D.R.; Tachedjian, G.; Jans, D.A. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell. Microbiol., 2019, 21(1), e12953.
[http://dx.doi.org/10.1111/cmi.12953] [PMID: 30216959]
[78]
Wagstaff, K.M.; Rawlinson, S.M.; Hearps, A.C.; Jans, D.A. An AlphaScreenA(r)-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen., 2011, 16(2), 192-200.
[http://dx.doi.org/10.1177/1087057110390360] [PMID: 21297106]
[79]
Yang, S.N.Y.; Atkinson, S.C.; Wang, C.; Lee, A.; Bogoyevitch, M.A.; Borg, N.A.; Jans, D.A. The broad spectrum antiviral ivermectin targets the host nuclear transport importin Iñ/Iý1 heterodimer. Antiviral Res., 2020, 177, 104760.
[http://dx.doi.org/10.1016/j.antiviral.2020.104760] [PMID: 32135219]
[80]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[81]
Arshad, U.; Pertinez, H.; Box, H.; Tatham, L.; Rajoli, R.K.R. Prioritization of anti-SARS-Cov-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics. 2020, 108(4), 775-790.
[82]
Bray, M.; Rayner, C.; Noël, F.; Jans, D.; Wagstaff, K. Ivermectin and COVID-19: A report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors’ responses. Antiviral. Res., 2020, 178, 104805.
[http://dx.doi.org/10.1016/j.antiviral.2020.104805] [PMID: 32330482]
[83]
President of Dominican republic's largest private health group discusses the success of ivermectin as a treatment for early stage COVID-19. 2020. Available from: India–Trial_Site_News: India – Trial Site News.
[84]
Schmith, VD; Zhou, JJ The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19. 2020, 108(4), 762-765.
[http://dx.doi.org/10.1002/cpt.1889]
[85]
WHO. WHO advises that ivermectin only be used to treat COVID-19 within clinical trials.. 2021. Available from: https://www.who.int/news-room/feature-stories/detail/who-advises-that-ivermectin-only-be-used-to-treat-covid-19-within-clinical- trials
[86]
Siewe, J.N.F.; Ukaga, C.N.; Nwazor, E.O.; Nwoke, M.O.; Nwokeji, M.C.; Onuoha, B.C.; Nwanjor, S.O.; Okeke, J.; Osahor, K.; Chimechefulam, L.; Ogomaka, A.I.; Amaechi, A.A.; Ezenwa, C.I.; Ezike, M.N.; Ikpeama, C.; Nwachukwu, O.; Eriama-Joseph, A.I.; Nwoke, B.E.B.; Colebunders, R. Low prevalence of epilepsy and onchocerciasis after more than 20 years of ivermectin treatment in the Imo River Basin in Nigeria. Infect. Dis. Poverty, 2019, 8(1), 8.
[http://dx.doi.org/10.1186/s40249-019-0517-9] [PMID: 30670093]
[87]
Colebunders, R.; Mandro, M.; Mukendi, D.; Dolo, H.; Suykerbuyk, P.; Van Oijen, M. Ivermectin treatment in patients with onchocerciasis-associated epilepsy: Protocol of a randomized clinical trial. JMIR Res. Protoc., 2017, 6(8), e137.
[http://dx.doi.org/10.2196/resprot.7186] [PMID: 28855148]
[88]
Campbell, W.C.; Fisher, M.H.; Stapley, E.O.; Albers-SchAnberg, G.; Jacob, T.A. Ivermectin: A potent new antiparasitic agent. Science, 1983, 221(4613), 823-828.
[http://dx.doi.org/10.1126/science.6308762] [PMID: 6308762]
[89]
Colebunders, R.; Nelson S., F.J.; Hotterbeekx, A.; Colebunders, R.; Nelson S., F.J.; Hotterbeekx, A. Onchocerciasis-associated epilepsy, an additional reason for strengthening onchocerciasis elimination programs. Trends Parasitol., 2018, 34(3), 208-216.
[http://dx.doi.org/10.1016/j.pt.2017.11.009] [PMID: 29288080]
[90]
Johnson, TP; Tyagi, R Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. Sci. Transl. Med., 2017, 9(377), eaaf6953.
[http://dx.doi.org/10.1126/scitranslmed.aaf6953]
[91]
Colebunders, R.; Irani, J.; Post, R. Nodding syndrome- we can now prevent it. Int. J. Infect. Dis., 2016, 44, 61-63.
[http://dx.doi.org/10.1016/j.ijid.2016.01.016] [PMID: 26845444]
[92]
SchAnrock, B.; Bormann, J. Activation of Cl- channels by avermectin in rat cultured hippocampal neurons. Naunyn Schmiedebergs Arch. Pharmacol., 1993, 348(6), 628-632.
[http://dx.doi.org/10.1007/BF00167239] [PMID: 8133905]
[93]
TrailoviŽØ, S.M.; VaragiŽØ, V.M. The effect of ivermectin on convulsions in rats produced by lidocaine and strychnine. Vet. Res. Commun., 2007, 31(7), 863-872.
[http://dx.doi.org/10.1007/s11259-007-0050-3] [PMID: 17308985]
[94]
Dawson, G.R.; Wafford, K.A.; Smith, A.; Marshall, G.R.; Bayley, P.J.; Schaeffer, J.M.; Meinke, P.T.; McKernan, R.M. Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the gamma-aminobutyric acid(A) receptor. J. Pharmacol. Exp. Ther., 2000, 295(3), 1051-1060.
[PMID: 11082440]
[95]
Mayer, T.W.; Horton, M.L. Modulation of monomethylhydrazine-induced seizures by ivermectin. Toxicol. Lett., 1991, 57(2), 167-173.
[http://dx.doi.org/10.1016/0378-4274(91)90143-T] [PMID: 1853361]
[96]
Kane, N.S.; Hirschberg, B.; Qian, S.; Hunt, D.; Thomas, B.; Brochu, R.; Ludmerer, S.W.; Zheng, Y.; Smith, M.; Arena, J.P.; Cohen, C.J.; Schmatz, D.; Warmke, J.; Cully, D.F. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13949-13954.
[http://dx.doi.org/10.1073/pnas.240464697] [PMID: 11095718]
[97]
Villar, J.; Ferrando, C.; MartA-nez, D.; AmbrA3s, A.; MuAñoz, T.; Soler, J.A.; Aguilar, G.; Alba, F.; GonzAlez-Higueras, E.; Conesa, L.A.; MartA-n-RodrA-guez, C.; DA-az-DomA-nguez, F.J.; Serna-Grande, P.; Rivas, R.; Ferreres, J.; Belda, J.; Capilla, L.; Tallet, A.; AAñA3n, J.M.; FernAndez, R.L.; GonzAlez-MartA-n, J.M. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med., 2020, 8(3), 267-276.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]
[98]
Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; Baldassare, F.P.; Costa, E.L.V.; Moura, R.A.B.; Honorato, M.O.; Costa, A.N.; Damiani, L.P.; Lisboa, T.; Kawano- Dourado, L.; Zampieri, F.G.; Olivato, G.B.; Righy, C.; Amendola, C.P.; Roepke, R.M.L.; Freitas, D.H.M.; Forte, D.N.; Freitas, F.G.R.; Fernandes, C.C.F.; Melro, L.M.G.; Junior, G.F.S.; Morais, D.C.; Zung, S.; Machado, F.R.; Azevedo, L.C.P. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA, 2020, 324(13), 1307-1316.
[http://dx.doi.org/10.1001/jama.2020.17021] [PMID: 32876695]
[99]
Citraro, R.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary report. Neurotherapeutics, 2020.
[http://dx.doi.org/10.1056/NEJMoa2021436]
[100]
Corral, L.; Bahamonde, A. Arnaiz delas Revillas, F.; Gomez-Barquero, J.; Abadia-Otero, J.; Garcia-Ibarbia, C.; Moral, V.; Hernandez, J.L.; Lopez-Muniz, G.; Hernandez-Blanco, F.; Corral, L.; Corral, L. GLUCOCOVID: A controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. MedRxiv., 2020, 384(8), 693-704.
[101]
NIH: COVID-19 Treatment Guidelines., 2020. Available from: www.covid19treatmentguidelines.nih.gov.
[102]
Cao, A.; Rohaut, B.; Le Guennec, L.; Saheb, S.; Marois, C.; Altmayer, V.; Carpentier, V.T.; Nemlaghi, S.; Soulie, M.; Morlon, Q.; Berthet-Delteil, B.; Bleibtreu, A.; Raux, M.; Weiss, N.; Demeret, S. Severe COVID-19-related encephalitis can respond to immunotherapy. Brain, 2020, 143(12), e102.
[http://dx.doi.org/10.1093/brain/awaa337] [PMID: 33064794]
[103]
Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology, 2013, 69, 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.004] [PMID: 22521336]
[104]
David, Y.; Cacheaux, L.P.; Ivens, S.; Lapilover, E.; Heinemann, U.; Kaufer, D.; Friedman, A. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J. Neurosci., 2009, 29(34), 10588-10599.
[http://dx.doi.org/10.1523/JNEUROSCI.2323-09.2009] [PMID: 19710312]
[105]
Friedman, A.; Kaufer, D.; Heinemann, U. Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res., 2009, 85(2-3), 142-149.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.03.005] [PMID: 19362806]
[106]
Auphan, N.; DiDonato, J.A.; Rosette, C.; Helmberg, A.; Karin, M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science, 1995, 270(5234), 286-290.
[http://dx.doi.org/10.1126/science.270.5234.286] [PMID: 7569976]
[107]
Ramos, A.B.; Cruz, R.A.; Villemarette-Pittman, N.R.; Olejniczak, P.W.; Mader, E.C., Jr Dexamethasone as abortive treatment for refractory seizures or status epilepticus in the inpatient setting. J. Investig. Med. High Impact Case Rep., 2019, 7, 2324709619848816.
[http://dx.doi.org/10.1177/2324709619848816] [PMID: 31104535]
[108]
Bhatia, S.; Schmitt, S.E. Treating immune-related epilepsy. Curr. Neurol. Neurosci. Rep., 2018, 18(3), 10.
[http://dx.doi.org/10.1007/s11910-018-0821-y] [PMID: 29445957]
[109]
Guzzo, E.F.M.; Lima, K.R.; Vargas, C.R.; Coitinho, A.S. Effect of dexamethasone on seizures and inflammatory profile induced by Kindling Seizure Model. J. Neuroimmunol., 2018, 325, 92-98.
[http://dx.doi.org/10.1016/j.jneuroim.2018.10.005] [PMID: 30316679]
[110]
Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of a prior phase III trial. Crit. Care Med., 2016, 44(2), 275-281.
[http://dx.doi.org/10.1097/CCM.0000000000001402] [PMID: 26584195]
[111]
CastaAño-Rodriguez, C; Honrubia, JM; GutiA(c)rrez-A?lvarez, J; DeDiego, ML; Nieto-Torres, JL; Jimenez-GuardeAño, JM; Regla- Nava, JA; Fernandez-Delgado, R; Verdia-BAguena, C; Queralt- MartA-n, M Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. 2018, 9(3), eo2325-17.
[112]
Siu, K.L.; Yuen, K.S.; CastaAño-Rodriguez, C.; Ye, Z.W.; Yeung, M.L.; Fung, S.Y.; Yuan, S.; Chan, C.P.; Yuen, K.Y.; Enjuanes, L.; Jin, D.Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J., 2019, 33(8), 8865-8877.
[http://dx.doi.org/10.1096/fj.201802418R] [PMID: 31034780]
[113]
Chien, J.Y.; Hsueh, P.R.; Cheng, W.C.; Yu, C.J.; Yang, P.C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 2006, 11(6), 715-722.
[http://dx.doi.org/10.1111/j.1440-1843.2006.00942.x] [PMID: 17052299]
[114]
Ruan, Q Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. 2020, 46(6), 1294-1297.
[115]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[116]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: A retrospective cohort study. Lancet Rheumatol., 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[117]
Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.M.; BA(c)zie, Y.; Laplanche, S.; Le Berre, A.; Le Pavec, J.; Salmeron, S.; Emmerich, J.; Mourad, J.J.; Chatellier, G.; Hayem, G. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol., 2020, 2(7), e393-e400.
[http://dx.doi.org/10.1016/S2665-9913(20)30164-8] [PMID: 32835245]
[118]
Vezzani, A.; Maroso, M.; Balosso, S.; Sanchez, M.A.; Bartfai, T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav. Immun., 2011, 25(7), 1281-1289.
[http://dx.doi.org/10.1016/j.bbi.2011.03.018] [PMID: 21473909]
[119]
Dilena, R.; Mauri, E.; Aronica, E.; Bernasconi, P.; Bana, C.; Cappelletti, C.; Carrabba, G.; Ferrero, S.; Giorda, R.; Guez, S.; Scalia Catenacci, S.; Triulzi, F.; Barbieri, S.; Calderini, E.; Vezzani, A. Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open, 2019, 4(2), 344-350.
[http://dx.doi.org/10.1002/epi4.12317] [PMID: 31168503]
[120]
DubA(c), C.; Vezzani, A.; Behrens, M.; Bartfai, T.; Baram, T.Z. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann. Neurol., 2005, 57(1), 152-155.
[http://dx.doi.org/10.1002/ana.20358] [PMID: 15622539]
[121]
DeSena, A.D.; Do, T.; Schulert, G.S. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation, 2018, 15(1), 38.
[http://dx.doi.org/10.1186/s12974-018-1063-2] [PMID: 29426321]
[122]
Venkiteshwaran, A. Tocilizumab. MAbs, 2009, 1(5), 432-438.
[http://dx.doi.org/10.4161/mabs.1.5.9497] [PMID: 20065633]
[123]
Scott, L.J. Tocilizumab: A review in rheumatoid arthritis. Drugs, 2017, 77(17), 1865-1879.
[http://dx.doi.org/10.1007/s40265-017-0829-7] [PMID: 29094311]
[124]
Milman, N. Tocilizumab increased sustained glucocorticoid-free remission from giant cell arteritis. Ann. Intern. Med., 2017, 167(12), JC63.
[http://dx.doi.org/10.7326/ACPJC-2017-167-12-063] [PMID: 29255853]
[125]
Lee, W.J.; Lee, S.T.; Moon, J.; Sunwoo, J.S.; Byun, J.I.; Lim, J.A.; Kim, T.J.; Shin, Y.W.; Lee, K.J.; Jun, J.S.; Lee, H.S.; Kim, S.; Park, K.I.; Jung, K.H.; Jung, K.Y.; Kim, M.; Lee, S.K.; Chu, K. Tocilizumab in autoimmune encephalitis refractory to rituximab: An institutional cohort study. Neurotherapeutics, 2016, 13(4), 824-832.
[http://dx.doi.org/10.1007/s13311-016-0442-6]
[126]
Ringelstein, M.; Ayzenberg, I.; Harmel, J.; Lauenstein, A.S.; Lensch, E.; StAgbauer, F.; Hellwig, K.; Ellrichmann, G.; Stettner, M.; Chan, A.; Hartung, H.P.; Kieseier, B.; Gold, R.; Aktas, O.; Kleiter, I. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol., 2015, 72(7), 756-763.
[http://dx.doi.org/10.1001/jamaneurol.2015.0533] [PMID: 25985228]
[127]
Yuan, J.; Zou, R.; Zeng, L.; Kou, S.; Lan, J.; Li, X.; Liang, Y.; Ding, X.; Tan, G.; Tang, S.; Liu, L.; Liu, Y.; Pan, Y.; Wang, Z. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm. Res., 2020, 69(6), 599-606.
[http://dx.doi.org/10.1007/s00011-020-01342-0] [PMID: 32227274]
[128]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[129]
Luo, P; Liu, Y; Qiu, L; Liu, X; Liu, D Tocilizumab treatment in COVID-19: A single center experience. 2020, 92(7), 814-818.
[130]
Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, R.; Menozzi, M.; Franceschini, E.; Cuomo, G.; Orlando, G.; Borghi, V.; Santoro, A.; Di Gaetano, M.; Puzzolante, C.; Carli, F.; Bedini, A.; Corradi, L.; Fantini, R.; Castaniere, I.; TabbAª, L.; Girardis, M.; Tedeschi, S.; Giannella, M.; Bartoletti, M.; Pascale, R.; Dolci, G.; Brugioni, L.; Pietrangelo, A.; Cossarizza, A.; Pea, F.; Clini, E.; Salvarani, C.; Massari, M.; Viale, P.L.; Mussini, C. Tocilizumab in patients with severe COVID-19: A retrospective cohort study. Lancet Rheumatol., 2020, 2(8), e474-e484.
[http://dx.doi.org/10.1016/S2665-9913(20)30173-9] [PMID: 32835257]
[131]
Radbel, J.; Narayanan, N.; Bhatt, P.J.; Wei, H.; Radbel, J.; Narayanan, N.; Bhatt, P.J. Use of tocilizumab for COVID-19-induced cytokine release syndrome: A cautionary case report. Chest, 2020, 158(1), e15-e19.
[http://dx.doi.org/10.1016/j.chest.2020.04.024] [PMID: 32343968]
[132]
Diagnosis and treatment plan of novel coronavirus pneumonia (seventh trial edition). National-Health-Committee-of-China: General Office of the National Health Committee of China; China Traditional Chinese Medicine Administration Office, 2020, 133, pp. Chinese Med. J; China Traditional Chinese Medicine Administration Office, 2020, 133, pp. (9)1087-1095.
[133]
Zhang, S.; Li, L.; Shen, A.; Chen, Y.; Qi, Z. Rational use of tocilizumab in the treatment of novel coronavirus pneumonia. Clin. Drug Investig., 2020, 40(6), 511-518.
[http://dx.doi.org/10.1007/s40261-020-00917-3] [PMID: 32337664]
[134]
Klopfenstein, T.; Zayet, S.; Lohse, A.; Balblanc, J.C.; Badie, J.; Royer, P.Y.; Toko, L.; Mezher, C.; Kadiane-Oussou, N.J.; Bossert, M.; Bozgan, A.M.; Charpentier, A.; Roux, M.F.; Contreras, R.; Mazurier, I.; Dussert, P.; Gendrin, V.; Conrozier, T. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med. Mal. Infect., 2020, 50(5), 397-400.
[http://dx.doi.org/10.1016/j.medmal.2020.05.001] [PMID: 32387320]
[135]
Alberici, F.; Delbarba, E.; Manenti, C.; Econimo, L.; Valerio, F.; Pola, A.; Maffei, C.; Possenti, S.; Lucca, B.; Cortinovis, R.; Terlizzi, V.; Zappa, M.; SaccA , C.; Pezzini, E.; Calcaterra, E.; Piarulli, P.; Guerini, A.; Boni, F.; Gallico, A.; Mucchetti, A.; Affatato, S.; Bove, S.; Bracchi, M.; Costantino, E.M.; Zubani, R.; Camerini, C.; Gaggia, P.; Movilli, E.; Bossini, N.; Gaggiotti, M.; Scolari, F. A report from the Brescia Renal COVID Task Force on the clinical characteristics andA short-term outcome of hemodialysis patientsA withA SARS-CoV-2 infection. Kidney Int., 2020, 98(1), 20-26.
[http://dx.doi.org/10.1016/j.kint.2020.04.030] [PMID: 32437768]
[136]
Ruan, L.; Zhang, Y.; Luo, Y.; Yu, X.; Zeng, Y.; Peng, H.; Han, L.; Chen, L.; Roy, S.; Cheng, Q. Clinical features and outcomes of four HIV patients with COVID-19 in Wuhan; China. J. Med. Virol., 2020.
[http://dx.doi.org/10.1002/jmv.25223]
[137]
Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta, 2016, 1863(6 Pt A), 1218-1227.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.018] [PMID: 27016501]
[138]
Kothur, K; Bandodkar, S; Wienholt, L; Chu, S; Pope, A; Gill, D; Dale, RC. Etiology is the key determinant of neuroinflammation in epilepsy: Elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. 2019, 60(8), 1678-1688.
[139]
LehtimAki, K.A.; KerAnen, T.; Palmio, J.; MAkinen, R.; Hurme, M.; Honkaniemi, J.; Peltola, J. Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol. Scand., 2007, 116(4), 226-230.
[http://dx.doi.org/10.1111/j.1600-0404.2007.00882.x] [PMID: 17824899]
[140]
Leo, A; Nesci, V; Tallarico, M; Amodio, N; Gallo Cantafio, EM; De Sarro, G; Constanti, A; Russo, E IL-6 receptor blockade by tocilizumab has anti-absence and anti-epileptogenic effects in the WAG/Rij rat model of absence epilepsy. Neurotheapeutics, 2020, 17(4), 2004-2014.
[141]
CantarA-n-Extremera, V.; JimA(c)nez-Legido, M.; Duat-RodrA-guez, A.; GarcA-a-FernAndez, M.; Ortiz-Cabrera, N.V.; Ruiz-FalcA3-Rojas, M.L.; GonzAlez-GutiA(c)rrez-Solana, L. Tocilizumab in pediatric refractory status epilepticus and acute epilepsy: Experience in two patients. J. Neuroimmunol., 2020, 340, 577142.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577142] [PMID: 31935626]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy