Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Impairment of Store-operated Calcium Entry: Implications in Alzheimer’s Neurodegeneration

Author(s): Jing Zhou and Shengzhou Wu*

Volume 17, Issue 12, 2020

Page: [1088 - 1094] Pages: 7

DOI: 10.2174/1567205018666210119144241

Price: $65

Abstract

Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disorder. Dysfunction of central cholinergic neurons, amyloid aggregation and deposition,oxidative stress,and biometal dyshomeostasis has been regarded as the major pathogenic mediators in this devastating disease. However, strategies derived from these hypotheses fail to slow down or stop the progression of AD, warranting a combination of therapies to target multiple etiological factors or examining alternative hypothesis. Store-operated calcium entry (SOCE) is the process by which depletion of calcium in the endoplasmic reticulum (ER) lumen causes an influx of calcium across plasmalemma. Accumulating evidence indicates that neuronal SOCE (nSOCE) is inhibited in family AD (FAD) and the inhibition of which causes instability of dendritic spines and enhances amyloidogenesis. Mutant Presenilin fails to function as an ER calcium leak channel and promotes degradation of stromal interaction molecules (STIM), ER calcium sensors; these effects may account for the repression of nSOCE in FAD. We have demonstrated that activation of autophagy degrades STIM proteins, resulting in a trimming effect on a dendritic arbor, under proteasome inhibition and endoplasmic reticulum stress, which are intimately connected with AD. Thus, we hypothesize that autophagy represses SOCE by degrading STIM proteins, leading to synapse loss in AD. This review article will highlight the roles of SOCE in AD neurodegeneration, the degradative mechanisms of STIM protein, and the therapeutic potential and associated challenge.

Keywords: Alzheimer's disease, proteasome inhibition, endoplasmic reticulum stress, calcium, store-operated calcium entry, dendritic spine, stromal interaction molecules½, presenilin, γ-secretase, ER calcium pool.

[1]
Möller HJ, Graeber MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci 1998; 248(3): 111-22.
[PMID: 9728729]
[2]
Hodges JR, Salmon DP, Butters N. Recognition and naming of famous faces in Alzheimer’s disease: A cognitive analysis. Neuropsychologia 1993; 31(8): 775-88.
[PMID: 8413900]
[3]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[PMID: 15295589]
[4]
Lippa CF, Saunders AM, Smith TW, et al. Familial and sporadic Alzheimer’s disease: Neuropathology cannot exclude a final common pathway. Neurology 1996; 46(2): 406-12.
[PMID: 8614503]
[5]
Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[6]
Cummings JL, Kaufer D. Neuropsychiatric aspects of Alzheimer’s disease: The cholinergic hypothesis revisited. Neurology 1996; 47(4): 876-83.
[http://dx.doi.org/10.1212/WNL.47.4.876] [PMID: 8857712]
[7]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[8]
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23(1): 134-47.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[9]
Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis 2013; 33(1): S277-81.
[http://dx.doi.org/10.3233/JAD-2012-129011] [PMID: 22635102]
[10]
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 2002; 3(11): 862-72.
[http://dx.doi.org/10.1038/nrn960] [PMID: 12415294]
[11]
Kawahara M. Disruption of calcium homeostasis in the pathogenesis of Alzheimer’s disease and other conformational diseases. Curr Alzheimer Res 2004; 1(2): 87-95.
[http://dx.doi.org/10.2174/1567205043332234] [PMID: 15975072]
[12]
Canzoniero LM, Snider BJ. Calcium in Alzheimer’s disease pathogenesis: Too much, too little or in the wrong place? J Alzheimers Dis 2005; 8(2): 147-54.
[http://dx.doi.org/10.3233/JAD-2005-8207] [PMID: 16308483]
[13]
Demuro A, Parker I, Stutzmann GE. Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 2010; 285(17): 12463-8.
[http://dx.doi.org/10.1074/jbc.R109.080895] [PMID: 20212036]
[14]
Khachaturian ZS. Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 1987; 8(4): 345-6.
[http://dx.doi.org/10.1016/0197-4580(87)90073-X] [PMID: 3627349]
[15]
Khachaturian ZS. The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging (Milano) 1989; 1(1): 17-34.
[http://dx.doi.org/10.1007/BF03323872] [PMID: 2488296]
[16]
Hermes M, Eichhoff G, Garaschuk O. Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 2010; 14(1-2): 30-41.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00976.x] [PMID: 19929945]
[17]
Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: Blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 1993; 90(2): 567-71.
[http://dx.doi.org/10.1073/pnas.90.2.567] [PMID: 8380642]
[18]
Mark RJ, Hensley K, Butterfield DA, Mattson MP. Amyloid beta-peptide impairs ion-motive ATPase activities: Evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 1995; 15(9): 6239-49.
[http://dx.doi.org/10.1523/JNEUROSCI.15-09-06239.1995] [PMID: 7666206]
[19]
Liu Q, Kawai H, Berg DK. Beta -amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA 2001; 98(8): 4734-9.
[http://dx.doi.org/10.1073/pnas.081553598] [PMID: 11274373]
[20]
Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K. Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J Neurochem 1997; 68(1): 265-71.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010265.x] [PMID: 8978734]
[21]
Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 1996; 379(6560): 74-8.
[http://dx.doi.org/10.1038/379074a0] [PMID: 8538744]
[22]
Alberdi E, Sánchez-Gómez MV, Cavaliere F, et al. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 2010; 47(3): 264-72.
[http://dx.doi.org/10.1016/j.ceca.2009.12.010] [PMID: 20061018]
[23]
Decker H, Jürgensen S, Adrover MF, et al. N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem 2010; 115(6): 1520-9.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07058.x] [PMID: 20950339]
[24]
Rönicke R, Mikhaylova M, Rönicke S, et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol Aging 2011; 32(12): 2219-28.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.011] [PMID: 20133015]
[25]
Wolosker H, Blackshaw S, Snyder SH. Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96(23): 13409-14.
[http://dx.doi.org/10.1073/pnas.96.23.13409] [PMID: 10557334]
[26]
Wu S, Barger SW, Sims TJ. Schwann cell and epineural fibroblast expression of serine racemase. Brain Res 2004; 1020(1-2): 161-6.
[http://dx.doi.org/10.1016/j.brainres.2004.06.023] [PMID: 15312798]
[27]
Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW. Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 2004; 1(1): 2.
[http://dx.doi.org/10.1186/1742-2094-1-2] [PMID: 15285800]
[28]
Inoue R, Hashimoto K, Harai T, Mori H. NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 2008; 28(53): 14486-91.
[http://dx.doi.org/10.1523/JNEUROSCI.5034-08.2008] [PMID: 19118183]
[29]
Canzoniero LM, Babcock DJ, Gottron FJ, et al. Raising intracellular calcium attenuates neuronal apoptosis triggered by staurosporine or oxygen-glucose deprivation in the presence of glutamate receptor blockade. Neurobiol Dis 2004; 15(3): 520-8.
[http://dx.doi.org/10.1016/j.nbd.2003.10.013] [PMID: 15056459]
[30]
Snider BJ, Tee LY, Canzoniero LM, Babcock DJ, Choi DW. NMDA antagonists exacerbate neuronal death caused by proteasome inhibition in cultured cortical and striatal neurons. Eur J Neurosci 2002; 15(3): 419-28.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01867.x] [PMID: 11876769]
[31]
Wu S, Hyrc KL, Moulder KL, Lin Y, Warmke T, Snider BJ. Cellular calcium deficiency plays a role in neuronal death caused by proteasome inhibitors. J Neurochem 2009; 109(5): 1225-36.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06037.x] [PMID: 19476541]
[32]
Kuang XL, Liu F, Chen H, et al. Reductions of the components of the calreticulin/calnexin quality-control system by proteasome inhibitors and their relevance in a rodent model of Parkinson’s disease. J Neurosci Res 2014; 92(10): 1319-29.
[http://dx.doi.org/10.1002/jnr.23413] [PMID: 24860980]
[33]
Kuang XL, Liu Y, Chang Y, et al. Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation. Cell Calcium 2016; 59(4): 172-80.
[http://dx.doi.org/10.1016/j.ceca.2016.01.007] [PMID: 26960935]
[34]
Zhou J, Song J, Wu S. Autophagic degradation of stromal interaction molecule 2 mediates disruption of neuronal dendrites by endoplasmic reticulum stress. J Neurochem 2019; 151(3): 351-69.
[http://dx.doi.org/10.1111/jnc.14712] [PMID: 31038732]
[35]
Tu H, Nelson O, Bezprozvanny A, et al. Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006; 126(5): 981-93.
[http://dx.doi.org/10.1016/j.cell.2006.06.059] [PMID: 16959576]
[36]
Kumar-Singh S, Theuns J, Van Broeck B, et al. Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 2006; 27(7): 686-95.
[http://dx.doi.org/10.1002/humu.20336] [PMID: 16752394]
[37]
Cheung KH, Shineman D, Müller M, et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58(6): 871-83.
[http://dx.doi.org/10.1016/j.neuron.2008.04.015] [PMID: 18579078]
[38]
Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44(5): 507-18.
[http://dx.doi.org/10.1016/j.ceca.2008.03.004] [PMID: 18440065]
[39]
Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2007; 131(7): 1327-39.
[http://dx.doi.org/10.1016/j.cell.2007.11.039] [PMID: 18160041]
[40]
Hewavitharana T, Deng X, Soboloff J, Gill DL. Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell Calcium 2007; 42(2): 173-82.
[http://dx.doi.org/10.1016/j.ceca.2007.03.009] [PMID: 17602740]
[41]
Ong HL, Cheng KT, Liu X, et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 2007; 282(12): 9105-16.
[http://dx.doi.org/10.1074/jbc.M608942200] [PMID: 17224452]
[42]
Lewis RS. The molecular choreography of a store-operated calcium channel. Nature 2007; 446(7133): 284-7.
[http://dx.doi.org/10.1038/nature05637] [PMID: 17361175]
[43]
Bojarski L, Pomorski P, Szybinska A, et al. Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer’s disease. Biochim Biophys Acta 2009; 1793(6): 1050-7.
[http://dx.doi.org/10.1016/j.bbamcr.2008.11.008] [PMID: 19111578]
[44]
Sun S, Zhang H, Liu J, et al. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 2014; 82(1): 79-93.
[http://dx.doi.org/10.1016/j.neuron.2014.02.019] [PMID: 24698269]
[45]
Zhang H, Wu L, Pchitskaya E, et al. Neuronal store-operated calcium entry and Mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease. J Neurosci 2015; 35(39): 13275-86.
[http://dx.doi.org/10.1523/JNEUROSCI.1034-15.2015] [PMID: 26424877]
[46]
Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149(4): 793-8.
[http://dx.doi.org/10.1083/jcb.149.4.793] [PMID: 10811821]
[47]
Greotti E, Capitanio P, Wong A, Pozzan T, Pizzo P, Pendin D. Familial Alzheimer’s disease-linked presenilin mutants and intracellular Ca2+ handling: A single-organelle, FRET-based analysis. Cell Calcium 2019; 79: 44-56.
[http://dx.doi.org/10.1016/j.ceca.2019.02.005] [PMID: 30822648]
[48]
Jaworska A, Dzbek J, Styczynska M, Kuznicki J. Analysis of calcium homeostasis in fresh lymphocytes from patients with sporadic Alzheimer’s disease or mild cognitive impairment. Biochim Biophys Acta 2013; 1833(7): 1692-9.
[http://dx.doi.org/10.1016/j.bbamcr.2013.01.012] [PMID: 23354174]
[49]
Yoo AS, Cheng I, Chung S, et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27(3): 561-72.
[http://dx.doi.org/10.1016/S0896-6273(00)00066-0] [PMID: 11055438]
[50]
Zeiger W, Vetrivel KS, Buggia-Prévot V, et al. Ca2+ influx through store-operated Ca2+ channels reduces Alzheimer disease β-amyloid peptide secretion. J Biol Chem 2013; 288(37): 26955-66.
[http://dx.doi.org/10.1074/jbc.M113.473355] [PMID: 23902769]
[51]
Pascual-Caro C, Berrocal M, Lopez-Guerrero AM, et al. STIM1 deficiency is linked to Alzheimer’s disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca2+ entry. J Mol Med (Berl) 2018; 96(10): 1061-79.
[http://dx.doi.org/10.1007/s00109-018-1677-y] [PMID: 30088035]
[52]
Shideman CR, Reinardy JL, Thayer SA. gamma-Secretase activity modulates store-operated Ca2+ entry into rat sensory neurons. Neurosci Lett 2009; 451(2): 124-8.
[http://dx.doi.org/10.1016/j.neulet.2008.12.031] [PMID: 19114088]
[53]
Tong BC, Lee CS, Cheng WH, Lai KO, Foskett JK, Cheung KH. Familial Alzheimer’s disease-associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca2+ entry. Sci Signal 2016; 9(444): ra89.
[http://dx.doi.org/10.1126/scisignal.aaf1371] [PMID: 27601731]
[54]
Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer’s disease. J Neurochem 2000; 75(1): 436-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750436.x] [PMID: 10854289]
[55]
Lam YA, Pickart CM, Alban A, et al. Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci USA 2000; 97(18): 9902-6.
[http://dx.doi.org/10.1073/pnas.170173897] [PMID: 10944193]
[56]
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer’s disease: A novel neuronal trigger for inflammation and Alzheimer’s pathology. J Neuroinflammation 2009; 6: 41.
[http://dx.doi.org/10.1186/1742-2094-6-41] [PMID: 20035627]
[57]
Soejima N, Ohyagi Y, Nakamura N, et al. Intracellular accumulation of toxic turn amyloid-β is associated with endoplasmic reticulum stress in Alzheimer’s disease. Curr Alzheimer Res 2013; 10(1): 11-20.
[PMID: 22950910]
[58]
Sheng M, Thompson MA, Greenberg ME. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 1991; 252(5011): 1427-30.
[http://dx.doi.org/10.1126/science.1646483] [PMID: 1646483]
[59]
Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993; 365(6449): 855-9.
[http://dx.doi.org/10.1038/365855a0] [PMID: 8413673]
[60]
Walton M, Woodgate AM, Muravlev A, Xu R, During MJ, Dragunow M. CREB phosphorylation promotes nerve cell survival. J Neurochem 1999; 73(5): 1836-42.
[PMID: 10537041]
[61]
Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 1998; 20(4): 709-26.
[http://dx.doi.org/10.1016/S0896-6273(00)81010-7] [PMID: 9581763]
[62]
Yin JC, Wallach JS, Del Vecchio M, et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 1994; 79(1): 49-58.
[http://dx.doi.org/10.1016/0092-8674(94)90399-9] [PMID: 7923376]
[63]
Zhang S, Cai F, Wu Y, et al. A presenilin-1 mutation causes Alzheimer disease without affecting Notch signaling. Mol Psychiatry 2020; 25(3): 603-13.
[http://dx.doi.org/10.1038/s41380-018-0101-x] [PMID: 29915376]
[64]
Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I. Role of presenilins in neuronal calcium homeostasis. J Neurosci 2010; 30(25): 8566-80.
[http://dx.doi.org/10.1523/JNEUROSCI.1554-10.2010] [PMID: 20573903]
[65]
Liou J, Kim ML, Heo WD, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15(13): 1235-41.
[http://dx.doi.org/10.1016/j.cub.2005.05.055] [PMID: 16005298]
[66]
Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry. J Biol Chem 2006; 281(47): 35855-62.
[http://dx.doi.org/10.1074/jbc.M608247200] [PMID: 17020874]
[67]
Zhang SL, Yu Y, Roos J, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005; 437(7060): 902-5.
[http://dx.doi.org/10.1038/nature04147] [PMID: 16208375]
[68]
De Mario A, Castellani A, Peggion C, et al. The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci 2015; 9: 416.
[http://dx.doi.org/10.3389/fncel.2015.00416] [PMID: 26578881]
[69]
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8(7): 519-29.
[http://dx.doi.org/10.1038/nrm2199] [PMID: 17565364]
[70]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy 2016; 12(1): 1-222.
[71]
Ellgaard L, Frickel EM. Calnexin, calreticulin, and ERp57: Teammates in glycoprotein folding. Cell Biochem Biophys 2003; 39(3): 223-47.
[PMID: 14716078]
[72]
Honjo Y, Ito H, Horibe T, Takahashi R, Kawakami K. Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res 2010; 1349: 90-6.
[PMID: 20550946]
[73]
Yoon SO, Park DJ, Ryu JC, et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 2012; 75(5): 824-37.
[http://dx.doi.org/10.1016/j.neuron.2012.06.024] [PMID: 22958823]
[74]
Katayama T, Imaizumi K, Sato N, et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1999; 1(8): 479-85.
[http://dx.doi.org/10.1038/70265] [PMID: 10587643]
[75]
Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 2010; 330(6000): 101-5.
[http://dx.doi.org/10.1126/science.1191027] [PMID: 20929812]
[76]
Ryazantseva M, Skobeleva K, Kaznacheyeva E. Familial Alzheimer’s disease-linked presenilin-1 mutation M146V affects store-operated calcium entry: does gain look like loss? Biochimie 2013; 95(7): 1506-9.
[http://dx.doi.org/10.1016/j.biochi.2013.04.009] [PMID: 23624206]
[77]
Zhang H, Sun S, Wu L, et al. Store-operated calcium channel complex in postsynaptic spines: A new therapeutic target for Alzheimer’s disease treatment. J Neurosci 2016; 36(47): 11837-50.
[http://dx.doi.org/10.1523/JNEUROSCI.1188-16.2016] [PMID: 27881772]
[78]
Popugaeva E, Chernyuk D, Zhang H, et al. Derivatives of piperazines as potential therapeutic agents for Alzheimer’s disease. Mol Pharmacol 2019; 95(4): 337-48.
[http://dx.doi.org/10.1124/mol.118.114348] [PMID: 30696719]
[79]
Pchitskaya E, Kraskovskaya N, Chernyuk D, et al. Stim2-Eb3 association and morphology of dendritic spines in hippocampal neurons. Sci Rep 2017; 7(1): 17625.
[http://dx.doi.org/10.1038/s41598-017-17762-8] [PMID: 29247211]
[80]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[81]
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441(7095): 880-4.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[82]
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64(2): 113-22.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[83]
Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 2010; 5(4)e9979
[http://dx.doi.org/10.1371/journal.pone.0009979] [PMID: 20376313]
[84]
Caccamo A, Magrì A, Medina DX, et al. mTOR regulates tau phosphorylation and degradation: Implications for Alzheimer’s disease and other tauopathies. Aging Cell 2013; 12(3): 370-80.
[http://dx.doi.org/10.1111/acel.12057] [PMID: 23425014]
[85]
Yang DS, Stavrides P, Saito M, et al. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: Prevention by correcting lysosomal proteolytic deficits. Brain 2014; 137(Pt 12): 3300-18.
[http://dx.doi.org/10.1093/brain/awu278] [PMID: 25270989]
[86]
Hernandez D, Torres CA, Setlik W, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 2012; 74(2): 277-84.
[http://dx.doi.org/10.1016/j.neuron.2012.02.020] [PMID: 22542182]
[87]
Tyler WJ, Pozzo-Miller LD. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 2001; 21(12): 4249-58.
[http://dx.doi.org/10.1523/JNEUROSCI.21-12-04249.2001] [PMID: 11404410]
[88]
Nikoletopoulou V, Sidiropoulou K, Kallergi E, Dalezios Y, Tavernarakis N. Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab 2017; 26(1): 230-42.
[http://dx.doi.org/10.1016/j.cmet.2017.06.005]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy