Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Rectifying Attenuated Store-Operated Calcium Entry as a Therapeutic Approach for Alzheimer’s Disease

Author(s): Alexis S. Huang, Benjamin C.K. Tong, Aston J. Wu, Xiaotong Chen, Sravan G. Sreenivasmurthy, Zhou Zhu, Jia Liu, Chengfu Su, Min Li and King-Ho Cheung *

Volume 17, Issue 12, 2020

Page: [1072 - 1087] Pages: 16

DOI: 10.2174/1567205018666210119150613

Price: $65

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Although the pathological hallmarks of AD have been identified, the derived therapies cannot effectively slow down or stop disease progression; hence, it is likely that other pathogenic mechanisms are involved in AD pathogenesis. Intracellular calcium (Ca2+) dyshomeostasis has been consistently observed in AD patients and numerous AD models and may emerge prior to the development of amyloid plaques and neurofibrillary tangles. Thus, intracellular Ca2+ disruptions are believed to play an important role in AD development and could serve as promising therapeutic intervention targets.

One of the disrupted intracellular Ca2+ signaling pathways manifested in AD is attenuated storeoperated Ca2+ entry (SOCE). SOCE is an extracellular Ca2+ entry mechanism mainly triggered by intracellular Ca2+ store depletion. Maintaining normal SOCE function not only provides a means for the cell to replenish ER Ca2+ stores but also serves as a cellular signal that maintains normal neuronal functions, including excitability, neurogenesis, neurotransmission, synaptic plasticity, and gene expression. However, normal SOCE function is diminished in AD, resulting in disrupted neuronal spine stability and synaptic plasticity and the promotion of amyloidogenesis. Mounting evidence suggests that rectifying diminished SOCE in neurons may intervene with the progression of AD. In this review, the mechanisms of SOCE disruption and the associated pathogenic impacts on AD will be discussed. We will also highlight the potential therapeutic targets or approaches that may help ameliorate SOCE deficits for AD treatment.

Keywords: Calcium signaling, Alzheimer's disease, store-operated calcium entry, neurogenesis, amyloidogenesis, neurodegenerative disorder.

[1]
International, ASD, World Alzheimer report 2019: Attitudes to dementia 2019.
[2]
Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 2004; 62(11): 1984-9.
[http://dx.doi.org/10.1212/01.WNL.0000129697.01779.0A] [PMID: 15184601]
[3]
Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 2017; 68(1): 413-30.
[http://dx.doi.org/10.1146/annurev-med-042915-103753] [PMID: 28099083]
[4]
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer’s disease: Insight into therapeutic success and failures. Eur J Pharmacol 2014; 739: 83-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.012] [PMID: 24316360]
[5]
Anekonda TS, Quinn JF. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim Biophys Acta 2011; 1812(12): 1584-90.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.013] [PMID: 21925266]
[6]
Toescu EC, Verkhratsky A. The importance of being subtle: Small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 2007; 6(3): 267-73.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00296.x] [PMID: 17517038]
[7]
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 2002; 3(11): 862-72.
[http://dx.doi.org/10.1038/nrn960] [PMID: 12415294]
[8]
Raza M, Deshpande LS, Blair RE, Carter DS, Sombati S, DeLorenzo RJ. Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 2007; 418(1): 77-81.
[http://dx.doi.org/10.1016/j.neulet.2007.03.005] [PMID: 17374449]
[9]
Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 1994; 33(15): 4550-61.
[http://dx.doi.org/10.1021/bi00181a016] [PMID: 8161510]
[10]
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 2008; 31(9): 454-63.
[http://dx.doi.org/10.1016/j.tins.2008.06.005] [PMID: 18675468]
[11]
Buxbaum JD, Ruefli AA, Parker CA, Cypess AM, Greengard P. Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner. Proc Natl Acad Sci USA 1994; 91(10): 4489-93.
[http://dx.doi.org/10.1073/pnas.91.10.4489] [PMID: 8183935]
[12]
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1(1): 11-21.
[http://dx.doi.org/10.1038/35036035] [PMID: 11413485]
[13]
Khachaturian ZS. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 1994; 747(1): 1-11.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44398.x] [PMID: 7847664]
[14]
Berridge MJ. Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 2010; 459(3): 441-9.
[http://dx.doi.org/10.1007/s00424-009-0736-1] [PMID: 19795132]
[15]
Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium 1986; 7(1): 1-12.
[http://dx.doi.org/10.1016/0143-4160(86)90026-6] [PMID: 2420465]
[16]
Oritani K, Kincade PW. Identification of stromal cell products that interact with pre-B cells. J Cell Biol 1996; 134(3): 771-82.
[http://dx.doi.org/10.1083/jcb.134.3.771] [PMID: 8707854]
[17]
Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M. GOK: A gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 1997; 57(20): 4493-7.
[PMID: 9377559]
[18]
Liou J, Kim ML, Heo WD, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15(13): 1235-41.
[http://dx.doi.org/10.1016/j.cub.2005.05.055] [PMID: 16005298]
[19]
Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169(3): 435-45.
[http://dx.doi.org/10.1083/jcb.200502019] [PMID: 15866891]
[20]
Williams RT, Manji SS, Parker NJ, et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: Coding for a novel class of transmembrane proteins. Biochem J 2001; 357(Pt 3): 673-85.
[http://dx.doi.org/10.1042/bj3570673] [PMID: 11463338]
[21]
Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 2008; 135(1): 110-22.
[http://dx.doi.org/10.1016/j.cell.2008.08.006] [PMID: 18854159]
[22]
Zheng L, Stathopulos PB, Li GY, Ikura M. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 2008; 369(1): 240-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.129] [PMID: 18166150]
[23]
Fahrner M, Muik M, Schindl R, et al. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1) 2014; 289(48): 33231-44.
[24]
Muik M, Frischauf I, Derler I, et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 2008; 283(12): 8014-22.
[http://dx.doi.org/10.1074/jbc.M708898200] [PMID: 18187424]
[25]
Zhou Y, Mancarella S, Wang Y, et al. The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 2009; 284(29): 19164-8.
[http://dx.doi.org/10.1074/jbc.C109.010900] [PMID: 19487696]
[26]
Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2007; 131(7): 1327-39.
[http://dx.doi.org/10.1016/j.cell.2007.11.039] [PMID: 18160041]
[27]
Zbidi H, Jardin I, Woodard GE, et al. STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 2011; 286(14): 12257-70.
[http://dx.doi.org/10.1074/jbc.M110.190694] [PMID: 21321120]
[28]
Vig M, Peinelt C, Beck A, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312(5777): 1220-3.
[http://dx.doi.org/10.1126/science.1127883] [PMID: 16645049]
[29]
Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441(7090): 179-85.
[http://dx.doi.org/10.1038/nature04702] [PMID: 16582901]
[30]
Stanisz H, Schwarz EC, Müller CSL, et al. ORAI1 Ca2+ channels control endothelin-1-induced mitogenesis and melanogenesis in primary human melanocytes 2012; 132(5): 1443-51.
[31]
Mignen O, Thompson JL, Shuttleworth TJ. The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 2009; 587(Pt 17): 4181-97.
[http://dx.doi.org/10.1113/jphysiol.2009.174193] [PMID: 19622606]
[32]
Maruyama Y, Ogura T, Mio K, et al. Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 2009; 284(20): 13676-85.
[http://dx.doi.org/10.1074/jbc.M900812200] [PMID: 19289460]
[33]
Hou X, Pedi L, Diver MM, Long SB. Crystal structure of the calcium release-activated calcium channel Orai. Science 2012; 338(6112): 1308-13.
[http://dx.doi.org/10.1126/science.1228757] [PMID: 23180775]
[34]
Cai X, Zhou Y, Nwokonko RM, et al. The Orai1 store-operated calcium channel functions as a hexamer. J Biol Chem 2016; 291(50): 25764-75.
[http://dx.doi.org/10.1074/jbc.M116.758813] [PMID: 27780862]
[35]
Cheng KT, Ong HL, Liu X, Ambudkar IS. Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 2013; 71: 149-79.
[36]
Zhu X, Jiang M, Peyton M, et al. Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 1996; 85(5): 661-71.
[http://dx.doi.org/10.1016/S0092-8674(00)81233-7] [PMID: 8646775]
[37]
Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature 1969; 224(5216): 285-7.
[http://dx.doi.org/10.1038/224285a0] [PMID: 5344615]
[38]
Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 1975; 258(5530): 84-7.
[http://dx.doi.org/10.1038/258084a0] [PMID: 810728]
[39]
Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C. TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 1995; 92(21): 9652-6.
[http://dx.doi.org/10.1073/pnas.92.21.9652] [PMID: 7568191]
[40]
Zhu X, Chu PB, Peyton M, Birnbaumer L. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 1995; 373(3): 193-8.
[http://dx.doi.org/10.1016/0014-5793(95)01038-G] [PMID: 7589464]
[41]
Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2010; 2(10): a003962-2.
[http://dx.doi.org/10.1101/cshperspect.a003962] [PMID: 20861159]
[42]
Zitt C, Zobel A, Obukhov AG, et al. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 1996; 16(6): 1189-96.
[http://dx.doi.org/10.1016/S0896-6273(00)80145-2] [PMID: 8663995]
[43]
BROUGH. Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 2001; 15(10): 1727-38.
[PMID: 11481250]
[44]
Rosado JA, Brownlow SL, Sage SO. Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 2002; 277(44): 42157-63.
[http://dx.doi.org/10.1074/jbc.M207320200] [PMID: 12196544]
[45]
Liu X, Wang W, Singh BB, et al. Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 2000; 275(5): 3403-11.
[http://dx.doi.org/10.1074/jbc.275.5.3403] [PMID: 10652333]
[46]
Worley PF, Zeng W, Huang GN, et al. TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 2007; 42(2): 205-11.
[http://dx.doi.org/10.1016/j.ceca.2007.03.004] [PMID: 17517433]
[47]
Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S. Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 2009; 284(15): 9733-41.
[http://dx.doi.org/10.1074/jbc.M808097200] [PMID: 19228695]
[48]
Jardin I, Lopez JJ, Salido GM, Rosado JA. Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 2008; 283(37): 25296-304.
[http://dx.doi.org/10.1074/jbc.M802904200] [PMID: 18644792]
[49]
Ong HL, Cheng KT, Liu X, et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 2007; 282(12): 9105-16.
[http://dx.doi.org/10.1074/jbc.M608942200] [PMID: 17224452]
[50]
Cioffi DL, Wu S, Chen H, et al. Orai1 determines calcium selectivity of an endogenous TRPC heterotetramer channel. Circ Res 2012; 110(11): 1435-44.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.269506] [PMID: 22534489]
[51]
Sundivakkam PC, Freichel M, Singh V, et al. The Ca2+ sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca2+ entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 2012; 81(4): 510-26.
[http://dx.doi.org/10.1124/mol.111.074658] [PMID: 22210847]
[52]
Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP. Transient receptor potential canonical (TRPC)/orai1-dependent store-operated ca2+ channels: New targets of aldosterone in cardiomyocytes. J Biol Chem 2016; 291(25): 13394-409.
[http://dx.doi.org/10.1074/jbc.M115.693911] [PMID: 27129253]
[53]
Hoth M, Fanger CM, Lewis RS. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 1997; 137(3): 633-48.
[http://dx.doi.org/10.1083/jcb.137.3.633] [PMID: 9151670]
[54]
Hoth M, Button DC, Lewis RS. Mitochondrial control of calcium-channel gating: A mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA 2000; 97(19): 10607-12.
[http://dx.doi.org/10.1073/pnas.180143997] [PMID: 10973476]
[55]
Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351(6329): 751-4.
[http://dx.doi.org/10.1038/351751a0] [PMID: 1648178]
[56]
Glitsch MD, Bakowski D, Parekh AB. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J 2002; 21(24): 6744-54.
[http://dx.doi.org/10.1093/emboj/cdf675] [PMID: 12485995]
[57]
Gilabert JA, Parekh AB. Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current I(CRAC). EMBO J 2000; 19(23): 6401-7.
[http://dx.doi.org/10.1093/emboj/19.23.6401] [PMID: 11101513]
[58]
Gilabert JA, Bakowski D, Parekh AB. Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J 2001; 20(11): 2672-9.
[http://dx.doi.org/10.1093/emboj/20.11.2672] [PMID: 11387202]
[59]
Montalvo GB, Artalejo AR, Gilabert JA. ATP from subplasmalemmal mitochondria controls Ca2+-dependent inactivation of CRAC channels. J Biol Chem 2006; 281(47): 35616-23.
[http://dx.doi.org/10.1074/jbc.M603518200] [PMID: 16982621]
[60]
Malli R, Frieden M, Trenker M, Graier WF. The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem 2005; 280(13): 12114-22.
[http://dx.doi.org/10.1074/jbc.M409353200] [PMID: 15659398]
[61]
Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R. Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 2010; 123(Pt 15): 2553-64.
[http://dx.doi.org/10.1242/jcs.070151] [PMID: 20587595]
[62]
Deak AT, Blass S, Khan MJ, et al. IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci 2014; 127(Pt 13): 2944-55.
[http://dx.doi.org/10.1242/jcs.149807] [PMID: 24806964]
[63]
Pascual-Caro C, Berrocal M, Lopez-Guerrero AM, et al. STIM1 deficiency is linked to Alzheimer’s disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca2+ entry. J Mol Med (Berl) 2018; 96(10): 1061-79.
[http://dx.doi.org/10.1007/s00109-018-1677-y] [PMID: 30088035]
[64]
Henke N, Albrecht P, Pfeiffer A, Toutzaris D, Zanger K, Methner A. Stromal interaction molecule 1 (STIM1) is involved in the regulation of mitochondrial shape and bioenergetics and plays a role in oxidative stress. J Biol Chem 2012; 287(50): 42042-52.
[http://dx.doi.org/10.1074/jbc.M112.417212] [PMID: 23076152]
[65]
Li B, Xiao L, Wang ZY, Zheng PS. Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radic Res 2014; 48(7): 758-68.
[http://dx.doi.org/10.3109/10715762.2014.905687] [PMID: 24720513]
[66]
Tu CC, Wan BY, Zeng Y. STIM2 knockdown protects against ischemia/reperfusion injury through reducing mitochondrial calcium overload and preserving mitochondrial function. Life Sci 2020; 247116560
[http://dx.doi.org/10.1016/j.lfs.2019.116560] [PMID: 31200000]
[67]
Patel S, Docampo R. Acidic calcium stores open for business: Expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 2010; 20(5): 277-86.
[http://dx.doi.org/10.1016/j.tcb.2010.02.003] [PMID: 20303271]
[68]
Ronco V, Potenza DM, Denti F, et al. A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: Implications for NAADP-dependent Ca2+ signalling. Cell Calcium 2015; 57(2): 89-100.
[http://dx.doi.org/10.1016/j.ceca.2015.01.001] [PMID: 25655285]
[69]
Burgoyne T, Patel S, Eden ER. Calcium signaling at ER membrane contact sites. Biochimica Et Biophysica Acta (BBA). Mol Cell Res 2015; 1853(9): 2012-7.
[70]
Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium 2015; 58(6): 617-27.
[http://dx.doi.org/10.1016/j.ceca.2015.10.001] [PMID: 26475051]
[71]
Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca2+ entry. Cell Calcium 2017; 63: 53-9.
[http://dx.doi.org/10.1016/j.ceca.2016.12.004] [PMID: 28027799]
[72]
Maus M, Cuk M, Patel B, et al. Store-Operated Ca2+ Entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab 2017; 25(3): 698-712.
[http://dx.doi.org/10.1016/j.cmet.2016.12.021] [PMID: 28132808]
[73]
Ozcan L, Wong CC, Li G, et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab 2012; 15(5): 739-51.
[http://dx.doi.org/10.1016/j.cmet.2012.03.002] [PMID: 22503562]
[74]
Barritt GJ, Chen J, Rychkov GY. Ca2+-permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology. Biochim Biophys Acta 2008; 1783(5): 651-72.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.016] [PMID: 18291110]
[75]
Shaw PJ, Feske S. Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J Physiol 2012; 590(17): 4157-67.
[http://dx.doi.org/10.1113/jphysiol.2012.233221] [PMID: 22615435]
[76]
Michaelsen K, Lohmann C. Calcium dynamics at developing synapses: Mechanisms and functions. Eur J Neurosci 2010; 32(2): 218-23.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07341.x] [PMID: 20646046]
[77]
Berridge MJ. Neuronal calcium signaling. Neuron 1998; 21(1): 13-26.
[http://dx.doi.org/10.1016/S0896-6273(00)80510-3] [PMID: 9697848]
[78]
Lohmann C, Wong RO. Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium 2005; 37(5): 403-9.
[http://dx.doi.org/10.1016/j.ceca.2005.01.008] [PMID: 15820387]
[79]
Tang Y, Zucker RS. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 1997; 18(3): 483-91.
[http://dx.doi.org/10.1016/S0896-6273(00)81248-9] [PMID: 9115741]
[80]
Tanaka D, Nakada K, Takao K, et al. Normal mitochondrial respiratory function is essential for spatial remote memory in mice. Mol Brain 2008; 1: 21-1.
[http://dx.doi.org/10.1186/1756-6606-1-21] [PMID: 19087269]
[81]
Berna-Erro A, Braun A, Kraft R, et al. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2009; 2(93): ra67-7.
[http://dx.doi.org/10.1126/scisignal.2000522] [PMID: 19843959]
[82]
Sun S, Zhang H, Liu J, et al. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 2014; 82(1): 79-93.
[http://dx.doi.org/10.1016/j.neuron.2014.02.019] [PMID: 24698269]
[83]
Samtleben S, Wachter B, Blum R. Store-operated calcium entry compensates fast ER calcium loss in resting hippocampal neurons. Cell Calcium 2015; 58(2): 147-59.
[http://dx.doi.org/10.1016/j.ceca.2015.04.002] [PMID: 25957620]
[84]
Majewski L, Kuznicki J. SOCE in neurons: Signaling or just refilling? Biochimica et Biophysica Acta (BBA) -. Mol Cell Res 2015; 1853(9): 1940-52.
[85]
Müller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia 2014; 62(4): 526-34.
[http://dx.doi.org/10.1002/glia.22623] [PMID: 24464850]
[86]
The Human Protein Atlas. 2020.
[87]
Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science 2015; 347(6220)1260419
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[88]
Baba A, Yasui T, Fujisawa S, et al. Activity-evoked capacitative Ca2+ entry: Implications in synaptic plasticity. J Neurosci 2003; 23(21): 7737-41.
[http://dx.doi.org/10.1523/JNEUROSCI.23-21-07737.2003] [PMID: 12944501]
[89]
Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 2001; 29(1): 197-208.
[http://dx.doi.org/10.1016/S0896-6273(01)00190-8] [PMID: 11182091]
[90]
Narayanan R, Dougherty KJ, Johnston D. Calcium store depletion induces persistent perisomatic increases in the functional density of h channels in hippocampal pyramidal neurons. Neuron 2010; 68(5): 921-35.
[http://dx.doi.org/10.1016/j.neuron.2010.11.033] [PMID: 21145005]
[91]
Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res 2006; 326(2): 483-504.
[http://dx.doi.org/10.1007/s00441-006-0266-5] [PMID: 16847639]
[92]
Raymond CR, Thompson VL, Tate WP, Abraham WC. Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J Neurosci 2000; 20(3): 969-76.
[http://dx.doi.org/10.1523/JNEUROSCI.20-03-00969.2000] [PMID: 10648701]
[93]
Miura M, Watanabe M, Offermanns S, Simon MI, Kano M. Group I metabotropic glutamate receptor signaling via Galpha q/Galpha 11 secures the induction of long-term potentiation in the hippocampal area CA1. J Neurosci 2002; 22(19): 8379-90.
[http://dx.doi.org/10.1523/JNEUROSCI.22-19-08379.2002] [PMID: 12351712]
[94]
Youn DH. Differential roles of signal transduction mechanisms in long-term potentiation of excitatory synaptic transmission induced by activation of group I mGluRs in the spinal trigeminal subnucleus oralis. Brain Res Bull 2014; 108: 37-43.
[http://dx.doi.org/10.1016/j.brainresbull.2014.08.003] [PMID: 25149878]
[95]
Shigemoto R, Abe T, Nomura S, Nakanishi S, Hirano T. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 1994; 12(6): 1245-55.
[http://dx.doi.org/10.1016/0896-6273(94)90441-3] [PMID: 7912091]
[96]
Grueter BA, Gosnell HB, Olsen CM, et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 2006; 26(12): 3210-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0170-06.2006] [PMID: 16554472]
[97]
Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 1994; 79(2): 365-75.
[http://dx.doi.org/10.1016/0092-8674(94)90204-6] [PMID: 7954802]
[98]
González-Sánchez P, Del Arco A, Esteban JA, Satrústegui J. Store-operated calcium entry is required for mGluR-dependent long term depression in cortical neurons. Front Cell Neurosci 2017; 11: 363.
[http://dx.doi.org/10.3389/fncel.2017.00363] [PMID: 29311823]
[99]
Ramos B, Gaudillière B, Bonni A, Gill G. Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc Natl Acad Sci USA 2007; 104(23): 9882-7.
[http://dx.doi.org/10.1073/pnas.0701946104] [PMID: 17535924]
[100]
Ramos B, Valín A, Sun X, Gill G. Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol Cell Neurosci 2009; 42(2): 152-9.
[http://dx.doi.org/10.1016/j.mcn.2009.06.008] [PMID: 19555762]
[101]
Vandesompele J, De Peter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes Genome biology 2002; 3(7)RESEARCH0034
[102]
Lalonde J, Saia G, Gill G. Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. Sci Signal 2014; 7(328): ra51.
[http://dx.doi.org/10.1126/scisignal.2005242] [PMID: 24894994]
[103]
Garcia-Alvarez G, Shetty MS, Lu B, et al. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front Behav Neurosci 2015; 9(180): 180.
[http://dx.doi.org/10.3389/fnbeh.2015.00180] [PMID: 26236206]
[104]
Hartmann J, Karl RM, Alexander RP, et al. STIM1 controls neuronal Ca2+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron 2014; 82(3): 635-44.
[http://dx.doi.org/10.1016/j.neuron.2014.03.027] [PMID: 24811382]
[105]
Yap KAF, Shetty MS, Garcia-Alvarez G, et al. STIM2 regulates AMPA receptor trafficking and plasticity at hippocampal synapses. Neurobiol Learn Mem 2017; 138: 54-61.
[http://dx.doi.org/10.1016/j.nlm.2016.08.007] [PMID: 27544849]
[106]
Garcia-Alvarez G, Lu B, Yap KA, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell 2015; 26(6): 1141-59.
[http://dx.doi.org/10.1091/mbc.E14-07-1222] [PMID: 25609091]
[107]
Korkotian E, Oni-Biton E, Segal M. The role of the store-operated calcium entry channel Orai1 in cultured rat hippocampal synapse formation and plasticity. J Physiol 2017; 595(1): 125-40.
[http://dx.doi.org/10.1113/JP272645] [PMID: 27393042]
[108]
Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 2003; 426(6964): 285-91.
[http://dx.doi.org/10.1038/nature02162] [PMID: 14614461]
[109]
Hartmann J, Dragicevic E, Adelsberger H, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008; 59(3): 392-8.
[http://dx.doi.org/10.1016/j.neuron.2008.06.009] [PMID: 18701065]
[110]
Amaral MD, Pozzo-Miller L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 2007; 27(19): 5179-89.
[http://dx.doi.org/10.1523/JNEUROSCI.5499-06.2007] [PMID: 17494704]
[111]
Neuner SM, Wilmott LA, Hope KA, et al. TRPC3 channels critically regulate hippocampal excitability and contextual fear memory. Behav Brain Res 2015; 281: 69-77.
[http://dx.doi.org/10.1016/j.bbr.2014.12.018] [PMID: 25513972]
[112]
Zhou J, Du W, Zhou K, et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 2008; 11(7): 741-3.
[http://dx.doi.org/10.1038/nn.2127] [PMID: 18516035]
[113]
Wang J, Lu R, Yang J, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun 2015; 6(1): 8876.
[http://dx.doi.org/10.1038/ncomms9876] [PMID: 26581893]
[114]
Zhang H, Wu L, Pchitskaya E, et al. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease. J Neurosci 2015; 35(39): 13275-86.
[http://dx.doi.org/10.1523/JNEUROSCI.1034-15.2015] [PMID: 26424877]
[115]
Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000; 80(1): 315-60.
[http://dx.doi.org/10.1152/physrev.2000.80.1.315] [PMID: 10617771]
[116]
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008; 60(5): 748-66.
[http://dx.doi.org/10.1016/j.neuron.2008.10.010] [PMID: 19081372]
[117]
Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2010; 2: 139-9.
[http://dx.doi.org/10.3389/fnsyn.2010.00139] [PMID: 21423525]
[118]
Marland JRK, Hasel P, Bonnycastle K, Cousin MA. Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J Biol Chem 2016; 291(5): 2080-6.
[http://dx.doi.org/10.1074/jbc.M115.686956] [PMID: 26644474]
[119]
Billups B, Forsythe ID. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 2002; 22(14): 5840-7.
[http://dx.doi.org/10.1523/JNEUROSCI.22-14-05840.2002] [PMID: 12122046]
[120]
Marchant JS, Patel S. Two-pore channels at the intersection of endolysosomal membrane traffic. Portland Press Ltd. 2015.
[http://dx.doi.org/10.1042/BST20140303]
[121]
Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca2+ nanodomains, calcineurin and dynamin. EMBO J 2020; 39(14)e104058
[http://dx.doi.org/10.15252/embj.2019104058] [PMID: 32510172]
[122]
Rosato AS, Montefusco S, Soldati C, et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat Commun 2019; 10(1): 1-16.
[PMID: 30602773]
[123]
Padamsey Z, McGuinness L, Bardo SJ, et al. Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron 2017; 93(1): 132-46.
[http://dx.doi.org/10.1016/j.neuron.2016.11.013] [PMID: 27989455]
[124]
Foster WJ, Taylor HBC, Padamsey Z, Jeans AF, Galione A, Emptage NJ. Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca2+ signaling. Sci Signal 2018; 11(558)eaat9093
[http://dx.doi.org/10.1126/scisignal.aat9093] [PMID: 30482851]
[125]
Celsi F, Pizzo P, Brini M, et al. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim Biophys Acta 2009; 1787(5): 335-44.
[http://dx.doi.org/10.1016/j.bbabio.2009.02.021] [PMID: 19268425]
[126]
Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009; 15(3): 89-100.
[http://dx.doi.org/10.1016/j.molmed.2009.01.001] [PMID: 19230774]
[127]
Petryniak MA, Wurtman RJ, Slack BE. Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism. Biochem J 1996; 320(Pt 3): 957-63.
[http://dx.doi.org/10.1042/bj3200957] [PMID: 9003386]
[128]
Etcheberrigaray R, Hirashima N, Nee L, et al. Calcium responses in fibroblasts from asymptomatic members of Alzheimer’s disease families. Neurobiol Dis 1998; 5(1): 37-45.
[http://dx.doi.org/10.1006/nbdi.1998.0176] [PMID: 9702786]
[129]
Yoo AS, Cheng I, Chung S, et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27(3): 561-72.
[http://dx.doi.org/10.1016/S0896-6273(00)00066-0] [PMID: 11055438]
[130]
Cheung K-H, Shineman D, Müller M, et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58(6): 871-83.
[http://dx.doi.org/10.1016/j.neuron.2008.04.015] [PMID: 18579078]
[131]
Giacomello M, Barbiero L, Zatti G, et al. Reduction of Ca2+ stores and capacitative Ca2+ entry is associated with the familial Alzheimer’s disease presenilin-2 T122R mutation and anticipates the onset of dementia. Neurobiol Dis 2005; 18(3): 638-48.
[http://dx.doi.org/10.1016/j.nbd.2004.10.016] [PMID: 15755689]
[132]
Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G. The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+ entry into HEK293 cells. Cell Signal 2005; 17(4): 437-45.
[http://dx.doi.org/10.1016/j.cellsig.2004.09.005] [PMID: 15601622]
[133]
Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 2006; 26(19): 5180-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0739-06.2006] [PMID: 16687509]
[134]
Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44(5): 507-18.
[http://dx.doi.org/10.1016/j.ceca.2008.03.004] [PMID: 18440065]
[135]
Popugaeva E, Bezprozvanny I. Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front Mol Neurosci 2013; 6: 29.
[http://dx.doi.org/10.3389/fnmol.2013.00029] [PMID: 24065882]
[136]
Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: Minding the store. Aging Cell 2007; 6(3): 307-17.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00295.x] [PMID: 17465978]
[137]
Del Prete D, Checler F, Chami M. Ryanodine receptors: Physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014; 9: 21-1.
[http://dx.doi.org/10.1186/1750-1326-9-21] [PMID: 24902695]
[138]
Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2(8): 864-70.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[139]
Green KN, Demuro A, Akbari Y, et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid β production. J Cell Biol 2008; 181(7): 1107-16.
[http://dx.doi.org/10.1083/jcb.200706171] [PMID: 18591429]
[140]
Mattson MP. ER calcium and Alzheimer’s disease: In a state of flux. Sci Signal 2010; 3(114): pe10-0.
[http://dx.doi.org/10.1126/scisignal.3114pe10] [PMID: 20332425]
[141]
Cheung K-H, Mei L, Mak DO, et al. Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 2010; 3(114): ra22-.
[http://dx.doi.org/10.1126/scisignal.2000818] [PMID: 20332427]
[142]
Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149(4): 793-8.
[http://dx.doi.org/10.1083/jcb.149.4.793] [PMID: 10811821]
[143]
Secondo A, Bagetta G, Amantea D. On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases. Front Mol Neurosci 2018; 11: 87-7.
[http://dx.doi.org/10.3389/fnmol.2018.00087] [PMID: 29623030]
[144]
Peterson C, Gibson GE, Blass JP. Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer’s disease. N Engl J Med 1985; 312(16): 1063-5.
[http://dx.doi.org/10.1056/NEJM198504183121618] [PMID: 3982463]
[145]
Ito E, Oka K, Etcheberrigaray R, et al. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(2): 534-8.
[http://dx.doi.org/10.1073/pnas.91.2.534] [PMID: 8290560]
[146]
Mattson MP, Chan SL. Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: Bad genes and bad habits. J Mol Neurosci 2001; 17(2): 205-24.
[http://dx.doi.org/10.1385/JMN:17:2:205] [PMID: 11816794]
[147]
Guo Q, Furukawa K, Sopher BL, et al. Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 1996; 8(1): 379-83.
[http://dx.doi.org/10.1097/00001756-199612200-00074] [PMID: 9051814]
[148]
Leissring MA, Parker I, LaFerla FM. Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 1999; 274(46): 32535-8.
[http://dx.doi.org/10.1074/jbc.274.46.32535] [PMID: 10551803]
[149]
Herms J, Schneider I, Dewachter I, Caluwaerts N, Kretzschmar H, Van Leuven F. Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein. J Biol Chem 2003; 278(4): 2484-9.
[http://dx.doi.org/10.1074/jbc.M206769200] [PMID: 12431992]
[150]
Bojarski L, Pomorski P, Szybinska A, et al. Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer’s disease. Biochim Biophys Acta 2009; 1793(6): 1050-7.
[http://dx.doi.org/10.1016/j.bbamcr.2008.11.008] [PMID: 19111578]
[151]
Tong BC-K, Lee CS, Cheng WH, Lai KO, Foskett JK, Cheung KH. Familial Alzheimer’s disease-associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca2+ entry. Sci Signal 2016; 9(444): ra89-9.
[http://dx.doi.org/10.1126/scisignal.aaf1371] [PMID: 27601731]
[152]
Greotti E, Capitanio P, Wong A, Pozzan T, Pizzo P, Pendin D. Familial Alzheimer’s disease-linked presenilin mutants and intracellular Ca2+ handling: A single-organelle, FRET-based analysis. Cell Calcium 2019; 79: 44-56.
[http://dx.doi.org/10.1016/j.ceca.2019.02.005] [PMID: 30822648]
[153]
Zeiger W, Vetrivel KS, Buggia-Prévot V, et al. Ca2+ influx through store-operated Ca2+ channels reduces Alzheimer disease β-amyloid peptide secretion. J Biol Chem 2013; 288(37): 26955-66.
[http://dx.doi.org/10.1074/jbc.M113.473355] [PMID: 23902769]
[154]
Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012; 4(6)a005710
[http://dx.doi.org/10.1101/cshperspect.a005710] [PMID: 22510460]
[155]
Zhang H, Sun S, Wu L, et al. Store-operated calcium channel complex in postsynaptic spines: A new therapeutic target for Alzheimer’s disease treatment. J Neurosci 2016; 36(47): 11837-50.
[http://dx.doi.org/10.1523/JNEUROSCI.1188-16.2016] [PMID: 27881772]
[156]
Swerdlow RH, Khan SMA. “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 2004; 63(1): 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[157]
Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Brain Res Rev 2005; 49(3): 618-32.
[http://dx.doi.org/10.1016/j.brainresrev.2005.03.004] [PMID: 16269322]
[158]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[159]
Parihar MS, Brewer GJ. Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol 2007; 292(1): C8-C23.
[http://dx.doi.org/10.1152/ajpcell.00232.2006] [PMID: 16807300]
[160]
Jadiya P, Kolmetzky DW, Tomar D, et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat Commun 2019; 10(1): 3885.
[http://dx.doi.org/10.1038/s41467-019-11813-6] [PMID: 31467276]
[161]
Hedskog L, Pinho CM, Filadi R, et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA 2013; 110(19): 7916-21.
[http://dx.doi.org/10.1073/pnas.1300677110] [PMID: 23620518]
[162]
Area-Gomez E, de Groof A, Bonilla E, et al. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 2018; 9(3): 335.
[http://dx.doi.org/10.1038/s41419-017-0215-0] [PMID: 29491396]
[163]
Toglia P, Cheung KH, Mak DO, Ullah G. Impaired mitochondrial function due to familial Alzheimer’s disease-causing presenilins mutants via Ca(2+) disruptions. Cell Calcium 2016; 59(5): 240-50.
[http://dx.doi.org/10.1016/j.ceca.2016.02.013] [PMID: 26971122]
[164]
Ferreiro E, Oliveira CR, Pereira CMF. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 2008; 30(3): 331-42.
[http://dx.doi.org/10.1016/j.nbd.2008.02.003] [PMID: 18420416]
[165]
Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, Villalobos C, Núñez L. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 2008; 3(7): e2718-8.
[http://dx.doi.org/10.1371/journal.pone.0002718] [PMID: 18648507]
[166]
Du H, Guo L, Zhang W, Rydzewska M, Yan S. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 2011; 32(3): 398-406.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.03.003] [PMID: 19362755]
[167]
Park I, Londhe AM, Lim JW, et al. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction. J Comput Aided Mol Des 2017; 31(10): 929-41.
[http://dx.doi.org/10.1007/s10822-017-0067-9] [PMID: 28913661]
[168]
Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 2008; 14(10): 1097-105.
[http://dx.doi.org/10.1038/nm.1868] [PMID: 18806802]
[169]
Ma T, Gong K, Yan Y, Song B, Zhang X, Gong Y. Mitochondrial modulation of store-operated Ca2+ entry in model cells of Alzheimer’s disease. Biochem Biophys Res Commun 2012; 426(2): 196-202.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.062] [PMID: 22935417]
[170]
Coffey EE, Beckel JM, Laties AM, Mitchell CH. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 2014; 263: 111-24.
[http://dx.doi.org/10.1016/j.neuroscience.2014.01.001] [PMID: 24418614]
[171]
van Weering JRT, Scheper W. Endolysosome and autolysosome dysfunction in Alzheimer’s disease: Where intracellular and extracellular meet. CNS Drugs 2019; 33(7): 639-48.
[http://dx.doi.org/10.1007/s40263-019-00643-1] [PMID: 31165364]
[172]
Lee J-H, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141(7): 1146-58.
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[173]
Nixon RA, Cataldo AM, Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: A review. Neurochem Res 2000; 25(9-10): 1161-72.
[http://dx.doi.org/10.1023/A:1007675508413] [PMID: 11059790]
[174]
Lakpa KL, et al. Readily releasable stores of calcium in neuronal endolysosomes: Physiological and pathophysiological relevance Calcium Signaling. Springer 2020; pp. 681-97.
[http://dx.doi.org/10.1007/978-3-030-12457-1_27]
[175]
Bojarski L, Herms J, Kuznicki J. Calcium dysregulation in Alzheimer’s disease. Neurochem Int 2008; 52(4-5): 621-33.
[http://dx.doi.org/10.1016/j.neuint.2007.10.002] [PMID: 18035450]
[176]
Bird GS. Pharmacology of store-operated calcium entry channels.Calcium entry channels in non-excitable cells, PJJ Kozak JA, Editor CRC Press/Taylor & Francis. 2018.
[177]
Kudo T, Okumura M, Imaizumi K, et al. Altered localization of amyloid precursor protein under endoplasmic reticulum stress. Biochem Biophys Res Commun 2006; 344(2): 525-30.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.173] [PMID: 16630560]
[178]
Reyes M, Stanton PK. Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J Neurosci 1996; 16(19): 5951-60.
[http://dx.doi.org/10.1523/JNEUROSCI.16-19-05951.1996] [PMID: 8815877]
[179]
Bahia PK, Pugh V, Hoyland K, Hensley V, Rattray M, Williams RJ. Neuroprotective effects of phenolic antioxidant tBHQ associate with inhibition of FoxO3a nuclear translocation and activity. J Neurochem 2012; 123(1): 182-91.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07877.x] [PMID: 22804756]
[180]
Sennvik K, Benedikz E, Fastbom J, Sundström E, Winblad B, Ankarcrona M. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures. J Neurosci Res 2001; 63(5): 429-37.
[http://dx.doi.org/10.1002/1097-4547(20010301)63:5<429:AID-JNR1038>3.0.CO;2-U] [PMID: 11223918]
[181]
Collatz MB, Rüdel R, Brinkmeier H. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses. Cell Calcium 1997; 21(6): 453-9.
[http://dx.doi.org/10.1016/S0143-4160(97)90056-7] [PMID: 9223681]
[182]
Putney JW. Pharmacology of store-operated calcium channels. Mol Interv 2010; 10(4): 209-18.
[http://dx.doi.org/10.1124/mi.10.4.4] [PMID: 20729487]
[183]
Zhou Y. Mechanism of activation of store-operated calcium entry by 2-aminoethoxydiphenyl borate. Biophysical J 2014; 106(2): 315.
[184]
Peppiatt CM, Collins TJ, Mackenzie L, et al. 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 2003; 34(1): 97-108.
[http://dx.doi.org/10.1016/S0143-4160(03)00026-5] [PMID: 12767897]
[185]
Colton CK, Zhu MX. 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb Exp Pharmacol 2007; (179): 173-87.
[http://dx.doi.org/10.1007/978-3-540-34891-7_10] [PMID: 17217057]
[186]
Hagenston AM, Rudnick ND, Boone CE, Yeckel MF. 2-Aminoethoxydiphenyl-borate (2-APB) increases excitability in pyramidal neurons. Cell Calcium 2009; 45(3): 310-7.
[http://dx.doi.org/10.1016/j.ceca.2008.11.003] [PMID: 19100621]
[187]
Lis A, Peinelt C, Beck A, et al. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 2007; 17(9): 794-800.
[http://dx.doi.org/10.1016/j.cub.2007.03.065] [PMID: 17442569]
[188]
Goto J, Suzuki AZ, Ozaki S, et al. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins. Cell Calcium 2010; 47(1): 1-10.
[http://dx.doi.org/10.1016/j.ceca.2009.10.004] [PMID: 19945161]
[189]
Leuner K, Kazanski V, Müller M, et al. Hyperforin--a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J 2007; 21(14): 4101-11.
[http://dx.doi.org/10.1096/fj.07-8110com] [PMID: 17666455]
[190]
Montecinos-Oliva C, Schüller A, Inestrosa NC. Tetrahydrohyperforin: a neuroprotective modified natural compound against Alzheimer’s disease. Neural Regen Res 2015; 10(4): 552-4.
[http://dx.doi.org/10.4103/1673-5374.155420] [PMID: 26170810]
[191]
Inestrosa NC, Tapia-Rojas C, Griffith TN, et al. Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer’s disease: A possible effect on APP processing. Transl Psychiatry 2011; 1(7): e20-0.
[http://dx.doi.org/10.1038/tp.2011.19] [PMID: 22832522]
[192]
Abbott AC, Calderon Toledo C, Aranguiz FC, Inestrosa NC, Varela-Nallar L. Tetrahydrohyperforin increases adult hippocampal neurogenesis in wild-type and APPswe/PS1ΔE9 mice. J Alzheimers Dis 2013; 34(4): 873-85.
[http://dx.doi.org/10.3233/JAD-121714] [PMID: 23302657]
[193]
Montecinos-Oliva C, Schuller A, Parodi J, Melo F, Inestrosa NC. Effects of tetrahydrohyperforin in mouse hippocampal slices: Neuroprotection, long-term potentiation and TRPC channels. Curr Med Chem 2014; 21(30): 3494-506.
[http://dx.doi.org/10.2174/0929867321666140716091229] [PMID: 25039785]
[194]
Cavieres VA, González A, Muñoz VC, et al. Tetrahydrohyperforin inhibits the proteolytic processing of amyloid precursor protein and enhances its degradation by Atg5-dependent autophagy. PLoS One 2015; 10(8)e0136313
[http://dx.doi.org/10.1371/journal.pone.0136313] [PMID: 26308941]
[195]
Blanchard AP, Guillemette G, Boulay G. Memantine potentiates agonist-induced Ca2+ responses in HEK 293 cells. Cell Physiol Biochem 2008; 22(1-4): 205-14.
[http://dx.doi.org/10.1159/000149798] [PMID: 18769047]
[196]
Gruszczynska-Biegala J, Strucinska K, Maciag F, Majewski L, Sladowska M, Kuznicki J. STIM Protein-NMDA2 receptor interaction decreases NMDA-dependent calcium levels in cortical neurons. Cells 2020; 9(1): 160.
[http://dx.doi.org/10.3390/cells9010160] [PMID: 31936514]
[197]
Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: A population-based CAIDE study. J Alzheimers Dis 2009; 16(1): 85-91.
[http://dx.doi.org/10.3233/JAD-2009-0920] [PMID: 19158424]
[198]
Kim Y-S, Kwak SM, Myung S-K. Caffeine intake from coffee or tea and cognitive disorders: A meta-analysis of observational studies. Neuroepidemiology 2015; 44(1): 51-63.
[http://dx.doi.org/10.1159/000371710] [PMID: 25721193]
[199]
Ritchie K, Carrière I, de Mendonca A, et al. The neuroprotective effects of caffeine: A prospective population study (the Three City Study). Neurology 2007; 69(6): 536-45.
[http://dx.doi.org/10.1212/01.wnl.0000266670.35219.0c] [PMID: 17679672]
[200]
Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzheimer’s disease: A prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 2002; 156(5): 445-53.
[http://dx.doi.org/10.1093/aje/kwf074] [PMID: 12196314]
[201]
Arendash GW, Cao C. Caffeine and coffee as therapeutics against Alzheimer’s disease. J Alzheimers Dis 2010; 20(s1)(Suppl. 1): S117-26.
[http://dx.doi.org/10.3233/JAD-2010-091249] [PMID: 20182037]
[202]
McKenzie S, Marley PD. Caffeine stimulates Ca(2+) entry through store-operated channels to activate tyrosine hydroxylase in bovine chromaffin cells. Eur J Neurosci 2002; 15(9): 1485-92.
[http://dx.doi.org/10.1046/j.1460-9568.2002.01990.x] [PMID: 12028358]
[203]
Yoshimura H. The potential of caffeine for functional modification from cortical synapses to neuron networks in the brain. Curr Neuropharmacol 2005; 3(4): 309-16.
[http://dx.doi.org/10.2174/157015905774322543] [PMID: 18369398]
[204]
Arendash GW, Mori T, Cao C, et al. Caffeine reverses cognitive impairment and decreases brain amyloid-β levels in aged Alzheimer’s disease mice. J Alzheimers Dis 2009; 17(3): 661-80.
[http://dx.doi.org/10.3233/JAD-2009-1087] [PMID: 19581722]
[205]
Garrett BE, Griffiths RR. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 1997; 57(3): 533-41.
[http://dx.doi.org/10.1016/S0091-3057(96)00435-2] [PMID: 9218278]
[206]
Lee M, McGeer EG, McGeer PL. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging 2016; 46: 113-23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.06.015] [PMID: 27479153]
[207]
Laitala VS, Kaprio J, Koskenvuo M, Räihä I, Rinne JO, Silventoinen K. Coffee drinking in middle age is not associated with cognitive performance in old age. Am J Clin Nutr 2009; 90(3): 640-6.
[http://dx.doi.org/10.3945/ajcn.2009.27660] [PMID: 19587088]
[208]
Majewski Ł, Maciąg F, Boguszewski PM, et al. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression. Biochim Biophys Acta Mol Cell Res 2017; 1864(6): 1071-87.
[http://dx.doi.org/10.1016/j.bbamcr.2016.11.025] [PMID: 27913207]
[209]
Dumont M, Lin MT, Beal MF. Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease. J Alzheimers Dis 20(2): S633-43.
[http://dx.doi.org/10.3233/JAD-2010-100507]
[210]
Picone P, Nuzzo D, Caruana L, Scafidi V, Di Carlo M. Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy. Oxid Med Cell Longev 2014; 2014: 780179-9.
[http://dx.doi.org/10.1155/2014/780179] [PMID: 25221640]
[211]
Chakravorty A, Jetto CT, Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front Aging Neurosci 2019; 11(311): 311.
[http://dx.doi.org/10.3389/fnagi.2019.00311] [PMID: 31824296]
[212]
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17(12): 865-86.
[http://dx.doi.org/10.1038/nrd.2018.174] [PMID: 30393373]
[213]
Hung CH, Ho YS, Chang RC. Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 2010; 9(4): 447-56.
[http://dx.doi.org/10.1016/j.arr.2010.05.003] [PMID: 20553970]
[214]
Calvo-Rodriguez M, Hernando-Perez E, Nuñez L, Villalobos C. Amyloid β oligomers increase ER-mitochondria Ca2+ cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca2+ remodeling. Front Cell Neurosci 2019; 13: 22.
[http://dx.doi.org/10.3389/fncel.2019.00022] [PMID: 30800057]
[215]
Sánchez JA, Alfonso A, Leirós M, et al. Spongionella secondary metabolites regulate store operated calcium entry modulating mitochondrial functioning in SH-SY5Y neuroblastoma cells. Cell Physiol Biochem 2015; 37(2): 779-92.
[http://dx.doi.org/10.1159/000430395] [PMID: 26356268]
[216]
Kon N, Murakoshi M, Isobe A, Kagechika K, Miyoshi N, Nagayama T. DS16570511 is a small-molecule inhibitor of the mitochondrial calcium uniporter. Cell Death Discov 2017; 3(1): 17045.
[http://dx.doi.org/10.1038/cddiscovery.2017.45] [PMID: 28725491]
[217]
Kon N, Satoh A, Miyoshi N. A small-molecule DS44170716 inhibits Ca2+-induced mitochondrial permeability transition. Sci Rep 2017; 7(1): 3864.
[http://dx.doi.org/10.1038/s41598-017-03651-7] [PMID: 28634393]
[218]
Samanta K, Douglas S. Parekh ABJPo Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation 2014; 9(7)e101188
[219]
Jaworska A, Dzbek J, Styczynska M, Kuznicki J. Analysis of calcium homeostasis in fresh lymphocytes from patients with sporadic Alzheimer’s disease or mild cognitive impairment. Biochim Biophys Acta 2013; 1833(7): 1692-9.
[http://dx.doi.org/10.1016/j.bbamcr.2013.01.012] [PMID: 23354174]
[220]
DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW Jr. Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem 2008; 283(28): 19265-73.
[http://dx.doi.org/10.1074/jbc.M801535200] [PMID: 18487204]
[221]
Schindl R, Bergsmann J, Frischauf I, et al. 2-aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J Biol Chem 2008; 283(29): 20261-7.
[http://dx.doi.org/10.1074/jbc.M803101200] [PMID: 18499656]
[222]
Hu W-Y, He ZY, Yang LJ, Zhang M, Xing D, Xiao ZC. The Ca2+ channel inhibitor 2-APB reverses β-amyloid-induced LTP deficit in hippocampus by blocking BAX and caspase-3 hyperactivation. Br J Pharmacol 2015; 172(9): 2273-85.
[http://dx.doi.org/10.1111/bph.13048] [PMID: 25521332]
[223]
Suen KC, Lin KF, Elyaman W, So KF, Chang RC, Hugon J. Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity. J Neurochem 2003; 87(6): 1413-26.
[http://dx.doi.org/10.1111/j.1471-4159.2003.02259.x] [PMID: 14713297]
[224]
Zolezzi JM, Carvajal FJ, Ríos JA, et al. Tetrahydrohyperforin induces mitochondrial dynamics and prevents mitochondrial Ca2+ overload after Aβ and Aβ-AChE complex challenge in rat hippocampal neurons. J Alzheimers Dis 2013; 37(4): 735-46.
[http://dx.doi.org/10.3233/JAD-130173] [PMID: 23948911]
[225]
De Felice FG, Velasco PT, Lambert MP, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 2007; 282(15): 11590-601.
[http://dx.doi.org/10.1074/jbc.M607483200] [PMID: 17308309]
[226]
Li L, Sengupta A, Haque N, Grundke-Iqbal I, Iqbal K. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 2004; 566(1-3): 261-9.
[http://dx.doi.org/10.1016/j.febslet.2004.04.047] [PMID: 15147906]
[227]
Administration, U.S.F.A.D.. Memantine approved for Alzheimer disease 2003.
[228]
Joseph D. Method of treating amyloidosis by modulation of calcium 1996.
[229]
Huang HM, Chen HL, Gibson GE. Interactions of endoplasmic reticulum and mitochondria Ca(2+) stores with capacitative calcium entry. Metab Brain Dis 2014; 29(4): 1083-93.
[http://dx.doi.org/10.1007/s11011-014-9541-4] [PMID: 24748364]
[230]
Akhter H, Katre A, Li L, Liu X, Liu RM. Therapeutic potential and anti-amyloidosis mechanisms of tert-butylhydroquinone for Alzheimer’s disease. J Alzheimers Dis 2011; 26(4): 767-78.
[http://dx.doi.org/10.3233/JAD-2011-110512] [PMID: 21860091]
[231]
Reed PW, Lardy HA. A23187: A divalent cation ionophore. J Biol Chem 1972; 247(21): 6970-7.
[PMID: 4263618]
[232]
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement 2018; 14(10): 1302-12.
[http://dx.doi.org/10.1016/j.jalz.2018.05.017] [PMID: 30293574]
[233]
Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355(6358): 353-6.
[http://dx.doi.org/10.1038/355353a0] [PMID: 1309940]
[234]
Michael E. Cyclosporin a conjugates and uses therefor 2001.
[235]
Guo L, Du H, Yan S, et al. Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer’s neurons. PLoS One 2013; 8(1)e54914
[http://dx.doi.org/10.1371/journal.pone.0054914] [PMID: 23382999]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy