Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Update on Myositis Therapy: From Today’s Standards to Tomorrow’s Possibilities

Author(s): Stefanie Glaubitz, Rachel Zeng, Goran Rakocevic and Jens Schmidt*

Volume 28, Issue 11, 2022

Published on: 09 December, 2021

Page: [863 - 880] Pages: 18

DOI: 10.2174/1381612827666211115165353

Price: $65

Abstract

Inflammatory myopathies, in short, myositis, are heterogeneous disorders that are characterized by inflammation of skeletal muscle and weakness of arms and legs. Research over the past few years has led to a new understanding regarding the pathogenesis of myositis. The new insights include different pathways of the innate and adaptive immune response during the pathogenesis of myositis. The importance of non-inflammatory mechanisms such as cell stress and impaired autophagy has been recently described. New target-specific drugs for myositis have been developed and are currently being tested in clinical trials. In this review, we discuss the mechanisms of action of pharmacological standards in myositis and provide an outlook of future treatment approaches.

Keywords: Inflammatory myopathies, myositis, disease mechanisms, treatment, immunosuppression, biologic agents, polymyositis, dermatomyositis, inclusion body myositis, necrotizing myopathy, anti-synthetase syndrome.

[1]
Schmidt J. Current classification and management of inflammatory myopathies. J Neuromuscul Dis 2018; 5(2): 109-29.
[http://dx.doi.org/10.3233/JND-180308] [PMID: 29865091]
[2]
Lilleker JB, Vencovsky J, Wang G, et al. The EuroMyositis registry: An international collaborative tool to facilitate myositis research. Ann Rheum Dis 2018; 77(1): 30-9.
[http://dx.doi.org/10.1136/annrheumdis-2017-211868] [PMID: 28855174]
[3]
Lega J-C, Reynaud Q, Belot A, Fabien N, Durieu I, Cottin V. Idiopathic inflammatory myopathies and the lung. Eur Respir Rev 2015; 24(136): 216-38.
[http://dx.doi.org/10.1183/16000617.00002015] [PMID: 26028634]
[4]
Zahr ZA, Baer AN. Malignancy in myositis. Curr Rheumatol Rep 2011; 13(3): 208-15.
[http://dx.doi.org/10.1007/s11926-011-0169-7] [PMID: 21336621]
[5]
Jakubaszek M, Kwiatkowska B, Maślińska M. Polymyositis and dermatomyositis as a risk of developing cancer. Reumatologia 2015; 53(2): 101-5.
[http://dx.doi.org/10.5114/reum.2015.51510] [PMID: 27407235]
[6]
Yang H, Peng Q, Yin L, et al. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopathic inflammatory myopathies: A large longitudinal cohort study. Arthritis Res Ther 2017; 19(1): 259.
[http://dx.doi.org/10.1186/s13075-017-1469-8] [PMID: 29178913]
[7]
Ozaki T, Yamashita H, Hosono Y, et al. Two patients in the same family with anti-ARS antibody-associated myositis. Mod Rheumatol 2014; 24(4): 699-700.
[http://dx.doi.org/10.3109/14397595.2013.844299] [PMID: 24252011]
[8]
Kuo C-F, Luo S-F, Yu K-H, See L-C, Zhang W, Doherty M. Familial risk of systemic sclerosis and co-aggregation of autoimmune diseases in affected families. Arthritis Res Ther 2016; 18(1): 231.
[http://dx.doi.org/10.1186/s13075-016-1127-6] [PMID: 27729087]
[9]
Ginn LR, Lin JP, Plotz PH, et al. Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum 1998; 41(3): 400-5.
[http://dx.doi.org/10.1002/1529-0131(199803)41:3<400::AID-ART4>3.0.CO;2-5] [PMID: 9506566]
[10]
Miller FW, Chen W, O’Hanlon TP, et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015; 16(7): 470-80.
[http://dx.doi.org/10.1038/gene.2015.28] [PMID: 26291516]
[11]
Rothwell S, Cooper RG, Lundberg IE, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016; 75(8): 1558-66.
[http://dx.doi.org/10.1136/annrheumdis-2015-208119] [PMID: 26362759]
[12]
Chinoy H, Platt H, Lamb JA, et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum 2008; 58(10): 3247-54.
[http://dx.doi.org/10.1002/art.23900] [PMID: 18821667]
[13]
Miller FW, Lamb JA, Schmidt J, Nagaraju K. Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 2018; 14(5): 255-68.
[http://dx.doi.org/10.1038/nrrheum.2018.48] [PMID: 29674613]
[14]
Reed AM, Ytterberg SR. Genetic and environmental risk factors for idiopathic inflammatory myopathies. Rheum Dis Clin North Am 2002; 28(4): 891-916.
[http://dx.doi.org/10.1016/S0889-857X(02)00029-7] [PMID: 12506777]
[15]
Nojima T, Hirakata M, Sato S, et al. A case of polymyositis associated with hepatitis B infection. Clin Exp Rheumatol 2000; 18(1): 86-8.
[PMID: 10728451]
[16]
Johnson RW, Williams FM, Kazi S, Dimachkie MM, Reveille JD. Human immunodeficiency virus-associated polymyositis: A longitudinal study of outcome. Arthritis Rheum 2003; 49(2): 172-8.
[http://dx.doi.org/10.1002/art.11002] [PMID: 12687507]
[17]
Gan L, Miller FW. State of the art: what we know about infectious agents and myositis. Curr Opin Rheumatol 2011; 23(6): 585-94.
[http://dx.doi.org/10.1097/BOR.0b013e32834b5457] [PMID: 21885972]
[18]
Musset L, Allenbach Y, Benveniste O, et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: A history of statins and experience from a large international multi-center study. Autoimmun Rev 2016; 15(10): 983-93.
[http://dx.doi.org/10.1016/j.autrev.2016.07.023] [PMID: 27491568]
[19]
Solimando AG, Crudele L, Leone P, et al. Immune checkpoint inhibitor-related myositis: from biology to bedside. Int J Mol Sci 2020; 21(9): E3054.
[http://dx.doi.org/10.3390/ijms21093054] [PMID: 32357515]
[20]
Generali E, Ceribelli A, Stazi MA, Selmi C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun 2017; 83: 51-61.
[http://dx.doi.org/10.1016/j.jaut.2017.04.005] [PMID: 28431796]
[21]
Yang S-H, Chang C, Lian Z-X. Polymyositis and dermatomyositis - challenges in diagnosis and management. J Transl Autoimmun 2019; 2: 100018.
[http://dx.doi.org/10.1016/j.jtauto.2019.100018] [PMID: 32743506]
[22]
Rostasy KM, Piepkorn M, Goebel H-H, Menck S, Hanefeld F, Schulz-Schaeffer WJ. Monocyte/macrophage differentiation in dermatomyositis and polymyositis. Muscle Nerve 2004; 30(2): 225-30.
[http://dx.doi.org/10.1002/mus.20088] [PMID: 15266639]
[23]
Chinoy H, Cooper RG, Eds. Myositis.Oxford Oxford University Press. 2018.
[24]
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The immune response and the pathogenesis of idiopathic inflammatory myositis: a critical review. Clin Rev Allergy Immunol 2017; 52(1): 58-70.
[http://dx.doi.org/10.1007/s12016-016-8527-x] [PMID: 26780034]
[25]
Brunn A, Zornbach K, Hans VH, Haupt WF, Deckert M. Toll-like receptors promote inflammation in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 2012; 71(10): 855-67.
[http://dx.doi.org/10.1097/NEN.0b013e31826bf7f3] [PMID: 22964787]
[26]
Herrero-Beaumont G, Martínez Calatrava MJ, Castañeda S. Abatacept mechanism of action: concordance with its clinical profile. Reumatol Clin 2012; 8(2): 78-83.
[http://dx.doi.org/10.1016/j.reuma.2011.08.002] [PMID: 22104048]
[27]
Tjärnlund A, Tang Q, Wick C, et al. Abatacept in the treatment of adult dermatomyositis and polymyositis: A randomised, phase IIb treatment delayed-start trial. Ann Rheum Dis 2018; 77(1): 55-62.
[http://dx.doi.org/10.1136/annrheumdis-2017-211751] [PMID: 28993346]
[28]
Kim Y, Schiopu E, Dankó K, et al. Double-blind, placebo-controlled, phase 2 trial of a novel toll-like receptor 7/8/9 antagonist (IMO-8400) in dermatomyositis. Arthritis Rheumatol 2019. Ahead of print.
[29]
Hengstman GJ, van Engelen BG, Vree Egberts WT, van Venrooij WJ. Myositis-specific autoantibodies: overview and recent developments. Curr Opin Rheumatol 2001; 13(6): 476-82.
[http://dx.doi.org/10.1097/00002281-200111000-00004] [PMID: 11698723]
[30]
Satoh M, Tanaka S, Ceribelli A, Calise SJ, Chan EKL. A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy. Clin Rev Allergy Immunol 2017; 52(1): 1-19.
[http://dx.doi.org/10.1007/s12016-015-8510-y] [PMID: 26424665]
[31]
Goebels N, Michaelis D, Engelhardt M, et al. Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 1996; 97(12): 2905-10.
[http://dx.doi.org/10.1172/JCI118749] [PMID: 8675705]
[32]
Hamawy MM. Molecular actions of calcineurin inhibitors. Drug News Perspect 2003; 16(5): 277-82.
[http://dx.doi.org/10.1358/dnp.2003.16.5.829315] [PMID: 12942158]
[33]
Rotella K, Alvarez MR, Saperstein Y, et al. Tacrolimus-induced remission in drug resistant inflammatory myopathy: a case series. Rheumatology (Sunnyvale) 2018; 8(2): 238.
[http://dx.doi.org/10.4172/2161-1149.1000238] [PMID: 30159206]
[34]
Mitsui T, Kuroda Y, Ueno S, Kaji R. The effects of FK506 on refractory inflammatory myopathies. Acta Neurol Belg 2011; 111(3): 188-94.
[PMID: 22141281]
[35]
Oddis CV, Sciurba FC, Elmagd KA, Starzl TE. Tacrolimus in refractory polymyositis with interstitial lung disease. Lancet 1999; 353(9166): 1762-3.
[http://dx.doi.org/10.1016/S0140-6736(99)01927-3] [PMID: 10347992]
[36]
Vencovský J, Jarosová K, Machácek S, et al. Cyclosporine A versus methotrexate in the treatment of polymyositis and dermatomyositis. Scand J Rheumatol 2000; 29(2): 95-102.
[http://dx.doi.org/10.1080/030097400750001897] [PMID: 10777122]
[37]
Go DJ, Park JK, Kang EH, et al. Survival benefit associated with early cyclosporine treatment for dermatomyositis-associated interstitial lung disease. Rheumatol Int 2016; 36(1): 125-31.
[http://dx.doi.org/10.1007/s00296-015-3328-8] [PMID: 26223808]
[38]
Witt LJ, Demchuk C, Curran JJ, Strek ME. Benefit of adjunctive tacrolimus in connective tissue disease-interstitial lung disease. Pulm Pharmacol Ther 2016; 36: 46-52.
[http://dx.doi.org/10.1016/j.pupt.2015.12.004] [PMID: 26762710]
[39]
Danko K, Vencovsky J, Lundberg IE, Amato Anthony A, Oddis CV, Molnar M. The selective sphingosine-1- phosphate receptor 1/5 modulator siponimod (BAF312) shows beneficial effects in patients with active, treatment refractory polymyositis and dermatomyositis: a phase iia proof-of-concept, double-blind, randomized trial. ACR/ARHP Annual Meeting.
[40]
Zhou X, Hu W, Qin X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 2008; 13(9): 954-66.
[http://dx.doi.org/10.1634/theoncologist.2008-0089] [PMID: 18779537]
[41]
Cohen SB, Emery P, Greenwald MW, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006; 54(9): 2793-806.
[http://dx.doi.org/10.1002/art.22025] [PMID: 16947627]
[42]
Joly P, Maho-Vaillant M, Prost-Squarcioni C, et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): A prospective, multicentre, parallel-group, open-label randomised trial. Lancet 2017; 389(10083): 2031-40.
[http://dx.doi.org/10.1016/S0140-6736(17)30070-3] [PMID: 28342637]
[43]
Dotan E, Aggarwal C, Smith MR. Impact of rituximab (rituxan) on the treatment of B-cell non-hodgkin’s lymphoma. P&T 2010; 35(3): 148-57.
[PMID: 20442809]
[44]
Mélet J, Mulleman D, Goupille P, Ribourtout B, Watier H, Thibault G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: Association with clinical response. Arthritis Rheum 2013; 65(11): 2783-90.
[http://dx.doi.org/10.1002/art.38107] [PMID: 23918413]
[45]
Doss SA, Mittal S, Daniel D. Impact of rituximab on the T-cell flow cytometric crossmatch. Transpl Immunol 2021; 64: 101360.
[http://dx.doi.org/10.1016/j.trim.2020.101360] [PMID: 33359130]
[46]
de Souza FHC, Miossi R, de Moraes JCB, Bonfá E, Shinjo SK. Favorable rituximab response in patients with refractory idiopathic inflammatory myopathies. Adv Rheumatol 2018; 58(1): 31.
[http://dx.doi.org/10.1186/s42358-018-0030-z] [PMID: 30657080]
[47]
Fasano S, Gordon P, Hajji R, Loyo E, Isenberg DA. Rituximab in the treatment of inflammatory myopathies: A review. Rheumatology (Oxford) 2017; 56(1): 26-36.
[http://dx.doi.org/10.1093/rheumatology/kew146] [PMID: 27121778]
[48]
Oddis CV, Reed AM, Aggarwal R, et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: A randomized, placebo-phase trial. Arthritis Rheum 2013; 65(2): 314-24.
[http://dx.doi.org/10.1002/art.37754] [PMID: 23124935]
[49]
Aggarwal R, Bandos A, Reed AM, et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheumatol 2014; 66(3): 740-9.
[http://dx.doi.org/10.1002/art.38270] [PMID: 24574235]
[50]
Aggarwal R, Oddis CV, Goudeau D, et al. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab. Rheumatology (Oxford) 2016; 55(6): 991-9.
[http://dx.doi.org/10.1093/rheumatology/kev444] [PMID: 26888854]
[51]
Leclair V, Galindo-Feria AS, Dastmalchi M, Holmqvist M, Lundberg IE. Efficacy and safety of rituximab in anti-synthetase antibody positive and negative subjects with idiopathic inflammatory myopathy: A registry-based study. Rheumatology (Oxford) 2019; 58(7): 1214-20.
[http://dx.doi.org/10.1093/rheumatology/key450] [PMID: 30690633]
[52]
Vordenbäumen S, Neuen-Jacob E, Richter J, Schneider M. Inclusion body myositis in a patient with long standing rheumatoid arthritis treated with anti-TNFalpha and rituximab. Clin Rheumatol 2010; 29(5): 555-8.
[http://dx.doi.org/10.1007/s10067-009-1367-9] [PMID: 20108015]
[53]
Evan JR, Bozkurt SB, Thomas NC, Bagnato F. Alemtuzumab for the treatment of multiple sclerosis. Expert Opin Biol Ther 2018; 18(3): 323-34.
[http://dx.doi.org/10.1080/14712598.2018.1425388] [PMID: 29309202]
[54]
Ruck T, Bittner S, Kuhlmann T, Wiendl H, Meuth SG. Long-term efficacy of alemtuzumab in polymyositis. Rheumatology (Oxford) 2015; 54(3): 560-2.
[http://dx.doi.org/10.1093/rheumatology/keu484] [PMID: 25552256]
[55]
Dalakas MC, Rakocevic G, Schmidt J, et al. Effect of Alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis. Brain 2009; 132(Pt 6): 1536-44.
[http://dx.doi.org/10.1093/brain/awp104] [PMID: 19454532]
[56]
Schmidt K, Kleinschnitz K, Rakocevic G, Dalakas MC, Schmidt J. Molecular treatment effects of alemtuzumab in skeletal muscles of patients with IBM. BMC Neurol 2016; 16: 48.
[http://dx.doi.org/10.1186/s12883-016-0568-5] [PMID: 27083892]
[57]
Sá J, Costelha J, Marinho A. Inclusion body myositis treated with alemtuzumab. Eur J Case Rep Intern Med 2019; 6(12): 001368.
[http://dx.doi.org/10.12890/2019_001368] [PMID: 31893209]
[58]
Baker KP, Edwards BM, Main SH, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 2003; 48(11): 3253-65.
[http://dx.doi.org/10.1002/art.11299] [PMID: 14613291]
[59]
Lundberg IE, Nyberg P. New developments in the role of cytokines and chemokines in inflammatory myopathies. Curr Opin Rheumatol 1998; 10(6): 521-9.
[http://dx.doi.org/10.1097/00002281-199811000-00004] [PMID: 9812212]
[60]
Tews DS, Goebel HH. Cytokine expression profile in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 1996; 55(3): 342-7.
[http://dx.doi.org/10.1097/00005072-199603000-00009] [PMID: 8786392]
[61]
Salomonsson S, Lundberg IE. Cytokines in idiopathic inflammatory myopathies. Autoimmunity 2006; 39(3): 177-90.
[http://dx.doi.org/10.1080/08916930600622256] [PMID: 16769651]
[62]
Moran EM, Mastaglia FL. The role of interleukin-17 in immune-mediated inflammatory myopathies and possible therapeutic implications. Neuromuscul Disord 2014; 24(11): 943-52.
[http://dx.doi.org/10.1016/j.nmd.2014.06.432] [PMID: 25052503]
[63]
Liu T, Hou Y, Dai T-J, Yan C-Z. Upregulation of interleukin 21 and interleukin 21 receptor in patients with dermatomyositis and polymyositis. Chin Med J (Engl) 2017; 130(17): 2101-6.
[http://dx.doi.org/10.4103/0366-6999.213419] [PMID: 28836555]
[64]
Suárez-Calvet X, Gallardo E, Pinal-Fernandez I, et al. RIG-I expression in perifascicular myofibers is a reliable biomarker of dermatomyositis. Arthritis Res Ther 2017; 19(1): 174.
[http://dx.doi.org/10.1186/s13075-017-1383-0] [PMID: 28738907]
[65]
Greenberg SA. Type 1 interferons and myositis. Arthritis Res Ther 2010; 12(Suppl. 1): S4.
[http://dx.doi.org/10.1186/ar2885] [PMID: 20392291]
[66]
Salajegheh M, Kong SW, Pinkus JL, et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol 2010; 67(1): 53-63.
[http://dx.doi.org/10.1002/ana.21805] [PMID: 20186858]
[67]
Walsh RJ, Kong SW, Yao Y, et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum 2007; 56(11): 3784-92.
[http://dx.doi.org/10.1002/art.22928] [PMID: 17968926]
[68]
Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, et al. Identification of distinctive interferon gene signatures in different types of myositis. Neurology 2019; 93(12): e1193-204.
[http://dx.doi.org/10.1212/WNL.0000000000008128] [PMID: 31434690]
[69]
Zlotnik A, Yoshie O. Chemokines: A new classification system and their role in immunity. Immunity 2000; 12(2): 121-7.
[http://dx.doi.org/10.1016/S1074-7613(00)80165-X] [PMID: 10714678]
[70]
Confalonieri P, Bernasconi P, Megna P, Galbiati S, Cornelio F, Mantegazza R. Increased expression of beta-chemokines in muscle of patients with inflammatory myopathies. J Neuropathol Exp Neurol 2000; 59(2): 164-9.
[http://dx.doi.org/10.1093/jnen/59.2.164] [PMID: 10749105]
[71]
De Rossi M, Bernasconi P, Baggi F, de Waal Malefyt R, Mantegazza R. Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 2000; 12(9): 1329-35.
[http://dx.doi.org/10.1093/intimm/12.9.1329] [PMID: 10967028]
[72]
Mertens M, Singh JA. Anakinra for rheumatoid arthritis: A systematic review. J Rheumatol 2009; 36(6): 1118-25.
[http://dx.doi.org/10.3899/jrheum.090074] [PMID: 19447938]
[73]
Zong M, Dorph C, Dastmalchi M, et al. Anakinra treatment in patients with refractory inflammatory myopathies and possible predictive response biomarkers: A mechanistic study with 12 months follow-up. Ann Rheum Dis 2014; 73(5): 913-20.
[http://dx.doi.org/10.1136/annrheumdis-2012-202857] [PMID: 23625983]
[74]
Kosmidis ML, Pikazis D, Vlachoyiannopoulos P, Tzioufas AG, Dalakas MC. Trial of canakinumab, an IL-1β receptor antagonist, in patients with inclusion body myositis. Neurol Neuroimmunol Neuroinflamm 2019; 6(4): e581.
[http://dx.doi.org/10.1212/NXI.0000000000000581] [PMID: 31355317]
[75]
Oddis CV, Aggarwal R. Treatment in myositis. Nat Rev Rheumatol 2018; 14(5): 279-89.
[http://dx.doi.org/10.1038/nrrheum.2018.42] [PMID: 29593343]
[76]
Schiffenbauer A, Garg M, Castro C, et al. A randomized, double-blind, placebo-controlled trial of infliximab in refractory polymyositis and dermatomyositis. Semin Arthritis Rheum 2018; 47(6): 858-64.
[http://dx.doi.org/10.1016/j.semarthrit.2017.10.010] [PMID: 29174792]
[77]
Muscle Study Group.A randomized, pilot trial of etanercept in dermatomyositis. Ann Neurol 2011; 70(3): 427-36.
[http://dx.doi.org/10.1002/ana.22477] [PMID: 21688301]
[78]
Barohn RJ, Herbelin L, Kissel JT, et al. Pilot trial of etanercept in the treatment of inclusion-body myositis. Neurology 2006; 66(2)(Suppl. 1): S123-4.
[http://dx.doi.org/10.1212/01.wnl.0000192258.32408.54] [PMID: 16432140]
[79]
Dastmalchi M, Grundtman C, Alexanderson H, et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann Rheum Dis 2008; 67(12): 1670-7.
[http://dx.doi.org/10.1136/ard.2007.077974] [PMID: 18272672]
[80]
Brunasso AMG, Aberer W, Massone C. New onset of dermatomyositis/polymyositis during anti-TNF-α therapies: A systematic literature review. Sci World J 2014; 2014: 179180.
[http://dx.doi.org/10.1155/2014/179180] [PMID: 24600322]
[81]
Okiyama N, Sugihara T, Iwakura Y, Yokozeki H, Miyasaka N, Kohsaka H. Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum 2009; 60(8): 2505-12.
[http://dx.doi.org/10.1002/art.24689] [PMID: 19644888]
[82]
Kondo M, Murakawa Y, Matsumura T, et al. A case of overlap syndrome successfully treated with tocilizumab: A hopeful treatment strategy for refractory dermatomyositis? Rheumatology (Oxford) 2014; 53(10): 1907-8.
[http://dx.doi.org/10.1093/rheumatology/keu234] [PMID: 24859996]
[83]
Narazaki M, Hagihara K, Shima Y, Ogata A, Kishimoto T, Tanaka T. Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology (Oxford) 2011; 50(7): 1344-6.
[http://dx.doi.org/10.1093/rheumatology/ker152] [PMID: 21515628]
[84]
Quesada-Masachs E, Caballero CM. Myositis as a rare complication after tocilizumab treatment. Pediatr Rheumatol Online J 2014; 12: 345.
[http://dx.doi.org/10.1186/1546-0096-12-S1-P345]
[85]
Ladislau L, Suárez-Calvet X, Toquet S, et al. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain 2018; 141(6): 1609-21.
[http://dx.doi.org/10.1093/brain/awy105] [PMID: 29741608]
[86]
Moghadam-Kia S, Charlton D, Aggarwal R, Oddis CV. Management of refractory cutaneous dermatomyositis: potential role of Janus kinase inhibition with tofacitinib. Rheumatology (Oxford) 2019; 58(6): 1011-5.
[http://dx.doi.org/10.1093/rheumatology/key366] [PMID: 30608616]
[87]
Higgs BW, Zhu W, Morehouse C, et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis 2014; 73(1): 256-62.
[http://dx.doi.org/10.1136/annrheumdis-2012-202794] [PMID: 23434567]
[88]
van der Velden VH. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm 1998; 7(4): 229-37.
[http://dx.doi.org/10.1080/09629359890910] [PMID: 9792333]
[89]
Wee JS, Marinaki A, Smith CH. Life threatening myelotoxicity secondary to azathioprine in a patient with atopic eczema and normal thiopurine methyltransferase activity. BMJ 2011; 342: d1417.
[http://dx.doi.org/10.1136/bmj.d1417] [PMID: 21441287]
[90]
Bunch TW. Prednisone and azathioprine for polymyositis: long-term followup. Arthritis Rheum 1981; 24(1): 45-8.
[http://dx.doi.org/10.1002/art.1780240107] [PMID: 7008799]
[91]
Marie I, Hachulla E, Chérin P, et al. Interstitial lung disease in polymyositis and dermatomyositis. Arthritis Rheum 2002; 47(6): 614-22.
[http://dx.doi.org/10.1002/art.10794] [PMID: 12522835]
[92]
Chan ESL, Cronstein BN. Mechanisms of action of methotrexate. Bull Hosp Jt Dis 2013; 71(71)(Suppl. 1): S5-8.
[PMID: 24219035]
[93]
Casal-Dominguez M, Pinal-Fernandez I, Huapaya J, et al. Efficacy and adverse effects of methotrexate compared with azathioprine in the antisynthetase syndrome. Clin Exp Rheumatol 2019; 37(5): 858-61.
[PMID: 31074729]
[94]
Villalba L, Hicks JE, Adams EM, et al. Treatment of refractory myositis: A randomized crossover study of two new cytotoxic regimens. Arthritis Rheum 1998; 41(3): 392-9.
[http://dx.doi.org/10.1002/1529-0131(199803)41:3<392::AID-ART3>3.0.CO;2-X] [PMID: 9506565]
[95]
Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus 2005; 14(Suppl. 1): s2-8.
[http://dx.doi.org/10.1191/0961203305LU2109OA] [PMID: 15803924]
[96]
Olivo Pallo PA, de Souza FHC, Miossi R, Shinjo SK. Mycophenolate mofetil in patients with refractory systemic autoimmune myopathies: case series. Adv Rheumatol 2018; 58(1): 34.
[http://dx.doi.org/10.1186/s42358-018-0035-7] [PMID: 30657093]
[97]
Huapaya JA, Silhan L, Pinal-Fernandez I, et al. Long-term treatment with azathioprine and mycophenolate mofetil for myositis-related interstitial lung disease. Dis Chest 2019; 156(5): 896-906.
[http://dx.doi.org/10.1016/j.chest.2019.05.023] [PMID: 31238042]
[98]
Qin Y-H, Zhou T-B, Su L-N, Lei F-Y, Zhao Y-J, Huang W-F. The efficacy of different dose intravenous immunoglobulin in treating acute idiopathic thrombocytopenic purpura: A meta-analysis of 13 randomized controlled trials. Blood Coagul Fibrinolysis 2010; 21(8): 713-21.
[http://dx.doi.org/10.1097/MBC.0b013e3283401490] [PMID: 20962624]
[99]
Chen S, Dong Y, Yin Y, Krucoff MW. Intravenous immunoglobulin plus corticosteroid to prevent coronary artery abnormalities in Kawasaki disease: A meta-analysis. Heart 2013; 99(2): 76-82.
[http://dx.doi.org/10.1136/heartjnl-2012-302126] [PMID: 22869678]
[100]
Oaklander AL, Lunn MP, Hughes RA, van Schaik IN, Frost C, Chalk CH. Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): An overview of systematic reviews. Cochrane Database Syst Rev 2017; 1: CD010369.
[http://dx.doi.org/10.1002/14651858.CD010369.pub2] [PMID: 28084646]
[101]
Beecher G, Anderson D, Siddiqi ZA. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: A prospective, open-label trial. Neurology 2017; 89(11): 1135-41.
[http://dx.doi.org/10.1212/WNL.0000000000004365] [PMID: 28814461]
[102]
Novaretti MCZ, Dinardo CL. Immunoglobulin: production, mechanisms of action and formulations. Rev Bras Hematol Hemoter 2011; 33(5): 377-82.
[http://dx.doi.org/10.5581/1516-8484.20110102] [PMID: 23049343]
[103]
Dalakas MC, Illa I, Dambrosia JM, et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N Engl J Med 1993; 329(27): 1993-2000.
[http://dx.doi.org/10.1056/NEJM199312303292704] [PMID: 8247075]
[104]
Miyasaka N, Hara M, Koike T, Saito E, Yamada M, Tanaka Y. GB-0998 Study Group. Effects of intravenous immunoglobulin therapy in Japanese patients with polymyositis and dermatomyositis resistant to corticosteroids: A randomized double-blind placebo-controlled trial. Mod Rheumatol 2012; 22(3): 382-93.
[http://dx.doi.org/10.3109/s10165-011-0534-4] [PMID: 21971943]
[105]
Anh-Tu Hoa S, Hudson M. Critical review of the role of intravenous immunoglobulins in idiopathic inflammatory myopathies. Semin Arthritis Rheum 2017; 46(4): 488-508.
[http://dx.doi.org/10.1016/j.semarthrit.2016.07.014] [PMID: 27908534]
[106]
Aggarwal R, Charles-Schoeman C, Schessl J, Dimachkie MM, Beckmann I, Levine T. Prospective, double-blind, randomized, placebo-controlled phase III study evaluating efficacy and safety of octagam 10% in patients with dermatomyositis (“ProDERM Study”). Medicine (Baltimore) 2021; 100(1): e23677.
[http://dx.doi.org/10.1097/MD.0000000000023677] [PMID: 33429735]
[107]
Schmidt K, Schmidt J. Inclusion body myositis: Advancements in diagnosis, pathomechanisms, and treatment. Curr Opin Rheumatol 2017; 29(6): 632-8.
[http://dx.doi.org/10.1097/BOR.0000000000000436] [PMID: 28832349]
[108]
Cherin P, Delain J-C, de Jaeger C, Crave J-C. Subcutaneous immunoglobulin use in inclusion body myositis: a review of 6 cases. Case Rep Neurol 2015; 7(3): 227-32.
[http://dx.doi.org/10.1159/000441490] [PMID: 26600787]
[109]
Walter MC, Lochmüller H, Toepfer M, et al. High-dose immunoglobulin therapy in sporadic inclusion body myositis: A double-blind, placebo-controlled study. J Neurol 2000; 247(1): 22-8.
[http://dx.doi.org/10.1007/s004150050005] [PMID: 10701893]
[110]
Dalakas MC, Sonies B, Dambrosia J, Sekul E, Cupler E, Sivakumar K. Treatment of inclusion-body myositis with IVIg: A double-blind, placebo-controlled study. Neurology 1997; 48(3): 712-6.
[http://dx.doi.org/10.1212/WNL.48.3.712] [PMID: 9065553]
[111]
Glaubitz S, Zeng R, Schmidt J. New insights into the treatment of myositis. Ther Adv Musculoskelet Dis 2020; 12: 1-14.
[http://dx.doi.org/10.1177/1759720X19886494]
[112]
Chérin P, Pindi Sala T, Clerson P, et al. Recovering autonomy is a key advantage of home-based immunoglobulin therapy in patients with myositis: A qualitative research study. Medicine (Baltimore) 2020; 99(7): e19012.
[http://dx.doi.org/10.1097/MD.0000000000019012] [PMID: 32049796]
[113]
Hachulla E, Benveniste O, Hamidou M, et al. High dose subcutaneous immunoglobulin for idiopathic inflammatory myopathies and dysimmune peripheral chronic neuropathies treatment: observational study of quality of life and tolerance. Int J Neurosci 2017; 127(6): 516-23.
[http://dx.doi.org/10.1080/00207454.2016.1204544] [PMID: 27412148]
[114]
Guillot A, Hamdaoui N, Bizy A, et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology 2014; 59(1): 296-306.
[http://dx.doi.org/10.1002/hep.26598] [PMID: 23813495]
[115]
Correa F, Hernangómez M, Mestre L, et al. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia 2010; 58(2): 135-47.
[http://dx.doi.org/10.1002/glia.20907] [PMID: 19565660]
[116]
Parker J, Atez F, Rossetti RG, Skulas A, Patel R, Zurier RB. Suppression of human macrophage interleukin-6 by a nonpsychoactive cannabinoid acid. Rheumatol Int 2008; 28(7): 631-5.
[http://dx.doi.org/10.1007/s00296-007-0489-0] [PMID: 18040689]
[117]
Ke P, Shao B-Z, Xu Z-Q, et al. Activation of cannabinoid receptor 2 ameliorates DSS-induced colitis through inhibiting NLRP3 inflammasome in macrophages. PLoS One 2016; 11(9): e0155076.
[http://dx.doi.org/10.1371/journal.pone.0155076] [PMID: 27611972]
[118]
Motwani MP, Bennett F, Norris PC, et al. Potent anti-inflammatory and pro-resolving effects of anabasum in a human model of self-resolving acute inflammation. Clin Pharmacol Ther 2018; 104(4): 675-86.
[http://dx.doi.org/10.1002/cpt.980] [PMID: 29238967]
[119]
Lucattelli M, Fineschi S, Selvi E, et al. Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 2016; 17(1): 49.
[http://dx.doi.org/10.1186/s12931-016-0373-0] [PMID: 27153807]
[120]
Gonzalez EG, Selvi E, Balistreri E, et al. Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis. Ann Rheum Dis 2012; 71(9): 1545-51.
[http://dx.doi.org/10.1136/annrheumdis-2011-200314] [PMID: 22492781]
[121]
Nogalska A, Terracciano C, D’Agostino C, King Engel W, Askanas V. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol 2009; 118(3): 407-13.
[http://dx.doi.org/10.1007/s00401-009-0564-6] [PMID: 19557423]
[122]
Salajegheh M, Pinkus JL, Taylor JP, et al. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 2009; 40(1): 19-31.
[http://dx.doi.org/10.1002/mus.21386] [PMID: 19533646]
[123]
Askanas V, Engel WK. Inclusion-body myositis: A myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. Neurology 2006; 66(2)(Suppl. 1): S39-48.
[http://dx.doi.org/10.1212/01.wnl.0000192128.13875.1e] [PMID: 16432144]
[124]
Clarke AJ, Simon AK. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 2019; 19(3): 170-83.
[http://dx.doi.org/10.1038/s41577-018-0095-2] [PMID: 30531943]
[125]
Nogalska A, D’Agostino C, Terracciano C, Engel WK, Askanas V. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol 2010; 177(3): 1377-87.
[http://dx.doi.org/10.2353/ajpath.2010.100050] [PMID: 20616343]
[126]
Cappelletti C, Galbardi B, Kapetis D, et al. Autophagy, inflammation and innate immunity in inflammatory myopathies. PLoS One 2014; 9(11): e111490.
[http://dx.doi.org/10.1371/journal.pone.0111490] [PMID: 25365350]
[127]
Girolamo F, Lia A, Amati A, et al. Overexpression of autophagic proteins in the skeletal muscle of sporadic inclusion body myositis. Neuropathol Appl Neurobiol 2013; 39(7): 736-49.
[http://dx.doi.org/10.1111/nan.12040] [PMID: 23452291]
[128]
Nakano S, Oki M, Kusaka H. The role of p62/SQSTM1 in sporadic inclusion body myositis. Neuromuscul Disord 2017; 27(4): 363-9.
[http://dx.doi.org/10.1016/j.nmd.2016.12.009] [PMID: 28159418]
[129]
Nicot A-S, Lo Verso F, Ratti F, et al. Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy 2014; 10(6): 1036-53.
[http://dx.doi.org/10.4161/auto.28479] [PMID: 24879152]
[130]
D’Agostino C, Nogalska A, Cacciottolo M, Engel WK, Askanas V. Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol 2011; 122(5): 627-36.
[http://dx.doi.org/10.1007/s00401-011-0874-3] [PMID: 21935636]
[131]
Duleh S, Wang X, Komirenko A, Margeta M. Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Acta Neuropathol Commun 2016; 4(1): 115.
[http://dx.doi.org/10.1186/s40478-016-0384-6] [PMID: 27799074]
[132]
Schmidt K, Wienken M, Keller CW, Balcarek P, Münz C, Schmidt J. IL-1β-Induced Accumulation of Amyloid: Macroautophagy in Skeletal Muscle Depends on ERK. Mediators Inflamm 2017; 2017: 5470831.
[http://dx.doi.org/10.1155/2017/5470831] [PMID: 28167851]
[133]
Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10(6): 507-15.
[http://dx.doi.org/10.1016/j.cmet.2009.10.008] [PMID: 19945408]
[134]
Benveniste O, Hogrel JY, Annoussamy M, et al. Placebo for the treatment of inclusion body myositis: improvement of the 6 min walking distance, a functional scale, the FVC and muscle quantitative MRI. Arthritis Rheumatol 2017; 69(suppl 10)
[135]
Benveniste O, Hogrel J-Y, Belin L, et al. Sirolimus for treatment of patients with inclusion body myositis: A randomised, double-blind, placebo-controlled, proof-of-concept, phase 2b trial. Lancet Rheumatol 2021; 3(1): e40-8.
[http://dx.doi.org/10.1016/S2665-9913(20)30280-0]
[136]
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78: 477-513.
[http://dx.doi.org/10.1146/annurev.biochem.78.081507.101607] [PMID: 19489727]
[137]
Rayavarapu S, Coley W, Van der Meulen JH, et al. Activation of the ubiquitin proteasome pathway in a mouse model of inflammatory myopathy: A potential therapeutic target. Arthritis Rheum 2013; 65(12): 3248-58.
[http://dx.doi.org/10.1002/art.38180] [PMID: 24022788]
[138]
Aki M, Shimbara N, Takashina M, et al. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem 1994; 115(2): 257-69.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124327] [PMID: 8206875]
[139]
Bhattarai S, Ghannam K, Krause S, et al. The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J Autoimmun 2016; 75: 118-29.
[http://dx.doi.org/10.1016/j.jaut.2016.08.004] [PMID: 27522114]
[140]
Ghannam K, Martinez-Gamboa L, Spengler L, et al. Upregulation of immunoproteasome subunits in myositis indicates active inflammation with involvement of antigen presenting cells, CD8 T-cells and IFNΓ. PLoS One 2014; 9(8): e104048.
[http://dx.doi.org/10.1371/journal.pone.0104048] [PMID: 25098831]
[141]
Muchamuel T, Basler M, Aujay MA, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 2009; 15(7): 781-7.
[http://dx.doi.org/10.1038/nm.1978] [PMID: 19525961]
[142]
Muchamuel TM, Anderl J, Fan A, Johnson H, Kirk C, Lowe E. 179 KZR -616, a selective inhibitor of the immunoproteasome, attenuates the Development of Murine Lupus. 13th International Congress on Systemic Lupus Erythematosus (LUPUS 2019). San Francisco, California, USA. 2019;
[http://dx.doi.org/10.1136/lupus-2019-lsm.179]
[143]
Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14(10): 630-42.
[http://dx.doi.org/10.1038/nrm3658] [PMID: 24026055]
[144]
Paepe BD, Creus KK, Weis J, Bleecker JL. Heat shock protein families 70 and 90 in Duchenne muscular dystrophy and inflammatory myopathy: balancing muscle protection and destruction. Neuromuscul Disord 2012; 22(1): 26-33.
[http://dx.doi.org/10.1016/j.nmd.2011.07.007] [PMID: 21855341]
[145]
De Paepe B, Creus KK, Martin J-J, Weis J, De Bleecker JL. A dual role for HSP90 and HSP70 in the inflammatory myopathies: from muscle fiber protection to active invasion by macrophages. Ann N Y Acad Sci 2009; 1173: 463-9.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04812.x] [PMID: 19758187]
[146]
Hargitai J, Lewis H, Boros I, et al. Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 2003; 307(3): 689-95.
[http://dx.doi.org/10.1016/S0006-291X(03)01254-3] [PMID: 12893279]
[147]
Ahmed M, Machado PM, Miller A, et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med 2016; 8(331): 331ra41.
[http://dx.doi.org/10.1126/scitranslmed.aad4583] [PMID: 27009270]
[148]
Rayavarapu S, Coley W, Nagaraju K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr Rheumatol Rep 2012; 14(3): 238-43.
[http://dx.doi.org/10.1007/s11926-012-0247-5] [PMID: 22410828]
[149]
Meares GP, Liu Y, Rajbhandari R, et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 2014; 34(20): 3911-25.
[http://dx.doi.org/10.1128/MCB.00980-14] [PMID: 25113558]
[150]
Hasnain SZ, Lourie R, Das I, Chen AC-H, McGuckin MA. The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol 2012; 90(3): 260-70.
[http://dx.doi.org/10.1038/icb.2011.112] [PMID: 22249202]
[151]
Vattemi G, Engel WK, McFerrin J, Askanas V. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am J Pathol 2004; 164(1): 1-7.
[http://dx.doi.org/10.1016/S0002-9440(10)63089-1] [PMID: 14695312]
[152]
Nogalska A, Engel WK, Askanas V. Increased BACE1 mRNA and noncoding BACE1-antisense transcript in sporadic inclusion-body myositis muscle fibers-possibly caused by endoplasmic reticulum stress. Neurosci Lett 2010; 474(3): 140-3.
[http://dx.doi.org/10.1016/j.neulet.2010.03.023] [PMID: 20236612]
[153]
Nagaraju K, Casciola-Rosen L, Lundberg I, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005; 52(6): 1824-35.
[http://dx.doi.org/10.1002/art.21103] [PMID: 15934115]
[154]
Lightfoot AP, Nagaraju K, McArdle A, Cooper RG. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies - potential role of ER stress pathways. Curr Opin Rheumatol 2015; 27(6): 580-5.
[http://dx.doi.org/10.1097/BOR.0000000000000212] [PMID: 26335926]
[155]
Rygiel KA, Miller J, Grady JP, Rocha MC, Taylor RW, Turnbull DM. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol Appl Neurobiol 2015; 41(3): 288-303.
[http://dx.doi.org/10.1111/nan.12149] [PMID: 24750247]
[156]
Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C. Mitochondrial abnormalities in inclusion-body myositis. Neurology 2006; 66(2)(Suppl. 1): S49-55.
[http://dx.doi.org/10.1212/01.wnl.0000192127.63013.8d] [PMID: 16432145]
[157]
Schmidt J, Barthel K, Zschüntzsch J, et al. Nitric oxide stress in sporadic inclusion body myositis muscle fibres: inhibition of inducible nitric oxide synthase prevents interleukin-1β-induced accumulation of β-amyloid and cell death. Brain 2012; 135(Pt 4): 1102-14.
[http://dx.doi.org/10.1093/brain/aws046] [PMID: 22436237]
[158]
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387(6628): 83-90.
[http://dx.doi.org/10.1038/387083a0] [PMID: 9139826]
[159]
Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 2009; 39(3): 283-96.
[http://dx.doi.org/10.1002/mus.21244] [PMID: 19208403]
[160]
Mariot V, Joubert R, Hourdé C, et al. Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. Nat Commun 2017; 8(1): 1859.
[http://dx.doi.org/10.1038/s41467-017-01486-4] [PMID: 29192144]
[161]
Mendell JR, Sahenk Z, Al-Zaidy S, et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes. Mol Ther 2017; 25(4): 870-9.
[http://dx.doi.org/10.1016/j.ymthe.2017.02.015] [PMID: 28279643]
[162]
Amato AA, Sivakumar K, Goyal N, et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 2014; 83(24): 2239-46.
[http://dx.doi.org/10.1212/WNL.0000000000001070] [PMID: 25381300]
[163]
Hanna MG, Badrising UA, Benveniste O, et al. RESILIENT Study Group. Safety and efficacy of intravenous bimagrumab in inclusion body myositis (RESILIENT): A randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol 2019; 18(9): 834-44.
[http://dx.doi.org/10.1016/S1474-4422(19)30200-5] [PMID: 31397289]
[164]
Amato AA, Hanna MG, Machado PM, et al. RESILIENT Study Extension Group. Efficacy and safety of bimagrumab in sporadic inclusion body myositis: long-term extension of resilient. Neurology 2021; 96(12): e1595-607.
[http://dx.doi.org/10.1212/WNL.0000000000011626] [PMID: 33597289]
[165]
Kitazawa M, Trinh DN, LaFerla FM. Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol 2008; 64(1): 15-24.
[http://dx.doi.org/10.1002/ana.21325] [PMID: 18318434]
[166]
Pasquali L, Longone P, Isidoro C, Ruggieri S, Paparelli A, Fornai F. Autophagy, lithium, and amyotrophic lateral sclerosis. Muscle Nerve 2009; 40(2): 173-94.
[http://dx.doi.org/10.1002/mus.21423] [PMID: 19609902]
[167]
Dimachkie MM, Barohn RJ. Inclusion body myositis. Neurol Clin 2014; 32(3): 629-46.
[http://dx.doi.org/10.1016/j.ncl.2014.04.001]
[168]
Fenichel GM, Griggs RC, Kissel J, et al. A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology 2001; 56(8): 1075-9.
[http://dx.doi.org/10.1212/WNL.56.8.1075] [PMID: 11320181]
[169]
Rutkove SB, Parker RA, Nardin RA, Connolly CE, Felice KJ, Raynor EM. A pilot randomized trial of oxandrolone in inclusion body myositis. Neurology 2002; 58(7): 1081-7.
[http://dx.doi.org/10.1212/WNL.58.7.1081] [PMID: 11940697]
[170]
Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 2002; 96(1): 23-43.
[http://dx.doi.org/10.1016/S0163-7258(02)00297-8] [PMID: 12441176]
[171]
Ben Ari Z, Mehta A, Lennard L, Burroughs AK. Azathioprine-induced myelosuppression due to thiopurine methyltransferase deficiency in a patient with autoimmune hepatitis. J Hepatol 1995; 23(3): 351-4.
[http://dx.doi.org/10.1016/S0168-8278(95)80016-6] [PMID: 8551001]
[172]
McGurgan IJ, McGuigan C. Nonmelanoma skin cancer risk awareness in azathioprine-treated myasthenia gravis patients. Brain Behav 2015; 5(10): e00396.
[http://dx.doi.org/10.1002/brb3.396] [PMID: 26516615]
[173]
Imokawa S, Colby TV, Leslie KO, Helmers RA. Methotrexate pneumonitis: review of the literature and histopathological findings in nine patients. Eur Respir J 2000; 15(2): 373-81.
[http://dx.doi.org/10.1034/j.1399-3003.2000.15b25.x] [PMID: 10706507]
[174]
Nguyen RH, Cruz PD Jr. Hepatitis due to mycophenolate mofetil used to treat atopic dermatitis and allergic contact dermatitis. Dermatitis 2014; 25(5): 284-5.
[http://dx.doi.org/10.1097/DER.0000000000000074] [PMID: 25207697]
[175]
Chertoff J, Alam S, Black M, Elgendy IY. Azathioprine-induced hepatitis and cholestasis occurring 1 year after treatment. BMJ Case Rep 2014; 2014: bcr2014206859.
[http://dx.doi.org/10.1136/bcr-2014-206859] [PMID: 25471111]
[176]
Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. World J Hepatol 2017; 9(26): 1092-100.
[http://dx.doi.org/10.4254/wjh.v9.i26.1092] [PMID: 28989565]
[177]
Tan J, Zhou J, Zhao P, Wei J. Prospective study of HBV reactivation risk in rheumatoid arthritis patients who received conventional disease-modifying antirheumatic drugs. Clin Rheumatol 2012; 31(8): 1169-75.
[http://dx.doi.org/10.1007/s10067-012-1988-2] [PMID: 22544263]
[178]
Ostuni P, Botsios C, Punzi L, Sfriso P, Todesco S. Hepatitis B reactivation in a chronic hepatitis B surface antigen carrier with rheumatoid arthritis treated with infliximab and low dose methotrexate. Ann Rheum Dis 2003; 62(7): 686-7.
[http://dx.doi.org/10.1136/ard.62.7.686] [PMID: 12810441]
[179]
Hošková L, Málek I, Kopkan L, Kautzner J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physiol Res 2017; 66(2): 167-80.
[http://dx.doi.org/10.33549/physiolres.933332] [PMID: 27982677]
[180]
Dan D, Fischer R, Adler S, Förger F, Villiger PM. Cyclophosphamide: As bad as its reputation? Long-term single centre experience of cyclophosphamide side effects in the treatment of systemic autoimmune diseases. Swiss Med Wkly 2014; 144: w14030.
[http://dx.doi.org/10.4414/smw.2014.14030] [PMID: 25341028]
[181]
Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 1991; 42(5): 781-95.
[http://dx.doi.org/10.2165/00003495-199142050-00005] [PMID: 1723374]
[182]
Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol 2018; 9: 1299.
[http://dx.doi.org/10.3389/fimmu.2018.01299] [PMID: 29951056]
[183]
Williams SJ, Gupta S. Anaphylaxis to IVIG. Arch Immunol Ther Exp (Warsz) 2017; 65(1): 11-9.
[http://dx.doi.org/10.1007/s00005-016-0410-1] [PMID: 27412077]
[184]
Steven NM, Fisher BA. Management of rheumatic complications of immune checkpoint inhibitor therapy - an oncological perspective. Rheumatology (Oxford) 2019; 58(Suppl. 7): vii29-39.
[http://dx.doi.org/10.1093/rheumatology/kez536] [PMID: 31816079]
[185]
Brahmer JR, Lacchetti C, Schneider BJ, et al. National comprehensive cancer network. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol 2018; 36(17): 1714-68.
[http://dx.doi.org/10.1200/JCO.2017.77.6385] [PMID: 29442540]
[186]
Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 2010; 9(4): 325-38.
[http://dx.doi.org/10.1038/nrd3003] [PMID: 20305665]
[187]
Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 2008; 20(4): 460-70.
[http://dx.doi.org/10.1016/j.coi.2008.06.012] [PMID: 18656541]
[188]
Tsutsumi Y, Ogasawara R, Kamihara Y, et al. Rituximab administration and reactivation of HBV. Hepat Res Treat 2010; 2010: 182067.
[http://dx.doi.org/10.1155/2010/182067] [PMID: 21188195]
[189]
Berger JR, Malik V, Lacey S, Brunetta P, Lehane PB. Progressive multifocal leukoencephalopathy in rituximab-treated rheumatic diseases: A rare event. J Neurovirol 2018; 24(3): 323-31.
[http://dx.doi.org/10.1007/s13365-018-0615-7] [PMID: 29508305]
[190]
Borie D, Kremer JM. Considerations on the appropriateness of the John Cunningham virus antibody assay use in patients with rheumatoid arthritis. Semin Arthritis Rheum 2015; 45(2): 163-6.
[http://dx.doi.org/10.1016/j.semarthrit.2015.06.003] [PMID: 26190565]
[191]
Robert M, Miossec P. Reactivation of latent tuberculosis with TNF inhibitors: critical role of the beta 2 chain of the IL-12 receptor. Cell Mol Immunol 2021; 18(7): 1644-51.
[http://dx.doi.org/10.1038/s41423-021-00694-9] [PMID: 34021269]
[192]
Ramos-Casals M, Brito-Zerón P, Muñoz S, et al. Autoimmune diseases induced by TNF-targeted therapies: Analysis of 233 cases. Medicine (Baltimore) 2007; 86(4): 242-51.
[http://dx.doi.org/10.1097/MD.0b013e3181441a68] [PMID: 17632266]
[193]
Coles AJ, Compston DAS, Selmaj KW, et al. CAMMS223 Trial Investigators. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008; 359(17): 1786-801.
[http://dx.doi.org/10.1056/NEJMoa0802670] [PMID: 18946064]
[194]
Deakin CT, Campanilho-Marques R, Simou S, et al. Juvenile dermatomyositis research group. Efficacy and safety of cyclophosphamide treatment in severe juvenile dermatomyositis shown by marginal structural modeling. Arthritis Rheumatol 2018; 70(5): 785-93.
[http://dx.doi.org/10.1002/art.40418] [PMID: 29342499]
[195]
Suzuki Y, Hayakawa H, Miwa S, et al. Intravenous immunoglobulin therapy for refractory interstitial lung disease associated with polymyositis/dermatomyositis. Lung 2009; 187(3): 201-6.
[http://dx.doi.org/10.1007/s00408-009-9146-6] [PMID: 19387736]
[196]
Kameda H, Nagasawa H, Ogawa H, et al. Combination therapy with corticosteroids, cyclosporin A, and intravenous pulse cyclophosphamide for acute/subacute interstitial pneumonia in patients with dermatomyositis. J Rheumatol 2005; 32(9): 1719-26.
[PMID: 16142867]
[197]
Hisanaga J, Kotani T, Fujiki Y, Yoshida S, Takeuchi T, Makino S. Successful multi-target therapy including rituximab and mycophenolate mofetil in anti-melanoma differentiation-associated gene 5 antibody-positive rapidly progressive interstitial lung disease with clinically amyopathic dermatomyositis. Int J Rheum Dis 2017; 20(12): 2182-5.
[http://dx.doi.org/10.1111/1756-185X.13136] [PMID: 28752606]
[198]
Kurasawa K, Arai S, Namiki Y, et al. Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis. Rheumatology (Oxford) 2018; 57(12): 2114-9.
[http://dx.doi.org/10.1093/rheumatology/key188] [PMID: 30060040]
[199]
Inui K, Koike T. Combination therapy with biologic agents in rheumatic diseases: current and future prospects. Ther Adv Musculoskelet Dis 2016; 8(5): 192-202.
[http://dx.doi.org/10.1177/1759720X16665330] [PMID: 27721905]
[200]
Piranavan P, Bhamra M, Perl A. Metabolic targets for treatment of autoimmune diseases. Immunometabolism 2020; 2(2): e200012.
[http://dx.doi.org/10.20900/immunometab20200012] [PMID: 32341806]
[201]
Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 2013; 5(179): 179ps7.
[http://dx.doi.org/10.1126/scitranslmed.3005568] [PMID: 23552369]
[202]
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020; 17(3): 147-67.
[http://dx.doi.org/10.1038/s41571-019-0297-y] [PMID: 31848460]
[203]
Maldini CR, Ellis GI, Riley JL. CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol 2018; 18(10): 605-16.
[http://dx.doi.org/10.1038/s41577-018-0042-2] [PMID: 30046149]
[204]
Clemente-Casares X, Blanco J, Ambalavanan P, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 2016; 530(7591): 434-40.
[http://dx.doi.org/10.1038/nature16962] [PMID: 26886799]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy