Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Acid Ceramidase, a Double-edged Sword in Cancer Aggression: A Minireview

Author(s): Helen Shiphrah Vethakanraj, Niveditha Chandrasekaran and Ashok Kumar Sekar*

Volume 21, Issue 3, 2021

Published on: 23 December, 2020

Page: [177 - 191] Pages: 15

DOI: 10.2174/1568009620666201223154621

Price: $65

Abstract

Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway, hydrolyzes pro-apoptotic ceramide to sphingosine, which is metabolized to mitogenic sphingosine-1-phosphate by the action of sphingosine-1-kinase. The intracellular level of AC determines ceramide/ sphingosine-1-phosphate rheostat, which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a “double-edged sword” by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased, and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy, thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.

Keywords: Acid ceramidase, apoptosis, cancer, cell proliferation, acid ceramidase inhibitor, ceramide, sphingosine-1-phosphate.

Next »
Graphical Abstract

[1]
Chan, A.Y.; Mann, S.N.; Chen, H.; Stone, D.U.; Carr, D.J.J.; Mandal, N.A. Sphingolipids in ocular inflammation. Adv. Exp. Med. Biol., 2014, 801, 623-629.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_78] [PMID: 24664751]
[2]
Ogretmen, B.; Hannun, Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer, 2004, 4(8), 604-616.
[http://dx.doi.org/10.1038/nrc1411] [PMID: 15286740]
[3]
Andrieu-Abadie, N.; Gouazé, V.; Salvayre, R.; Levade, T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic. Biol. Med., 2001, 31(6), 717-728.
[http://dx.doi.org/10.1016/S0891-5849(01)00655-4] [PMID: 11557309]
[4]
Brizuela, L.; Martin, C.; Jeannot, P.; Ader, I.; Gstalder, C.; Andrieu, G.; Bocquet, M.; Laffosse, J.M.; Gomez-Brouchet, A.; Malavaud, B.; Sabbadini, R.A.; Cuvillier, O. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol., 2014, 8(7), 1181-1195.
[http://dx.doi.org/10.1016/j.molonc.2014.04.001] [PMID: 24768038]
[5]
Gatt, S. Enzymic hydrolysis and synthesis of ceramides. J. Biol. Chem., 1963, 238(9), 3131-3133.
[PMID: 14081938]
[6]
Mao, C.; Obeid, L.M. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta, 2008, 1781(9), 424-434.
[http://dx.doi.org/10.1016/j.bbalip.2008.06.002] [PMID: 18619555]
[7]
Cho, S.M.; Kwon, H.J. Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch. Pharm. Res., 2019, 42(3), 232-243.
[http://dx.doi.org/10.1007/s12272-019-01114-3] [PMID: 30661200]
[8]
Zeidan, Y.H.; Jenkins, R.W.; Korman, J.B.; Liu, X.; Obeid, L.M.; Norris, J.S.; Hannun, Y.A. Molecular targeting of acid ceramidase: implications to cancer therapy. Curr. Drug Targets, 2008, 9(8), 653-661.
[http://dx.doi.org/10.2174/138945008785132358] [PMID: 18691012]
[9]
Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal., 2008, 20(6), 1010-1018.
[http://dx.doi.org/10.1016/j.cellsig.2007.12.006] [PMID: 18191382]
[10]
Li, C.M.; Park, J.H.; Simonaro, C.M.; He, X.; Gordon, R.E.; Friedman, A.H.; Ehleiter, D.; Paris, F.; Manova, K.; Hepbildikler, S.; Fuks, Z.; Sandhoff, K.; Kolesnick, R.; Schuchman, E.H. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics, 2002, 79(2), 218-224.
[http://dx.doi.org/10.1006/geno.2002.6686] [PMID: 11829492]
[11]
Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol., 2010, 688, 1-23.
[http://dx.doi.org/10.1007/978-1-4419-6741-1_1] [PMID: 20919643]
[12]
Castillo, S.S.; Teegarden, D. Ceramide conversion to sphingosine-1-phosphate is essential for survival in C3H10T1/2 cells. J. Nutr., 2001, 131(11), 2826-2830.
[http://dx.doi.org/10.1093/jn/131.11.2826] [PMID: 11694603]
[13]
Bernardo, K.; Hurwitz, R.; Zenk, T.; Desnick, R.J.; Ferlinz, K.; Schuchman, E.H.; Sandhoff, K. Purification, characterization, and biosynthesis of human acid ceramidase. J. Biol. Chem., 1995, 270(19), 11098-11102.
[http://dx.doi.org/10.1074/jbc.270.19.11098] [PMID: 7744740]
[14]
Ferlinz, K.; Kopal, G.; Bernardo, K.; Linke, T.; Bar, J.; Breiden, B.; Neumann, U.; Lang, F.; Schuchman, E.H.; Sandhoff, K. Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J. Biol. Chem., 2001, 276(38), 35352-35360.
[http://dx.doi.org/10.1074/jbc.M103066200] [PMID: 11451951]
[15]
Shtraizent, N.; Eliyahu, E.; Park, J.H.; He, X.; Shalgi, R.; Schuchman, E.H. Autoproteolytic cleavage and activation of human acid ceramidase. J. Biol. Chem., 2008, 283(17), 11253-11259.
[http://dx.doi.org/10.1074/jbc.M709166200] [PMID: 18281275]
[16]
Koch, J.; Gärtner, S.; Li, C.M.; Quintern, L.E.; Bernardo, K.; Levran, O.; Schnabel, D.; Desnick, R.J.; Schuchman, E.H.; Sandhoff, K. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J. Biol. Chem., 1996, 271(51), 33110-33115.
[http://dx.doi.org/10.1074/jbc.271.51.33110] [PMID: 8955159]
[17]
Li, C.M.; Park, J.H.; He, X.; Levy, B.; Chen, F.; Arai, K.; Adler, D.A.; Disteche, C.M.; Koch, J.; Sandhoff, K.; Schuchman, E.H. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics, 1999, 62(2), 223-231.
[http://dx.doi.org/10.1006/geno.1999.5940] [PMID: 10610716]
[18]
Okino, N.; He, X.; Gatt, S.; Sandhoff, K.; Ito, M.; Schuchman, E.H. The reverse activity of human acid ceramidase. J. Biol. Chem., 2003, 278(32), 29948-29953.
[http://dx.doi.org/10.1074/jbc.M303310200] [PMID: 12764132]
[19]
Eliyahu, E.; Shtraizent, N.; Shalgi, R.; Schuchman, E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 2012, 30(3), 735-48.
[20]
Yu, F.P.S.; Amintas, S.; Levade, T.; Medin, J.A. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J. Rare Dis., 2018, 13(1), 121.
[http://dx.doi.org/10.1186/s13023-018-0845-z] [PMID: 30029679]
[21]
Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0305799101] [PMID: 14970312]
[22]
Holland, W.L.; Brozinick, J.T.; Wang, L.P.; Hawkins, E.D.; Sargent, K.M.; Liu, Y.; Narra, K.; Hoehn, K.L.; Knotts, T.A.; Siesky, A.; Nelson, D.H.; Karathanasis, S.K.; Fontenot, G.K.; Birnbaum, M.J.; Summers, S.A. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab., 2007, 5(3), 167-179.
[http://dx.doi.org/10.1016/j.cmet.2007.01.002] [PMID: 17339025]
[23]
Yu, J.; Pan, W.; Shi, R.; Yang, T.; Li, Y.; Yu, G.; Bai, Y.; Schuchman, E.H.; He, X.; Zhang, G. Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can. J. Cardiol., 2015, 31(3), 357-363.
[http://dx.doi.org/10.1016/j.cjca.2014.12.007] [PMID: 25746025]
[24]
Houben, E.; Uchida, Y.; Nieuwenhuizen, W.F.; De Paepe, K.; Vanhaecke, T.; Holleran, W.M.; Rogiers, V. Kinetic characteristics of acidic and alkaline ceramidase in human epidermis. Skin Pharmacol. Physiol., 2007, 20(4), 187-194.
[http://dx.doi.org/10.1159/000101388] [PMID: 17396053]
[25]
Grijalvo, S.; Bedia, C.; Triola, G.; Casas, J.; Llebaria, A.; Teixidó, J.; Rabal, O.; Levade, T.; Delgado, A.; Fabriàs, G. Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chem. Phys. Lipids, 2006, 144(1), 69-84.
[http://dx.doi.org/10.1016/j.chemphyslip.2006.07.001] [PMID: 16942762]
[26]
Gouazé-Andersson, V.; Flowers, M.; Karimi, R.; Fabriás, G.; Delgado, A.; Casas, J.; Cabot, M.C. Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide. Prostate, 2011, 71(10), 1064-1073.
[http://dx.doi.org/10.1002/pros.21321] [PMID: 21557271]
[27]
Bedia, C.; Canals, D.; Matabosch, X.; Harrak, Y.; Casas, J.; Llebaria, A.; Delgado, A.; Fabriás, G. Cytotoxicity and acid ceramidase inhibitory activity of 2-substituted aminoethanol amides. Chem. Phys. Lipids, 2008, 156(1-2), 33-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.07.012] [PMID: 18760267]
[28]
Bielawska, A.; Greenberg, M.S.; Perry, D.; Jayadev, S.; Shayman, J.A.; McKay, C.; Hannun, Y.A. (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J. Biol. Chem., 1996, 271(21), 12646-12654.
[http://dx.doi.org/10.1074/jbc.271.21.12646] [PMID: 8647877]
[29]
Raisova, M.; Goltz, G.; Bektas, M.; Bielawska, A.; Riebeling, C.; Hossini, A.M.; Eberle, J.; Hannun, Y.A.; Orfanos, C.E.; Geilen, C.C. Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett., 2002, 516(1-3), 47-52.
[http://dx.doi.org/10.1016/S0014-5793(02)02472-9] [PMID: 11959101]
[30]
Bai, A.; Szulc, Z.M.; Bielawski, J.; Pierce, J.S.; Rembiesa, B.; Terzieva, S.; Mao, C.; Xu, R.; Wu, B.; Clarke, C.J.; Newcomb, B.; Liu, X.; Norris, J.; Hannun, Y.A.; Bielawska, A. Targeting (cellular) lysosomal acid ceramidase by B13: design, synthesis and evaluation of novel DMG-B13 ester prodrugs. Bioorg. Med. Chem., 2014, 22(24), 6933-6944.
[http://dx.doi.org/10.1016/j.bmc.2014.10.025] [PMID: 25456083]
[31]
Szulc, Z.M.; Mayroo, N.; Bai, A.; Bielawski, J.; Liu, X.; Norris, J.S.; Hannun, Y.A.; Bielawska, A. Novel analogs of D-e-MAPP and B13. Part 1: synthesis and evaluation as potential anticancer agents. Bioorg. Med. Chem., 2008, 16(2), 1015-1031.
[http://dx.doi.org/10.1016/j.bmc.2007.08.033] [PMID: 17869115]
[32]
Bai, A.; Szulc, Z.M.; Bielawski, J.; Mayroo, N.; Liu, X.; Norris, J.; Hannun, Y.A.; Bielawska, A. Synthesis and bioevaluation of omega-N-amino analogs of B13. Bioorg. Med. Chem., 2009, 17(5), 1840-1848.
[http://dx.doi.org/10.1016/j.bmc.2009.01.057] [PMID: 19217788]
[33]
Bielawska, A.; Bielawski, J.; Szulc, Z.M.; Mayroo, N.; Liu, X.; Bai, A.; Elojeimy, S.; Rembiesa, B.; Pierce, J.; Norris, J.S.; Hannun, Y.A. Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorg. Med. Chem., 2008, 16(2), 1032-1045.
[http://dx.doi.org/10.1016/j.bmc.2007.08.032] [PMID: 17881234]
[34]
Camacho, L.; Meca-Cortés, O.; Abad, J.L.; García, S.; Rubio, N.; Díaz, A.; Celià-Terrassa, T.; Cingolani, F.; Bermudo, R.; Fernández, P.L.; Blanco, J.; Delgado, A.; Casas, J.; Fabriàs, G.; Thomson, T.M. Acid ceramidase as a therapeutic target in metastatic prostate cancer. J. Lipid Res., 2013, 54(5), 1207-1220.
[http://dx.doi.org/10.1194/jlr.M032375] [PMID: 23423838]
[35]
Draper, J.M.; Xia, Z.; Smith, R.A.; Zhuang, Y.; Wang, W.; Smith, C.D. Discovery and evaluation of inhibitors of human ceramidase. Mol. Cancer Ther., 2011, 10(11), 2052-2061.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0365] [PMID: 21885864]
[36]
Morad, S.A.; Levin, J.C.; Tan, S.F.; Fox, T.E.; Feith, D.J.; Cabot, M.C. Novel off-target effect of tamoxifen-inhibition of acid ceramidase activity in cancer cells. Biochim. Biophys. Acta, 2013, 1831(12), 1657-1664.
[http://dx.doi.org/10.1016/j.bbalip.2013.07.016] [PMID: 23939396]
[37]
Inoue, H.; Someno, T.; Kato, T.; Kumagai, H.; Kawada, M.; Ikeda, D. Ceramidastin, a novel bacterial ceramidase inhibitor, produced by Penicillium sp. Mer-f17067. J. Antibiot. (Tokyo), 2009, 62(2), 63-67.
[http://dx.doi.org/10.1038/ja.2008.10] [PMID: 19132056]
[38]
Realini, N.; Solorzano, C.; Pagliuca, C.; Pizzirani, D.; Armirotti, A.; Luciani, R.; Costi, M.P.; Bandiera, T.; Piomelli, D. Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci. Rep., 2013, 3, 1035.
[http://dx.doi.org/10.1038/srep01035] [PMID: 23301156]
[39]
Realini, N.; Palese, F.; Pizzirani, D.; Pontis, S.; Basit, A.; Bach, A.; Ganesan, A.; Piomelli, D. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. J. Biol. Chem., 2016, 291(5), 2422-2434.
[http://dx.doi.org/10.1074/jbc.M115.666909] [PMID: 26553872]
[40]
Eliyahu, E.; Shtraizent, N.; He, X.; Chen, D.; Shalgi, R.; Schuchman, E.H. Identification of cystatin SA as a novel inhibitor of acid ceramidase. J. Biol. Chem., 2011, 286(41), 35624-35633.
[http://dx.doi.org/10.1074/jbc.M111.260372] [PMID: 21846728]
[41]
Proksch, D.; Klein, J.J.; Arenz, C. Potent inhibition of Acid ceramidase by novel B-13 analogues. J. Lipids, 2011, 2011, 971618.
[http://dx.doi.org/10.1155/2011/971618] [PMID: 21490813]
[42]
Ruckhäberle, E.; Holtrich, U.; Engels, K.; Hanker, L.; Gätje, R.; Metzler, D.; Karn, T.; Kaufmann, M.; Rody, A. Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer. Climacteric, 2009, 12(6), 502-513.
[http://dx.doi.org/10.3109/13697130902939913] [PMID: 19905902]
[43]
Sänger, N.; Ruckhäberle, E.; Györffy, B.; Engels, K.; Heinrich, T.; Fehm, T.; Graf, A.; Holtrich, U.; Becker, S.; Karn, T. Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer. Mol. Oncol., 2015, 9(1), 58-67.
[http://dx.doi.org/10.1016/j.molonc.2014.07.016] [PMID: 25131496]
[44]
Flowers, M.; Fabriás, G.; Delgado, A.; Casas, J.; Abad, J.L.; Cabot, M.C. C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res. Treat., 2012, 133(2), 447-458.
[http://dx.doi.org/10.1007/s10549-011-1768-8] [PMID: 21935601]
[45]
Bai, A.; Mao, C.; Jenkins, R.W.; Szulc, Z.M.; Bielawska, A.; Hannun, Y.A. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS One, 2017, 12(6), e0177805.
[http://dx.doi.org/10.1371/journal.pone.0177805] [PMID: 28614356]
[46]
Morad, S.A.; Levin, J.C.; Shanmugavelandy, S.S.; Kester, M.; Fabrias, G.; Bedia, C.; Cabot, M.C. Ceramide-antiestrogen nanoliposomal combinations-novel impact of hormonal therapy in hormone-insensitive breast cancer. Mol. Cancer Ther., 2012, 11(11), 2352-2361.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0594] [PMID: 22962326]
[47]
Vethakanraj, H.S.; Babu, T.A.; Sudarsanan, G.B.; Duraisamy, P.K.; Ashok Kumar, S. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines. Biochem. Biophys. Res. Commun., 2015, 464(3), 833-839.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.047] [PMID: 26188095]
[48]
Vejselova, D.; Kutlu, H.M.; Kuş, G. Examining impacts of ceranib-2 on the proliferation, morphology and ultrastructure of human breast cancer cells. Cytotechnology, 2016, 68(6), 2721-2728.
[http://dx.doi.org/10.1007/s10616-016-9997-7] [PMID: 27380965]
[49]
Vethakanraj, H.S.; Sesurajan, B.P.; Padmanaban, V.P.; Jayaprakasam, M.; Murali, S.; Sekar, A.K. Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα. Anticancer Drugs, 2018, 29(1), 50-60.
[http://dx.doi.org/10.1097/CAD.0000000000000566] [PMID: 29023248]
[50]
Paschall, A.V.; Zimmerman, M.A.; Torres, C.M.; Yang, D.; Chen, M.R.; Li, X.; Bieberich, E.; Bai, A.; Bielawski, J.; Bielawska, A.; Liu, K. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer, 2014, 14, 24.
[http://dx.doi.org/10.1186/1471-2407-14-24] [PMID: 24422988]
[51]
Lucki, N.C.; Sewer, M.B. Genistein stimulates MCF-7 breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression. J. Biol. Chem., 2011, 286(22), 19399-19409.
[http://dx.doi.org/10.1074/jbc.M110.195826] [PMID: 21493710]
[52]
Meščić, A.; Harej, A.; Klobučar, M.; Glavač, D.; Cetina, M.; Pavelić, S.K.; Raić-Malić, S. Discovery of new aid ceramidase- targeted acyclic 5-Alkynyl and 5-Heteroaryl uracil nucleosides. ACS Med. Chem. Lett., 2015, 6(11), 1150-1155.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00298] [PMID: 26617970]
[53]
Hanker, L.C.; Karn, T.; Holtrich, U.; Gätje, R.; Rody, A.; Heinrich, T.; Ruckhäberle, E.; Engels, K. Acid ceramidase (AC)-a key enzyme of sphingolipid metabolism-correlates with better prognosis in epithelial ovarian cancer. Int. J. Gynecol. Pathol., 2013, 32(3), 249-257.
[http://dx.doi.org/10.1097/PGP.0b013e3182673982] [PMID: 23518908]
[54]
Ohta, H.; Sweeney, E.A.; Masamune, A.; Yatomi, Y.; Hakomori, S.; Igarashi, Y. Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation. Cancer Res., 1995, 55(3), 691-697.
[PMID: 7834642]
[55]
Braicu, E.I.; Darb-Esfahani, S.; Schmitt, W.D.; Koistinen, K.M.; Heiskanen, L.; Pöhö, P.; Budczies, J.; Kuhberg, M.; Dietel, M.; Frezza, C.; Denkert, C.; Sehouli, J.; Hilvo, M. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget, 2017, 8(61), 102912-102922.
[http://dx.doi.org/10.18632/oncotarget.22076] [PMID: 29262533]
[56]
EI-Balat A.; Karn, T.; Holtrich, U.; Becker, S.; Kommoss, S.; Gyorffy, B.; Anglesio, M.S.; Huntsman, D.G.; Drosos, Z.; Rody, A.; Gevensleben, H.; Hanker, L.C. Histotype-specific analysis of acid ceramidase expression in ovarian cancer. Virchows Arch., 2020.
[57]
Qing, S.; Tulake, W.; Ru, M.; Li, X.; Yuemaier, R.; Lidifu, D.; Rouzibilali, A.; Hasimu, A.; Yang, Y.; Rouziahong, R.; Upur, H.; Abudula, A. Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection. Tumour Biol., 2017, 39(4), 1010428317697547.
[http://dx.doi.org/10.1177/1010428317697547] [PMID: 28443473]
[58]
Dementiev, A.; Joachimiak, A.; Nguyen, H.; Gorelik, A.; Illes, K.; Shabani, S.; Gelsomino, M.; Ahn, E.E.; Nagar, B.; Doan, N. Molecular mechanism of inhibition of acid ceramidase by carmofur. J. Med. Chem., 2019, 62(2), 987-992.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01723] [PMID: 30525581]
[59]
Liu, P.; Ma, S.; Liu, H.; Han, H.; Wang, S. HCFU inhibits cervical cancer cells growth and metastasis by inactivating Wnt/β- catenin pathway. J. Cell. Biochem., 2017.
[PMID: 29231992]
[60]
Elojeimy, S.; Holman, D.H.; Liu, X.; El-Zawahry, A.; Villani, M.; Cheng, J.C.; Mahdy, A.; Zeidan, Y.; Bielwaska, A.; Hannun, Y.A.; Norris, J.S. New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett., 2006, 580(19), 4751-4756.
[http://dx.doi.org/10.1016/j.febslet.2006.07.071] [PMID: 16901483]
[61]
Seelan, R.S.; Qian, C.; Yokomizo, A.; Bostwick, D.G.; Smith, D.I.; Liu, W. Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer, 2000, 29(2), 137-146.
[http://dx.doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1018>3.0.CO;2-E] [PMID: 10959093]
[62]
Norris, J.S.; Bielawska, A.; Day, T.; El-Zawahri, A.; ElOjeimy, S.; Hannun, Y.; Holman, D.; Hyer, M.; Landon, C.; Lowe, S.; Dong, J.Y.; McKillop, J.; Norris, K.; Obeid, L.; Rubinchik, S.; Tavassoli, M.; Tomlinson, S.; Voelkel-Johnson, C.; Liu, X. Combined therapeutic use of AdGFPFasL and small molecule inhibitors of ceramide metabolism in prostate and head and neck cancers: a status report. Cancer Gene Ther., 2006, 13(12), 1045-1051.
[http://dx.doi.org/10.1038/sj.cgt.7700965] [PMID: 16763610]
[63]
Beckham, T.H.; Lu, P.; Cheng, J.C.; Zhao, D.; Turner, L.S.; Zhang, X.; Hoffman, S.; Armeson, K.E.; Liu, A.; Marrison, T.; Hannun, Y.A.; Liu, X. Acid ceramidase-mediated production of sphingosine 1-phosphate promotes prostate cancer invasion through upregulation of cathepsin B. Int. J. Cancer, 2012, 131(9), 2034-2043.
[http://dx.doi.org/10.1002/ijc.27480] [PMID: 22322590]
[64]
Saad, A.F.; Meacham, W.D.; Bai, A.; Anelli, V.; Elojeimy, S.; Mahdy, A.E.; Turner, L.S.; Cheng, J.; Bielawska, A.; Bielawski, J.; Keane, T.E.; Obeid, L.M.; Hannun, Y.A.; Norris, J.S.; Liu, X. The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol. Ther., 2007, 6(9), 1455-1460.
[http://dx.doi.org/10.4161/cbt.6.9.4623] [PMID: 17881906]
[65]
Mahdy, A.E.M.; Cheng, J.C.; Li, J.; Elojeimy, S.; Meacham, W.D.; Turner, L.S.; Bai, A.; Gault, C.R.; McPherson, A.S.; Garcia, N.; Beckham, T.H.; Saad, A.; Bielawska, A.; Bielawski, J.; Hannun, Y.A.; Keane, T.E.; Taha, M.I.; Hammouda, H.M.; Norris, J.S.; Liu, X. Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol. Ther., 2009, 17(3), 430-438.
[http://dx.doi.org/10.1038/mt.2008.281] [PMID: 19107118]
[66]
Cheng, J.C.; Bai, A.; Beckham, T.H.; Marrison, S.T.; Yount, C.L.; Young, K.; Lu, P.; Bartlett, A.M.; Wu, B.X.; Keane, B.J.; Armeson, K.E.; Marshall, D.T.; Keane, T.E.; Smith, M.T.; Jones, E.E.; Drake, R.R., Jr; Bielawska, A.; Norris, J.S.; Liu, X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J. Clin. Invest., 2013, 123(10), 4344-4358.
[http://dx.doi.org/10.1172/JCI64791] [PMID: 24091326]
[67]
White-Gilbertson, S.; Lu, P.; Norris, J.S.; Voelkel-Johnson, C. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis. J. Lipid Res., 2019, 60(7), 1225-1235.
[http://dx.doi.org/10.1194/jlr.M092247] [PMID: 30988134]
[68]
White-Gilbertson, S.; Lu, P.; Jones, C.M.; Chiodini, S.; Hurley, D.; Das, A.; Delaney, J.R.; Norris, J.S.; Voelkel-Johnson, C. Tamoxifen is a candidate first-in-class inhibitor of acid ceramidase that reduces amitotic division in polyploid giant cancer cells-Unrecognized players in tumorigenesis. Cancer Med., 2020, 9(9), 3142-3152.
[http://dx.doi.org/10.1002/cam4.2960] [PMID: 32135040]
[69]
Mizutani, N.; Inoue, M.; Omori, Y.; Ito, H.; Tamiya-Koizumi, K.; Takagi, A.; Kojima, T.; Nakamura, M.; Iwaki, S.; Nakatochi, M.; Suzuki, M.; Nozawa, Y.; Murate, T. Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J. Biochem., 2015, 158(4), 309-319.
[http://dx.doi.org/10.1093/jb/mvv039] [PMID: 25888580]
[70]
Klobučar, M.; Grbčić, P.; Pavelić, S.K.; Jonjić, N.; Visentin, S.; Sedić, M. Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling. Biochem. Biophys. Res. Commun., 2018, 503(2), 843-848.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.085] [PMID: 29920241]
[71]
Govindarajah, N.; Sutton, P.; Bowden, D.; Vimalachandran, D.; Parsons, J.L. Investigating the role of acid ceramidase (AC) on the radiotherapy response of colorectal cancer cells. EJSO, 2017, 43(11), 2207-2208.
[http://dx.doi.org/10.1016/j.ejso.2017.10.088]
[72]
Selzner, M.; Bielawska, A.; Morse, M.A.; Rüdiger, H.A.; Sindram, D.; Hannun, Y.A.; Clavien, P.A. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res., 2001, 61(3), 1233-1240.
[PMID: 11221856]
[73]
Tirodkar, T.S.; Lu, P.; Bai, A.; Scheffel, M.J.; Gencer, S.; Garrett- Mayer, E.; Bielawska, A.; Ogretmen, B.; Voelkel-Johnson, C. Expression of ceramide synthase 6 transcriptionally activates acid ceramidase in a c-Jun N-terminal kinase (JNK)-dependent manner. J. Biol. Chem., 2015, 290(21), 13157-13167.
[http://dx.doi.org/10.1074/jbc.M114.631325] [PMID: 25839235]
[74]
Vethakanraj, H.S.; Aslan, M.S.; Jayashree, A.; Vishnupriya, P.; Sekar, A.K. Targeting ceramidase and sphingosine kinase 1 of ceramide metabolic pathway induces apoptosis in human colon cancer cells. International Journal of Cell Science and Biotechnology, 2018, 7, 23-27.
[75]
Advani, J.; Subbannayya, Y.; Patel, K.; Khan, A.A.; Patil, A.H.; Jain, A.P.; Solanki, H.S.; Radhakrishnan, A.; Pinto, S.M.; Sahasrabuddhe, N.A.; Thomas, J.K.; Mathur, P.P.; Nair, B.G.; Chang, X.; Prasad, T.S.K.; Sidransky, D.; Gowda, H.; Chatterjee, A. Long-Term cigarette smoke exposure and changes in MiRNA expression and proteome in Non-Small-Cell lung cancer. OMICS, 2017, 21(7), 390-403.
[http://dx.doi.org/10.1089/omi.2017.0045] [PMID: 28692419]
[76]
Titz, B.; Boue, S.; Phillips, B.; Talikka, M.; Vihervaara, T.; Schneider, T.; Nury, C.; Elamin, A.; Guedj, E.; Peck, M.J.; Schlage, W.K.; Cabanski, M.; Leroy, P.; Vuillaume, G.; Martin, F.; Ivanov, N.V.; Veljkovic, E.; Ekroos, K.; Laaksonen, R.; Vanscheeuwijck, P.; Peitsch, M.C.; Hoeng, J. Effects of cigarette smoke, cessation, and switching to two heat-not-burn tobacco products on lung lipid metabolism in C57BL/6 and Apoe-/- Mice-An integrative systems toxicology analysis. Toxicological sciences: an official journal of the Society of Toxicology, 2016, 149(2), 441-457.
[77]
Ramírez de Molina, A.; de la Cueva, A.; Machado-Pinilla, R.; Rodríguez-Fanjul, V.; Gomez del Pulgar, T.; Cebrian, A.; Perona, R.; Lacal, J.C. Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition. Curr. Cancer Drug Targets, 2012, 12(6), 617-624.
[http://dx.doi.org/10.2174/156800912801784811] [PMID: 22515519]
[78]
Yildiz-Ozer, M.; Oztopcu-Vatan, P.; Kus, G. The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro. Cytotechnology, 2018, 70(1), 387-396.
[http://dx.doi.org/10.1007/s10616-017-0154-8] [PMID: 29230631]
[79]
Monick, M.M.; Mallampalli, R.K.; Bradford, M.; McCoy, D.; Gross, T.J.; Flaherty, D.M.; Powers, L.S.; Cameron, K.; Kelly, S. Cooperative prosurvival activity by ERK and Akt in human alveolar macrophages is dependent on high levels of acid ceramidase activity. Journal of Immunology (Baltimore, Md.:1950), 2004, 173(1), 123-35.
[80]
Morales, A.; París, R.; Villanueva, A.; Llacuna, L.; García-Ruiz, C.; Fernández-Checa, J.C. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene, 2007, 26(6), 905-916.
[http://dx.doi.org/10.1038/sj.onc.1209834] [PMID: 16862171]
[81]
Savić, R.; He, X.; Fiel, I.; Schuchman, E.H. Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One, 2013, 8(5), e65620.
[http://dx.doi.org/10.1371/journal.pone.0065620] [PMID: 23724146]
[82]
Erkasap, N. Ceranib-2 inhibits HIF1-α gene expression and induces apoptosis in HepG2 cells. FASEB J., 2019, 13(1)
[83]
Leclerc, J.; Garandeau, D.; Pandiani, C.; Gaudel, C.; Bille, K.; Nottet, N.; Garcia, V.; Colosetti, P.; Pagnotta, S.; Bahadoran, P.; Tondeur, G.; Mograbi, B.; Dalle, S.; Caramel, J.; Levade, T.; Ballotti, R.; Andrieu-Abadie, N.; Bertolotto, C. Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene, 2019, 38(8), 1282-1295.
[http://dx.doi.org/10.1038/s41388-018-0500-0] [PMID: 30254208]
[84]
Liu, Y.; He, J.; Xie, X.; Su, G.; Teitz-Tennenbaum, S.; Sabel, M.S.; Lubman, D.M. Serum autoantibody profiling using a natural glycoprotein microarray for the prognosis of early melanoma. J. Proteome Res., 2010, 9(11), 6044-6051.
[http://dx.doi.org/10.1021/pr100856k] [PMID: 20879797]
[85]
Bedia, C.; Casas, J.; Andrieu-Abadie, N.; Fabriàs, G.; Levade, T. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J. Biol. Chem., 2011, 286(32), 28200-28209.
[http://dx.doi.org/10.1074/jbc.M110.216382] [PMID: 21700700]
[86]
Lai, M.; Realini, N.; La Ferla, M.; Passalacqua, I.; Matteoli, G.; Ganesan, A.; Pistello, M.; Mazzanti, C.M.; Piomelli, D. Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells. Sci. Rep., 2017, 7(1), 7411.
[http://dx.doi.org/10.1038/s41598-017-07606-w] [PMID: 28785021]
[87]
Ortega, J.A.; Arencibia, J.M.; La Sala, G.; Borgogno, M.; Bauer, I.; Bono, L.; Braccia, C.; Armirotti, A.; Girotto, S.; Ganesan, A.; De Vivo, M. Pharmacophore identification and scaffold exploration to discover novel, potent, and chemically stable inhibitors of acid ceramidase in melanoma cells. J. Med. Chem., 2017, 60(13), 5800-5815.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00472] [PMID: 28603987]
[88]
Elojeimy, S.; Liu, X.; McKillop, J.C.; El-Zawahry, A.M.; Holman, D.H.; Cheng, J.Y.; Meacham, W.D.; Mahdy, A.E.; Saad, A.F.; Turner, L.S.; Cheng, J.; A Day, T.; Dong, J.Y.; Bielawska, A.; Hannun, Y.A.; Norris, J.S. Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy. Mol. Ther., 2007, 15(7), 1259-1263.
[http://dx.doi.org/10.1038/sj.mt.6300167] [PMID: 17426710]
[89]
Roh, J.L.; Park, J.Y.; Kim, E.H.; Jang, H. J. Targeting acid ceramidase sensitises head and neck cancer to cisplatin. European Journal of Cancer (Oxford: England: 1990), 2016, 52, 163-72.
[90]
Korbelik, M.; Banáth, J.; Zhang, W.; Saw, K.M.; Szulc, Z.M.; Bielawska, A.; Separovic, D. Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine. Int. J. Cancer, 2016, 139(6), 1372-1378.
[http://dx.doi.org/10.1002/ijc.30171] [PMID: 27136745]
[91]
Separovic, D.; Breen, P.; Boppana, N.B.; Van Buren, E.; Joseph, N.; Kraveka, J.M.; Rahmaniyan, M.; Li, L.; Gudz, T.I.; Bielawska, A.; Bai, A.; Bielawski, J.; Pierce, J.S.; Korbelik, M. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int. J. Oncol., 2013, 43(6), 2064-2072.
[http://dx.doi.org/10.3892/ijo.2013.2132] [PMID: 24126464]
[92]
Doan, N.B.; Alhajala, H.; Al-Gizawiy, M.M.; Mueller, W.M.; Rand, S.D.; Connelly, J.M.; Cochran, E.J.; Chitambar, C.R.; Clark, P.; Kuo, J.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency. Oncotarget, 2017, 8(68), 112662-112674.
[http://dx.doi.org/10.18632/oncotarget.22637] [PMID: 29348854]
[93]
Abuhusain, H.J. Investigating Sphingolipid Metabolism in Glioblastoma., 2013.unsworks.unsw.edu.au
[94]
Doan, N.B.; Nguyen, H.S.; Al-Gizawiy, M.M.; Mueller, W.M.; Sabbadini, R.A.; Rand, S.D.; Connelly, J.M.; Chitambar, C.R.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase confers radioresistance to glioblastoma cells. Oncol. Rep., 2017, 38(4), 1932-1940.
[http://dx.doi.org/10.3892/or.2017.5855] [PMID: 28765947]
[95]
Doan, N.B.; Nguyen, H.S.; Alhajala, H.S.; Jaber, B.; Al-Gizawiy, M.M.; Ahn, E.E.; Mueller, W.M.; Chitambar, C.R.; Mirza, S.P.; Schmainda, K.M. Identification of radiation responsive genes and transcriptome profiling via complete RNA sequencing in a stable radioresistant U87 glioblastoma model. Oncotarget, 2018, 9(34), 23532-23542.
[http://dx.doi.org/10.18632/oncotarget.25247] [PMID: 29805753]
[96]
Doan, N.B.; Nguyen, H.S.; Montoure, A.; Al-Gizawiy, M.M.; Mueller, W.M.; Kurpad, S.; Rand, S.D.; Connelly, J.M.; Chitambar, C.R.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase is a novel drug target for pediatric brain tumors. Oncotarget, 2017, 8(15), 24753-24761.
[http://dx.doi.org/10.18632/oncotarget.15800] [PMID: 28445970]
[97]
Kuş, G.; Özkurt, M.; Öztopcu Vatan, P.; Erkasap, N.; Uyar, R.; Kabadere, S. Comparison of a ceramidase inhibitor (ceranib-2) with C2 ceramide and cisplatin on cytotoxicity and apoptosis of glioma cells. Turk. J. Biol., 2018, 42(3), 259-265.
[PMID: 30814888]
[98]
Tan, S.F.; Liu, X.; Fox, T.E.; Barth, B.M.; Sharma, A.; Turner, S.D.; Awwad, A.; Dewey, A.; Doi, K.; Spitzer, B.; Shah, M.V.; Morad, S.A.; Desai, D.; Amin, S.; Zhu, J.; Liao, J.; Yun, J.; Kester, M.; Claxton, D.F.; Wang, H.G.; Cabot, M.C.; Schuchman, E.H.; Levine, R.L.; Feith, D.J.; Loughran, T.P., Jr Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget, 2016, 7(50), 83208-83222.
[http://dx.doi.org/10.18632/oncotarget.13079] [PMID: 27825124]
[99]
Schmidt, M.; Nagel, S.; Proba, J.; Thiede, C.; Ritter, M.; Waring, J.F.; Rosenbauer, F.; Huhn, D.; Wittig, B.; Horak, I.; Neubauer, A. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood, 1998, 91(1), 22-29.
[http://dx.doi.org/10.1182/blood.V91.1.22] [PMID: 9414265]
[100]
Diaz-Blanco, E.; Bruns, I.; Neumann, F.; Fischer, J.C.; Graef, T.; Rosskopf, M.; Brors, B.; Pechtel, S.; Bork, S.; Koch, A.; Baer, A.; Rohr, U.P.; Kobbe, G.; von Haeseler, A.; Gattermann, N.; Haas, R.; Kronenwett, R. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia, 2007, 21(3), 494-504.
[http://dx.doi.org/10.1038/sj.leu.2404549] [PMID: 17252012]
[101]
Hu, X.; Yang, D.; Zimmerman, M.; Liu, F.; Yang, J.; Kannan, S.; Burchert, A.; Szulc, Z.; Bielawska, A.; Ozato, K.; Bhalla, K.; Liu, K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res., 2011, 71(8), 2882-2891.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2493] [PMID: 21487040]
[102]
Tan, S.F.; Liu, X.; Broeg, K.; Fox, T.E.; Feith, D.J. Jr. Loughran, T.P. Acid Ceramidase Inhibition Impairs Tumor Progression in a Rat Model of LGL Leukemia. Blood, 2015, 126(23), 1246.
[http://dx.doi.org/10.1182/blood.V126.23.1246.1246]
[103]
Bielawska, A.; Linardic, C.M.; Hannun, Y.A. Ceramide-mediated biology. Determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs. J. Biol. Chem., 1992, 267(26), 18493-18497.
[PMID: 1526986]
[104]
Hamtiaux, L.; Hansoulle, L.; Dauguet, N.; Muccioli, G.G.; Gallez, B.; Lambert, D.M. Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism. PLoS One, 2011, 6(10), e26823.
[http://dx.doi.org/10.1371/journal.pone.0026823] [PMID: 22046372]
[105]
Vethakanraj, H.S.; Sekar, A.K. Evaluation of synergistic effect of Ceranib 2 and Tamoxifen in human breast cancer cells. Res. J. Pharm. Biol. Chem. Sci., 2017, 8(4), 1110-1114.
[106]
Samsel, L.; Zaidel, G.; Drumgoole, H.M.; Jelovac, D.; Drachenberg, C.; Rhee, J.G.; Brodie, A.M.; Bielawska, A.; Smyth, M.J. The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate, 2004, 58(4), 382-393.
[http://dx.doi.org/10.1002/pros.10350] [PMID: 14968439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy