[1]
Rask-Andersen M, Masuram S, Schiӧth HB. The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 2014; 54: 9-26.
[2]
Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 2017; 16: 19-34.
[3]
Huang XP, Karpiak J, Kroeze WK, et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 2015; 527: 477-83.
[4]
Sriram K, Insel PAG. Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 2018; 93: 251-8.
[5]
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39: 367-86.
[6]
Chou KC, Forsén S. Graphical rules for enzyme-catalyzed rate laws. Biochem J 1980; 187: 829-35.
[7]
Kezdy FJ, Reusser F. Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 1994; 221: 217-30.
[8]
Althaus IW, Chou JJ, Gonzales AJ, et al. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J Biol Chem 1993; 268: 6119-24.
[9]
Althaus IW, Chou JJ, Gonzales AJ, et al. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 1993; 268: 14875-80.
[10]
Althaus IW, Chou JJ, Gonzales AJ, et al. Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry 1993; 32: 6548-54.
[11]
Elrod DW. Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res 2002; 1: 429-33.
[12]
Elrod DW. A study on the correlation of G-protein-coupled receptor types with amino acid composition. Protein Eng 2002; 15: 713-5.
[13]
Chou KC. Prediction of G-protein-coupled receptor classes. J Proteome Res 2005; 4: 1413-8.
[14]
Chou KC. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 2005; 4: 1681-6.
[15]
Qiu JD, Huang JH, Liang RP, Lu XQ. Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform. Anal Biochem 2009; 390: 68-73.
[16]
Gu Q, Ding YS, Zhang TL. Prediction of g-protein-coupled receptor classes in low homology using chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Protein Pept Lett 2010; 17: 559-67.
[17]
Xiao X, Wang P. GPCR-2L: Predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Mol Biosyst 2011; 7: 911-9.
[18]
Xiao X, Lin WZ. Recent advances in predicting G-protein coupled receptor classification. Curr Bioinform 2012; 7: 132-42.
[19]
Zia-ur-Rehman. Khan A. Identifying GPCRs and their types with chou’s pseudo amino acid composition: an approach from multi-scale energy representation and position specific scoring matrix. Protein Pept Lett 2012; 19: 890-903.
[20]
Xie HL, Fu L, Nie XD. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC. Protein Eng Des Sel 2013; 26: 735-42.
[21]
Tiwari AK. Prediction of G-protein coupled receptors and their subfamilies by incorporating various sequence features into Chou’s general PseAAC. Comput Methods Programs Biomed 2016; 134: 197-213.
[22]
Congreve M, Langmead CJ, Mason JS, Marshall FH. Progress in structure based drug design for G protein-coupled receptors. J Med Chem 2011; 54: 4283-311.
[23]
Hutchings CJ, Koglin M, Olson WC, Marshall FH. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16: 787-810.
[24]
Sexton PM, Christopoulos A. To Bind or Not to Bind: Unravelling GPCR Polypharmacology. Cell 2018; 172: 636-8.
[25]
Hauser AS, Chavali S, Masuho I, et al. Pharmacogenomics of GPCR Drug Targets. Cell 2018; 172: 41-54.
[26]
Sultana J, Cutroneo P. Trifiro’G. Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother 2013; 4: S73-7.
[28]
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017; 16: 829-42.
[29]
Chen W, Feng PM, Lin H. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 2013; 41: e68.
[30]
Feng PM, Chen W, Lin H. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal Biochem 2013; 442: 118-25.
[31]
Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 2016; 7: 16895-909.
[32]
Chou KC, Jones D, Heinrikson RL. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett 1997; 419: 49-54.
[33]
Chou KC, Tomasselli AG, Heinrikson RL. Prediction of the Tertiary Structure of a Caspase-9/Inhibitor Complex. FEBS Lett 2000; 470: 249-56.
[34]
Chou KC. Insights from modelling three-dimensional structures of the human potassium and sodium channels. J Proteome Res 2004; 3: 856-61.
[35]
Chou KC. Insights from modelling the tertiary structure of BACE2. J Proteome Res 2004; 3: 1069-72.
[36]
Chou KC. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun 2004; 319: 433-8.
[37]
Chou KC. Insights from modeling the 3D structure of DNA-CBF3b complex. J Proteome Res 2005; 4: 1657-60.
[38]
Wang SQ, Du QS, Chou KC. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 2007; 354: 634-40.
[39]
Chou KC. Review: Structural bioinformatics and its impact to biomedical science. Curr Med Chem 2004; 11: 2105-34.
[40]
Zhou GP, Huang RB. The pH-Triggered Conversion of the PrP(c) to PrP(sc.). Curr Top Med Chem 2013; 13: 1152-63.
[41]
Zhou GP. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J Theor Biol 2011; 284: 142-8.
[42]
Chen W, Feng P, Ding H, Lin H, Chou KC. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 2015; 490: 26-33.
[43]
Xu Y, Ding J, Wu LY, Chou KC. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013; 8: e55844.
[44]
Chen W, Feng PM, Lin H, Chou KC. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res Int 2014; 2014: 623149.
[45]
Xu Y, Wen X, Wen LS, Wu LY, Deng NY, Chou KC. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014; 9: e105018.
[46]
Jia J, Liu Z, Xiao X, Liu B, Chou KC. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal Biochem 2016; 497: 48-56.
[47]
Jia J, Liu Z, Xiao X, Liu B, Chou KC. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 2016; 394: 223-30.
[48]
Jia J, Liu Z, Xiao X, Liu B, Chou KC. iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 2016; 7: 34558-70.
[49]
Qiu WR, Sun BQ, Xiao X, Xu ZC, Chou KC. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget 2016; 7: 44310-21.
[50]
Liu Z, Xiao X, Yu DJ. Jia J, Qiu WR, Chou KC. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal Biochem 2016; 497: 60-7.
[51]
Liu Z, Xiao X, Qiu WR, Chou KC. iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition. Anal Biochem 2015; 474: 69-77.
[52]
Liu Z, Xiao X, Qiu WR, Chou KC. Benchmark data for identifying DNA methylation sites via pseudo trinucleotide composition. Data Brief 2015; 4: 87-9.
[53]
Xiao X, Wang P, Lin WZ, Jia JH, Chou KC. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 2013; 436: 168-77.
[54]
Wang P, Hu L, Liu G, et al. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One 2011; 6: e18476.
[55]
Cheng X, Zhao SG, Lin WZ, Xiao X, Chou KC. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinform 2017; 33: 3524-31.
[56]
Michino M, Beuming T, Donthamsetti P, et al. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 2015; 67: 198-213.
[57]
Bock A, Mohr K. Dualsteric GPCR targeting and functional selectivity: the paradigmatic M2 muscarinic acetylcholine receptor. Drug Discov Today Technol 2013; 10: e245-52.
[58]
Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 2008; 117: 232-43.
[59]
Melancon BJ, Tarr JC, Panarese JD, Wood MR, Lindsley CW. Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer’s disease. Drug Discov Today 2013; 18: 1185-99.
[60]
Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 2010; 30: 4190-6.
[61]
Spindel ER. Muscarinic receptor agonists and antagonists: effects on cancer. Handb Exp Pharmacol 2012; 451-68.
[62]
Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Sci 2013; 341(6142): 1236361.
[63]
Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54: 465-73.
[64]
Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 2008; 165: 1033-9.
[65]
Thomsen M, Craig W, Lindsley P, et al. Contribution of both M1 and M4 receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice. Psychopharmacol 2012; 220: 673-85.
[66]
Kruse AC, Kobilka BK, Gautam D, et al. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 2014; 13: 549-60.
[67]
Ahles A, Engelhardt S. Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in disease. Pharmacol Rev 2014; 66: 598-637.
[68]
Rosskopf D, Michel MC. Pharmacogenomics of G protein-coupled receptor ligands in cardiovascular medicine. Pharmacol Rev 2008; 60: 513-35.
[69]
Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 2013; 382: 951-62.
[70]
Knaus AE, Muthig V, Schickinger S, et al. Alpha2-adrenoceptor subtypes--unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int 2007; 51: 277-81.
[71]
Gilsbach R, Hein L. Are the pharmacology and physiology of a2 adrenoceptors determined by a2-heteroreceptors and autoreceptors respectively? Br J Pharmacol 2012; 165: 90-102.
[72]
Small KM, Wagoner LE, Levin AM, et al. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002; 347: 1135-42.
[73]
La Rosée K, Huntgeburth M, Rosenkranz S, Böhm M, Schnabel P. The Arg389Gly beta1-adrenoceptor gene polymorphism determines contractile response to catecholamines. Pharmacogenetics 2004; 14: 711-6.
[74]
Clément K, Vaisse C, Manning BS, et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 1995; 333: 352-4.
[75]
Butini S, Nikolic K, Kassel S, et al. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142: 68-103.
[76]
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111: 1-16.
[77]
Pascoli V, Cahill E, Bellivier F, Caboche J, Vanhoutte P. Extracellular signal- regulated protein kinases 1 and 2 activation by addictive drugs: A signal toward pathological adaptation. Biol Psychiatry 2016; 76: 917-26.
[78]
Boyd KN, Mailman RB. Dopamine receptor signaling and current and future antipsychotic drugs. Handb Exp Pharmacol 2012; 53-86.
[79]
Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev 2008; 88: 1183-241.
[80]
Passani MB, Lin JS, Hancock A, Crochet S, Blandina P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 2004; 25: 618-25.
[81]
Stahl SM. Selective histamine H1 antagonism: Novel hypnotic and pharmacologic actions challenge classical notions of antihistamines. CNS Spectr 2008; 13: 1027-38.
[82]
Frandsen IO, Boesgaard MW, Fidom K, et al. Identification of histamine h3 receptor ligands using a new crystal structure fragment-based method. Sci Rep 2017; 7: 4829.
[83]
Medhurst AD, Atkins AR, Beresford IJ, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther 2007; 321: 1032-45.
[84]
Tiligada E, Kyriakidis K, Chazot PL, Passani MB. Histamine pharmacology and new CNS drug targets. CNS Neurosci Ther 2011; 17: 620-8.
[85]
Leurs R, Chazot PL, Shenton FC, Lim HD, de Esch IJ. Molecular and biochemical pharmacology of the histamine H4 receptor. Br J Pharmacol 2009; 157: 14-23.
[86]
Tiligada E, Zampeli E, Sander K, Stark H. Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs 2009; 18: 1519-31.
[87]
Leurs R, Chazot PL, Shenton FC, Lim HD, de Esch IJ. Molecular and biochemical pharmacology of the histamine H4 receptor. Br J Pharmacol 2009; 157: 14-23.
[88]
Krumm BE, Grisshammer R. Peptide ligand recognition by G protein-coupled receptors. Front Pharmacol 2015; 16: 6-48.
[89]
White JF, Noinaj N, Shibata Y, et al. Structure of the agonist-bound neurotensin receptor. Nature 2012; 490: 508-13.
[90]
Law PY, Loh HH. Regulation of opioid receptor activities. J Pharmacol Exp Ther 1999; 289: 607-24.
[91]
Mollereau C, Parmentier M, Mailleux P, et al. ORL1, a novel member of the opioid receptor family: cloning, functional expression and localization. FEBS Lett 1994; 341: 33-8.
[92]
Fenalti G, Giguere PM, Katritch V, et al. Molecular control of δ-opioid receptor signalling. Nature 2014; 13(506): 191-6.
[94]
Zhang H, Unal H, Gati C, et al. Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell 2015; 161: 833-44.
[95]
Zhang H, Unal H, Desnoyer R, et al. structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem 2015; 290: 29127-39.
[96]
Duron E, Hanon O. Antihypertensive treatments, cognitive decline, and dementia. J Alzheimers Dis 2010; 20: 903-14.
[97]
Smith MT, Wyse BD, Edwards SR. Small molecule angiotensin II type 2 receptor (AT2R) antagonists as novel analgesics for neuropathic pain: comparative pharmacokinetics, radioligand binding, and efficacy in rats. Pain Med 2013; 14: 692-705.
[98]
Kemp BA, Howell NL, Gildea JJ, et al. AT2 receptor activation induces natriuresis and lowers blood pressure. Circ Res 2014; 115: 388-99.
[99]
Cavanagh PC, Dunk C, Pampillo M, et al. Gonadotropin-releasing hormone-regulated chemokine expression in human placentation. Am J Physiol Cell Physiol 2009; 297: C17-27.
[100]
Debruyne FM. Gonadotropin-releasing hormone antagonist in the management of prostate cancer. Rev Urol 2004; 6: S25-32.
[101]
Doehn C, Jocham D. Technology evaluation: abarelix, Praecis Pharmaceuticals. Curr Opin Mol Ther 2000; 2: 579-85.
[102]
Steinberg M. Degarelix: a gonadotropin-releasing hormone antagonist for the management of prostate cancer. Clin Ther 2009; (31Pt 2): 2312-31.
[103]
Tomera K, Gleason D, Gittelman M, et al. The gonadotropin-releasing hormone antagonist abarelix depot versus luteinizing hormone releasing hormone agonists leuprolide or goserelin: initial results of endocrinological and biochemical efficacies in patients with prostate cancer. J Urol 2001; 165: 1585-9.
[104]
Broqua P, Riviere PJ, Conn PM, et al. Pharmacological profile of a new, potent, and long-acting gonadotropin-releasing hormone antagonist: Degarelix. J Pharmacol Exp Ther 2002; 301: 95-102.
[105]
Samant MP, Hong DJ, Croston G, Rivier C, Rivier J. Novel gonadotropin-releasing hormone antagonists with substitutions at position 5. Biopolymers 2005; 80: 386-91.
[106]
Oberyé JJ, Mannaerts BM, Kleijn HJ, Timmer CJ. Pharmacokinetic and pharmacodynamic characteristics of ganirelix (Antagon/Orgalutran). I. Absolute bioavailability of 0.25 mg of ganirelix after a single subcutaneous injection in healthy female volunteers. Fertil Steril 1999; 72: 1001-5.
[107]
Gruber CW, Muttenthaler M, Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des 2010; 16: 3071-88.
[108]
Gruber CW, Koehbach J, Muttenthaler M. Exploring bioactive peptides from natural sources for oxytocin and vasopressin drug discovery. Future Med Chem 2012; 4: 1791-8.
[109]
Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol 2014; 26: 356-69.
[110]
Manning M, Stoev S, Chini B, et al. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res 2008; 170: 473-512.
[111]
Di Giglio MG. Muttenthaler M2, Harpsøe K, et al. Development of
a human vasopressin V1a-receptor antagonist from an evolutionary-
related insect neuropeptide. Sci Rep 2017; 1; 7: 41002.
[112]
Boheler KR, Gundry RL. Concise review: Cell surface n-linked glycoproteins as potential stem cell markers and drug targets. Stem Cells Transl Med 2017; 6: 131-8.
[113]
Yin H, Flynn AD. Drugging membrane protein interactions. Annu Rev Biomed Eng 2016; 18: 51-76.
[114]
Kropp EM, Oleson BJ, Broniowska KA, et al. Inhibition of an NAD+ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med 2015; 4: 483-93.
[115]
Brüser A, Schulz A, Rothemund S, et al. The activation mechanism of glycoprotein hormone receptors with implications in the cause and therapy of endocrine diseases. J Biol Chem 2016; 291: 508-20.
[116]
Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res 2009; 50(Suppl.): S423-8.
[118]
Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol 2001; 2: 3013.
[119]
Knop FK, Vilsbøll T, Holst JJ. Incretin-based therapy of type 2 diabetes mellitus. Curr Protein Pept Sci 2009; 10: 46-55.
[120]
Hornby PJ, Moore BA. The therapeutic potential of targeting the glucagon-like peptide-2 receptor in gastrointestinal disease. Expert Opin Ther Targets 2011; 15: 637-46.
[121]
de Paula FJ, Rosen CJ. Back to the future: revisiting parathyroid hormone and calcitonin control of bone remodeling. Horm Metab Res 2010; 42: 299-306.
[122]
White CM, Ji S, Cai H, Maudsley S, Martin B. Therapeutic potential of vasoactive intestinal peptide and its receptors in neurological disorders. CNS Neurol Disord Drug Targets 2010; 9: 661-6.
[123]
Stengel A, Taché Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med 2010; 235: 1168-78.
[124]
Campbell RM, Bongers J, Felix AM. Rational design, synthesis, and biological evaluation of novel growth hormone releasing factor analogues. Biopolymers 1995; 37: 67-88.
[125]
Ding WQ, Cheng ZJ, McElhiney J, Kuntz SM, Miller LJ. Silencing of secretin receptor function by dimerization with a misspliced variant secretin receptor in ductal pancreatic adenocarcinoma. Cancer Res 2002; 62: 5223-9.
[126]
Miller LJ, Sexton PM, Dong M, Harikumar KG. The class B G-protein-coupled GLP-1 receptor: an important target for the treatment of type-2 diabetes mellitus. Int J Obes Suppl 2014; 4: S9-S13.
[127]
Mayo KE, Miller LJ, Bataille D, et al. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 2003; 55: 167-94.
[128]
Dunphy JL, Taylor RG, Fuller PJ. Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Mol Cell Endocrinol 1998; 141: 179-86.
[129]
Moens K, Flamez D, Van Schravendijk C, et al. Dual glucagon recognition by pancreatic beta-cells via glucagon and glucagon-like peptide 1 receptors. Diabetes 1998; 47: 66-72.
[130]
Rondard P, Goudet C, Kniazeff J, Pin JP, Prezeau L. The complexity of their activation mechanism opens new possiblities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 2011; 60: 82-92.
[131]
Pin JP, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003; 98: 325-54.
[132]
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63: 59-126.
[133]
Bettler B, Tiao JY. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006; 110: 533-43.
[134]
Chun L, Zhang WH, Liu JF. Structure and ligand recognition of class C GPCRs. Acta Pharmacol Sin 2012; 33: 312-23.
[135]
Deal C. Future therapeutic targets in osteoporosis. Curr Opin Rheumatol 2009; 21: 380-5.
[136]
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50: 295-322.
[137]
Lewis JL, Bonner J, Modrell M, et al. Reiterated Wnt signaling during zebrafish neural crest development. Development 2004; 131: 1299-308.
[138]
Galon-Tilleman H, Yang H, Bednarek MA, et al. Apelin-36 Modulates Blood Glucose and Body Weight Independently of Canonical APJ Receptor Signaling. J Biol Chem 2017; 292: 1925-33.
[139]
Chng SC, Ho L, Tian J, et al. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell 2013; 27: 672-80.
[140]
Bai B, Cai X, Jiang Y, Karteris E, Chen J. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK1/2 and cell proliferation via Gαq-mediated mechanism. J Cell Mol Med 2014; 18: 2071-81.
[141]
Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54: 1263-72.
[142]
Keitel V, Cupisti K, Ullmer C, et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 2009; 50: 861-70.
[143]
McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther 2006; 5: 419-26.
[144]
Gong X, Carmon KS, Lin Q, et al. LGR6 is a high affinity receptor of R-spondins and potentially functions as atumor suppressor. PLoS One 2012; 7: e37137.
[145]
Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol 2014; 171: 1195-209.
[146]
Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141: 4255-61.
[147]
Callaghan B, Furness JB. Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacol Rev 2014; 66: 984-1001.
[148]
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94: 265-301.
[149]
Ferland DJ, Watts SW. Chemerin: A comprehensive review elucidating the need for cardiovascular research. Pharmacol Res 2015; 99: 351-61.
[150]
Mohammad S. Role of free fatty acid receptor 2 (ffar2) in the regulation of metabolic homeostasis. Curr Drug Targets 2015; 16: 771-5.
[151]
Villa SR, Priyadarshini M, Fuller MH, et al. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival. Sci Rep 2016; 6: 28159.
[152]
Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res 2015; 333: 171-7.
[153]
Alves M, Beamer E, Engel T. The metabotropic purinergic p2y receptor family as novel drug target in epilepsy. Front Pharmacol 2018; 9: 193.
[154]
Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 2007; 446: 1091-5.
[155]
Steculorum SM, Timper K, Engström Ruud L, et al. inhibition of p2y6 signaling in agrp neurons reduces food intake and improves systemic insulin sensitivity in obesity. Cell Reports 2017; 18: 1587-97.
[156]
Yang X, Lou Y, Liu G, et al. Microglia P2Y6 receptor is related to Parkinson’s disease through neuroinflammatory process. J Neuroinflammation 2017; 14: 38.
[157]
Morri M, Sanchez-Romero I, Tichy AM, et al. Optical functionalization of human Class A orphan G-protein-coupled receptors. Nat Commun 2018; 9: 1950.
[158]
Liu Y, Zhang Q, Chen LH, et al. Design and synthesis of 2-alkylpyrimidine-4,6-diol and 6-alkylpyridine-2,4-diol as potent gpr84 agonists. ACS Med Chem Lett 2016; 7: 579-83.
[159]
Dudley DT, Summerfelt RM. Regulated expression of angiotensin II (AT2) binding sites in R3T3 cells. Regul Pept 1993; 44: 199-206.
[160]
Karnik SS, Unal H, Kemp JR, et al. International union of basic and clinical pharmacology. XCIX. Angiotensin Receptors: Interpreters of pathophysiological angiotensinergic stimuli. Pharmacol Rev 2015; 67: 754-819.
[161]
Manthey HD, Woodruff TM, Taylor SM, Monk PN. Complement component 5a (C5a). Int J Biochem Cell Biol 2009; 41: 2114-7.
[162]
Köhl J. Self, non-self, and danger: a complementary view. Adv Exp Med Biol 2006; 586: 71-94.
[163]
Yue Y, Yin L, Weizhen Z. The growth hormone secretagogue receptor: its intracellular signaling and regulation. Int J Mol Sci 2014; 15: 4837-55.
[164]
Ghigo E, Broglio F, Arvat E, et al. Ghrelin: More than a natural GH secretagogue and/or an orexigenic factor. Clin Endocrinol 2005; 62: 1-17.
[165]
Novoselova TV, Chan LF, Clark AJL. Pathophysiology of melanocortin receptors and their accessory proteins. Best Pract Res Clin Endocrinol Metab 2018; 32: 93-106.
[166]
Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Sci 1992; 257: 1248-51.
[167]
Valverde P, Healy E. Jackson, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 1995; 11: 328-30.
[168]
O’Rahilly S, Yeo GSH, Farooqi IS. Melanocortin receptors weigh in. Nat Med 2004; 10: 351-2.
[169]
Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763-70.
[170]
Toll L, Bruchas MR, Calo’ G, Cox BM, Zaveri NT. Nociceptin/orphanin fq receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 2016; 68: 419-57.
[172]
Deen M, Correnti E, Kamm K, et al. Blocking CGRP in migraine patients - a review of pros and cons. J Headache Pain 2017; 18: 96.
[173]
Voss T, Lipton RB, Dodick DW, et al. A phase IIb randomized, doubleblind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia 2016; 36: 887-98.
[174]
Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids 2013; 45: 25-39.
[175]
Ganea D, Hooper KM, Kong W. The Neuropeptide Vip: Direct Effects on Immune Cells and Involvement in Inflammatory and Autoimmune Diseases. Acta Physiol (Oxf) 2015; 213: 442-52.
[176]
Gozes I, Glowa J, Brenneman DE, et al. Learning and sexual deficiencies in transgenic mice carrying a chimeric vasoactive intestinal peptide gene. J Mol Neurosci 1993; 4: 185-93.
[177]
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50: 295-322.
[178]
Oprea TI, Bologa CG, Brunak S, et al. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 2018; 17: 317-32.
[179]
Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell 2017; 170: 414-27.
[180]
Jacobson KA, Costanzi S, Paoletta S. Computational studies to predict or explain G protein coupled receptor polypharmacology. Trends Pharmacol Sci 2014; 35: 658-63.
[181]
Baldus M. GPCR-Lock and key become flexible. Nat Chem Biol 2018; 14: 201-2.
[182]
Samadishadlou M, Farshbaf M, Annabi N, et al. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artif Cells Nanomed Biotechnol 2018; 46: 1314-30.
[183]
Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets 2015; 16: 1671-81.
[184]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. nanoparticle-based medicines: a review of fda-approved materials and clinical trials to date. Pharm Res 2016; 33: 2373-87.
[185]
Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014; 9: 1537-57.
[186]
Sadat SM, Saeidnia S, Nazarali AJ, Haddadi A. Nano-pharmaceutical formulations for targeted drug delivery againstHER2 in breast cancer. Curr Cancer Drug Targets 2015; 15: 71-86.
[187]
Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci Rep 2016; 6: 32539.
[188]
Tamuly C, Hazarika M, Bordoloi M. Bio-derived size/shape controllable gold nanoparticles and its antimicrobial activity. J Bionanosci 2015; 9: 1-5.
[189]
Dutta PP, Bordoloi M, Gogoi K, et al. Antimalarial silver and gold nanoparticles: Green synthesis, characterization and in vitro study. Biomed Pharmacother 2017; 91: 567-80.
[190]
Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, et al. Modification of porous calcium phosphate surfaces with different geometries of bioactive glass nanoparticles. Mater Sci Eng C 2012; 32: 830-9.
[191]
Mohandes F, Salavati-Niasari M, Fathi M, et al. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater Sci Eng C Mater Biol Appl 2014; 45: 29-36.
[192]
Mohandes F, Salavati-Niasari M. Particle size and shape modification of hydroxyapatite nanostructures synthesized via a complexing agent-assisted route. Mater Sci Eng C Mater Biol Appl 2014; 40: 288-98.
[193]
Pachuta-Stec A, Rzymowska J, Mazur L, et al. Synthesis, structure elucidation and antitumour activity of N-substituted amides of 3-(3-ethylthio-1,2,4-triazol-5-yl)propenoic acid. Eur J Med Chem 2009; 44: 3788-93.
[194]
Cassee FR, van Balen EC, Singh C, et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 2011; 41: 213-29.
[195]
Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev 2018; 130: 3-11.
[196]
Lin WZ, Xiao X. GPCR-GIA: a web-server for identifying G-protein coupled receptors and their families with grey incidence analysis. Protein Eng Des Sel 2009; 22: 699-705.
[197]
Xiao X, Wang P. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J Comput Chem 2009; 30: 1414-23.
[198]
Xiao X, Lin WZ. Recent advances in predicting G-protein coupled receptor classification. Curr Bioinform 2012; 7: 132-42.
[199]
Shen HB. Recent advances in developing web-servers for predicting protein attributes. Nat Sci 2009; 1: 63-92.
[200]
Chou KC. Impacts of bioinformatics to medicinal chemistry. Med Chem 2015; 11: 218-34.
[201]
Xiao X, Min JL, Wang P, Chou KC. iGPCR-Drug: A web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One 2013; 8: e72234.
[202]
Lin WZ, Xiao X. Wenxiang: a web-server for drawing wenxiang diagrams. Nat Sci 2011; 3: 862-5.
[203]
Chen W, Lei TY, Jin DC, Lin H, Chou KC. PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition. Anal Biochem 2014; 456: 53-60.
[204]
Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol Biosyst 2015; 11: 2620-34.
[205]
Liu B, Liu F, Wang X, et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 2015; 43: W65-71.
[206]
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein Sequences. Nat Sci 2017; 9: 67-91.
[207]
Cheng X, Zhao SG, Xiao X, Chou KC. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics 2017; 33: 341-6.
[208]
Cheng X, Zhao SG, Xiao X, Chou KC. iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget 2017; 8: 58494-503.
[209]
Cheng X, Xiao X, Chou KC. pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol Biosyst 2017; 13: 1722-7.
[210]
Cheng X, Xiao X, Chou KC. pLoc-mVirus: predict subcellular
localization of multi-location virus proteins via incorporating the
optimal GO information into general PseAAC. Gene (Erratum:
ibid., 2018, Vol.644, 156-156) 2017; 628: 315-21.
[211]
Cheng X, Xiao X, Chou KC. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 2018; 34: 1448-56.
[212]
Cheng X, Zhao SG, Lin WZ, Xiao X, Chou KC. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics 2017; 33: 3524-31.
[213]
Xiao X, Cheng X, Su S, Mao Q, Chou KC. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat Sci 2017; 9: 331-49.
[215]
Cheng X, Xiao X, Chou KC. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 2018; 110: 50-8.
[216]
Chou KC. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Top Med Chem 2017; 17: 2337-58.
[217]
Chou KC. Prediction of protein cellular attributes using pseudo amino acid composition PROTEINS: Structure, Function, and Genetics (Erratum: ibid, 2001, Vol44, 60) 2001; 43: 246-55
[218]
Chou KC. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics 2009; 6: 262-74.
[219]
Chen W, Feng P, Ding H, Lin H, Chou KC. Using deformation energy to analyze nucleosome positioning in genomes. Genomics 2016; 107: 69-75.
[220]
Ding H, Deng EZ, Yuan LF, et al. iCTX-Type: A sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res Int 2014; 286419.
[221]
Lin H, Deng EZ, Ding H, Chen W, Chou KC. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res 2014; 42: 12961-72.
[222]
Zhang CJ, Tang H, Li WC, et al. iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget 2016; 7: 69783-93.
[224]
Xu Y, Shao XJ, Wu LY, et al. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 2013; 1: e171.
[225]
Qiu WR, Jiang SY, Xu ZC, Xiao X, Chou KC. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget 2017; 8: 41178-88.
[226]
Chen W, Tang H, Ye J, Lin H, Chou KC. iRNA-PseU: Identifying
RNA pseudouridine sites. Mol Ther - Nuc Acids 2016; 5: e332.
[227]
Chen W, Feng P, Yang H, et al. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget 2017; 8: 4208-17.
[228]
Chen W, Feng P, Yang H, et al. iRNA-3typeA: identifying 3-types
of modification at RNA’s adenosine sites. Mol Ther - Nuc Acids
2018; 11: 468-74.
[230]
Yang H, Qiu WR, Liu G, et al. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int J Biol Sci 2018; 14: 883-91.
[231]
Xiao X, Min JL, Lin WZ, et al. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J Biomol Struct Dyn 2015; 33: 2221-33.
[232]
Xiao X, Min JL, Wang P, Chou KC. Predict drug-protein interaction in cellular networking. Curr Top Med Chem 2013; 13: 1707-12.
[233]
Chou KC, Zhang CT, Maggiora GM. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers 1994; 34: 143-53.
[234]
Chou KC. Some remarks on predicting multi-label attributes in molecular biosystems. Mol Biosyst 2013; 9: 1092-100.
[235]
Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J Theor Biol 2011; 273: 236-47.
[236]
Jia J, Liu Z, Xiao X, Liu B, Chou KC. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol 2015; 377: 47-56.
[237]
Liu B, Wang S, Long R, Chou KC. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics 2017; 33: 35-41.