Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

酸性神经酰胺酶,癌症侵略中的一把双刃剑:综述

卷 21, 期 3, 2021

发表于: 23 December, 2020

页: [177 - 191] 页: 15

弟呕挨: 10.2174/1568009620666201223154621

价格: $65

摘要

酸性神经酰胺酶(AC)是神经酰胺代谢途径的关键酶,将促凋亡的神经酰胺水解为鞘氨醇,并通过鞘氨醇1激酶的作用代谢为有丝分裂的鞘氨醇1磷酸。 AC的细胞内水平决定了神经酰胺/鞘氨醇-1-磷酸变阻器的稳定性,而后者又决定了细胞的命运。通过将促凋亡的神经酰胺转化为抗凋亡的神经鞘氨醇-1-磷酸,在癌症状态下上调的AC表达充当“双刃剑”,其中一方面降低了神经酰胺的水平,另一方面, 1-磷酸鞘氨醇的水平增加,因此完全加重了癌症的进展。另外,AC表达上调的癌细胞表现出增强的细胞增殖,转移,化学抗性,放射抗性,并且过去已开发出许多策略来有效地靶向该酶。基因沉默和AC的药理抑制作用使耐药细胞对化学疗法/放射疗法敏感,从而促进细胞死亡。这篇综述的核心目标是探讨AC介导的肿瘤进展以及AC抑制剂在各种癌细胞系/模型中的潜在作用。

关键词: 酸性神经酰胺酶,细胞凋亡,癌症,细胞增殖,酸性神经酰胺酶抑制剂,神经酰胺,1-磷酸-鞘氨醇。

Next »
图形摘要

[1]
Chan, A.Y.; Mann, S.N.; Chen, H.; Stone, D.U.; Carr, D.J.J.; Mandal, N.A. Sphingolipids in ocular inflammation. Adv. Exp. Med. Biol., 2014, 801, 623-629.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_78] [PMID: 24664751]
[2]
Ogretmen, B.; Hannun, Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer, 2004, 4(8), 604-616.
[http://dx.doi.org/10.1038/nrc1411] [PMID: 15286740]
[3]
Andrieu-Abadie, N.; Gouazé, V.; Salvayre, R.; Levade, T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic. Biol. Med., 2001, 31(6), 717-728.
[http://dx.doi.org/10.1016/S0891-5849(01)00655-4] [PMID: 11557309]
[4]
Brizuela, L.; Martin, C.; Jeannot, P.; Ader, I.; Gstalder, C.; Andrieu, G.; Bocquet, M.; Laffosse, J.M.; Gomez-Brouchet, A.; Malavaud, B.; Sabbadini, R.A.; Cuvillier, O. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol., 2014, 8(7), 1181-1195.
[http://dx.doi.org/10.1016/j.molonc.2014.04.001] [PMID: 24768038]
[5]
Gatt, S. Enzymic hydrolysis and synthesis of ceramides. J. Biol. Chem., 1963, 238(9), 3131-3133.
[PMID: 14081938]
[6]
Mao, C.; Obeid, L.M. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta, 2008, 1781(9), 424-434.
[http://dx.doi.org/10.1016/j.bbalip.2008.06.002] [PMID: 18619555]
[7]
Cho, S.M.; Kwon, H.J. Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch. Pharm. Res., 2019, 42(3), 232-243.
[http://dx.doi.org/10.1007/s12272-019-01114-3] [PMID: 30661200]
[8]
Zeidan, Y.H.; Jenkins, R.W.; Korman, J.B.; Liu, X.; Obeid, L.M.; Norris, J.S.; Hannun, Y.A. Molecular targeting of acid ceramidase: implications to cancer therapy. Curr. Drug Targets, 2008, 9(8), 653-661.
[http://dx.doi.org/10.2174/138945008785132358] [PMID: 18691012]
[9]
Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal., 2008, 20(6), 1010-1018.
[http://dx.doi.org/10.1016/j.cellsig.2007.12.006] [PMID: 18191382]
[10]
Li, C.M.; Park, J.H.; Simonaro, C.M.; He, X.; Gordon, R.E.; Friedman, A.H.; Ehleiter, D.; Paris, F.; Manova, K.; Hepbildikler, S.; Fuks, Z.; Sandhoff, K.; Kolesnick, R.; Schuchman, E.H. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics, 2002, 79(2), 218-224.
[http://dx.doi.org/10.1006/geno.2002.6686] [PMID: 11829492]
[11]
Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol., 2010, 688, 1-23.
[http://dx.doi.org/10.1007/978-1-4419-6741-1_1] [PMID: 20919643]
[12]
Castillo, S.S.; Teegarden, D. Ceramide conversion to sphingosine-1-phosphate is essential for survival in C3H10T1/2 cells. J. Nutr., 2001, 131(11), 2826-2830.
[http://dx.doi.org/10.1093/jn/131.11.2826] [PMID: 11694603]
[13]
Bernardo, K.; Hurwitz, R.; Zenk, T.; Desnick, R.J.; Ferlinz, K.; Schuchman, E.H.; Sandhoff, K. Purification, characterization, and biosynthesis of human acid ceramidase. J. Biol. Chem., 1995, 270(19), 11098-11102.
[http://dx.doi.org/10.1074/jbc.270.19.11098] [PMID: 7744740]
[14]
Ferlinz, K.; Kopal, G.; Bernardo, K.; Linke, T.; Bar, J.; Breiden, B.; Neumann, U.; Lang, F.; Schuchman, E.H.; Sandhoff, K. Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J. Biol. Chem., 2001, 276(38), 35352-35360.
[http://dx.doi.org/10.1074/jbc.M103066200] [PMID: 11451951]
[15]
Shtraizent, N.; Eliyahu, E.; Park, J.H.; He, X.; Shalgi, R.; Schuchman, E.H. Autoproteolytic cleavage and activation of human acid ceramidase. J. Biol. Chem., 2008, 283(17), 11253-11259.
[http://dx.doi.org/10.1074/jbc.M709166200] [PMID: 18281275]
[16]
Koch, J.; Gärtner, S.; Li, C.M.; Quintern, L.E.; Bernardo, K.; Levran, O.; Schnabel, D.; Desnick, R.J.; Schuchman, E.H.; Sandhoff, K. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J. Biol. Chem., 1996, 271(51), 33110-33115.
[http://dx.doi.org/10.1074/jbc.271.51.33110] [PMID: 8955159]
[17]
Li, C.M.; Park, J.H.; He, X.; Levy, B.; Chen, F.; Arai, K.; Adler, D.A.; Disteche, C.M.; Koch, J.; Sandhoff, K.; Schuchman, E.H. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics, 1999, 62(2), 223-231.
[http://dx.doi.org/10.1006/geno.1999.5940] [PMID: 10610716]
[18]
Okino, N.; He, X.; Gatt, S.; Sandhoff, K.; Ito, M.; Schuchman, E.H. The reverse activity of human acid ceramidase. J. Biol. Chem., 2003, 278(32), 29948-29953.
[http://dx.doi.org/10.1074/jbc.M303310200] [PMID: 12764132]
[19]
Eliyahu, E.; Shtraizent, N.; Shalgi, R.; Schuchman, E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 2012, 30(3), 735-48.
[20]
Yu, F.P.S.; Amintas, S.; Levade, T.; Medin, J.A. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J. Rare Dis., 2018, 13(1), 121.
[http://dx.doi.org/10.1186/s13023-018-0845-z] [PMID: 30029679]
[21]
Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0305799101] [PMID: 14970312]
[22]
Holland, W.L.; Brozinick, J.T.; Wang, L.P.; Hawkins, E.D.; Sargent, K.M.; Liu, Y.; Narra, K.; Hoehn, K.L.; Knotts, T.A.; Siesky, A.; Nelson, D.H.; Karathanasis, S.K.; Fontenot, G.K.; Birnbaum, M.J.; Summers, S.A. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab., 2007, 5(3), 167-179.
[http://dx.doi.org/10.1016/j.cmet.2007.01.002] [PMID: 17339025]
[23]
Yu, J.; Pan, W.; Shi, R.; Yang, T.; Li, Y.; Yu, G.; Bai, Y.; Schuchman, E.H.; He, X.; Zhang, G. Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can. J. Cardiol., 2015, 31(3), 357-363.
[http://dx.doi.org/10.1016/j.cjca.2014.12.007] [PMID: 25746025]
[24]
Houben, E.; Uchida, Y.; Nieuwenhuizen, W.F.; De Paepe, K.; Vanhaecke, T.; Holleran, W.M.; Rogiers, V. Kinetic characteristics of acidic and alkaline ceramidase in human epidermis. Skin Pharmacol. Physiol., 2007, 20(4), 187-194.
[http://dx.doi.org/10.1159/000101388] [PMID: 17396053]
[25]
Grijalvo, S.; Bedia, C.; Triola, G.; Casas, J.; Llebaria, A.; Teixidó, J.; Rabal, O.; Levade, T.; Delgado, A.; Fabriàs, G. Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chem. Phys. Lipids, 2006, 144(1), 69-84.
[http://dx.doi.org/10.1016/j.chemphyslip.2006.07.001] [PMID: 16942762]
[26]
Gouazé-Andersson, V.; Flowers, M.; Karimi, R.; Fabriás, G.; Delgado, A.; Casas, J.; Cabot, M.C. Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide. Prostate, 2011, 71(10), 1064-1073.
[http://dx.doi.org/10.1002/pros.21321] [PMID: 21557271]
[27]
Bedia, C.; Canals, D.; Matabosch, X.; Harrak, Y.; Casas, J.; Llebaria, A.; Delgado, A.; Fabriás, G. Cytotoxicity and acid ceramidase inhibitory activity of 2-substituted aminoethanol amides. Chem. Phys. Lipids, 2008, 156(1-2), 33-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.07.012] [PMID: 18760267]
[28]
Bielawska, A.; Greenberg, M.S.; Perry, D.; Jayadev, S.; Shayman, J.A.; McKay, C.; Hannun, Y.A. (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J. Biol. Chem., 1996, 271(21), 12646-12654.
[http://dx.doi.org/10.1074/jbc.271.21.12646] [PMID: 8647877]
[29]
Raisova, M.; Goltz, G.; Bektas, M.; Bielawska, A.; Riebeling, C.; Hossini, A.M.; Eberle, J.; Hannun, Y.A.; Orfanos, C.E.; Geilen, C.C. Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett., 2002, 516(1-3), 47-52.
[http://dx.doi.org/10.1016/S0014-5793(02)02472-9] [PMID: 11959101]
[30]
Bai, A.; Szulc, Z.M.; Bielawski, J.; Pierce, J.S.; Rembiesa, B.; Terzieva, S.; Mao, C.; Xu, R.; Wu, B.; Clarke, C.J.; Newcomb, B.; Liu, X.; Norris, J.; Hannun, Y.A.; Bielawska, A. Targeting (cellular) lysosomal acid ceramidase by B13: design, synthesis and evaluation of novel DMG-B13 ester prodrugs. Bioorg. Med. Chem., 2014, 22(24), 6933-6944.
[http://dx.doi.org/10.1016/j.bmc.2014.10.025] [PMID: 25456083]
[31]
Szulc, Z.M.; Mayroo, N.; Bai, A.; Bielawski, J.; Liu, X.; Norris, J.S.; Hannun, Y.A.; Bielawska, A. Novel analogs of D-e-MAPP and B13. Part 1: synthesis and evaluation as potential anticancer agents. Bioorg. Med. Chem., 2008, 16(2), 1015-1031.
[http://dx.doi.org/10.1016/j.bmc.2007.08.033] [PMID: 17869115]
[32]
Bai, A.; Szulc, Z.M.; Bielawski, J.; Mayroo, N.; Liu, X.; Norris, J.; Hannun, Y.A.; Bielawska, A. Synthesis and bioevaluation of omega-N-amino analogs of B13. Bioorg. Med. Chem., 2009, 17(5), 1840-1848.
[http://dx.doi.org/10.1016/j.bmc.2009.01.057] [PMID: 19217788]
[33]
Bielawska, A.; Bielawski, J.; Szulc, Z.M.; Mayroo, N.; Liu, X.; Bai, A.; Elojeimy, S.; Rembiesa, B.; Pierce, J.; Norris, J.S.; Hannun, Y.A. Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorg. Med. Chem., 2008, 16(2), 1032-1045.
[http://dx.doi.org/10.1016/j.bmc.2007.08.032] [PMID: 17881234]
[34]
Camacho, L.; Meca-Cortés, O.; Abad, J.L.; García, S.; Rubio, N.; Díaz, A.; Celià-Terrassa, T.; Cingolani, F.; Bermudo, R.; Fernández, P.L.; Blanco, J.; Delgado, A.; Casas, J.; Fabriàs, G.; Thomson, T.M. Acid ceramidase as a therapeutic target in metastatic prostate cancer. J. Lipid Res., 2013, 54(5), 1207-1220.
[http://dx.doi.org/10.1194/jlr.M032375] [PMID: 23423838]
[35]
Draper, J.M.; Xia, Z.; Smith, R.A.; Zhuang, Y.; Wang, W.; Smith, C.D. Discovery and evaluation of inhibitors of human ceramidase. Mol. Cancer Ther., 2011, 10(11), 2052-2061.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0365] [PMID: 21885864]
[36]
Morad, S.A.; Levin, J.C.; Tan, S.F.; Fox, T.E.; Feith, D.J.; Cabot, M.C. Novel off-target effect of tamoxifen-inhibition of acid ceramidase activity in cancer cells. Biochim. Biophys. Acta, 2013, 1831(12), 1657-1664.
[http://dx.doi.org/10.1016/j.bbalip.2013.07.016] [PMID: 23939396]
[37]
Inoue, H.; Someno, T.; Kato, T.; Kumagai, H.; Kawada, M.; Ikeda, D. Ceramidastin, a novel bacterial ceramidase inhibitor, produced by Penicillium sp. Mer-f17067. J. Antibiot. (Tokyo), 2009, 62(2), 63-67.
[http://dx.doi.org/10.1038/ja.2008.10] [PMID: 19132056]
[38]
Realini, N.; Solorzano, C.; Pagliuca, C.; Pizzirani, D.; Armirotti, A.; Luciani, R.; Costi, M.P.; Bandiera, T.; Piomelli, D. Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci. Rep., 2013, 3, 1035.
[http://dx.doi.org/10.1038/srep01035] [PMID: 23301156]
[39]
Realini, N.; Palese, F.; Pizzirani, D.; Pontis, S.; Basit, A.; Bach, A.; Ganesan, A.; Piomelli, D. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. J. Biol. Chem., 2016, 291(5), 2422-2434.
[http://dx.doi.org/10.1074/jbc.M115.666909] [PMID: 26553872]
[40]
Eliyahu, E.; Shtraizent, N.; He, X.; Chen, D.; Shalgi, R.; Schuchman, E.H. Identification of cystatin SA as a novel inhibitor of acid ceramidase. J. Biol. Chem., 2011, 286(41), 35624-35633.
[http://dx.doi.org/10.1074/jbc.M111.260372] [PMID: 21846728]
[41]
Proksch, D.; Klein, J.J.; Arenz, C. Potent inhibition of Acid ceramidase by novel B-13 analogues. J. Lipids, 2011, 2011, 971618.
[http://dx.doi.org/10.1155/2011/971618] [PMID: 21490813]
[42]
Ruckhäberle, E.; Holtrich, U.; Engels, K.; Hanker, L.; Gätje, R.; Metzler, D.; Karn, T.; Kaufmann, M.; Rody, A. Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer. Climacteric, 2009, 12(6), 502-513.
[http://dx.doi.org/10.3109/13697130902939913] [PMID: 19905902]
[43]
Sänger, N.; Ruckhäberle, E.; Györffy, B.; Engels, K.; Heinrich, T.; Fehm, T.; Graf, A.; Holtrich, U.; Becker, S.; Karn, T. Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer. Mol. Oncol., 2015, 9(1), 58-67.
[http://dx.doi.org/10.1016/j.molonc.2014.07.016] [PMID: 25131496]
[44]
Flowers, M.; Fabriás, G.; Delgado, A.; Casas, J.; Abad, J.L.; Cabot, M.C. C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res. Treat., 2012, 133(2), 447-458.
[http://dx.doi.org/10.1007/s10549-011-1768-8] [PMID: 21935601]
[45]
Bai, A.; Mao, C.; Jenkins, R.W.; Szulc, Z.M.; Bielawska, A.; Hannun, Y.A. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS One, 2017, 12(6), e0177805.
[http://dx.doi.org/10.1371/journal.pone.0177805] [PMID: 28614356]
[46]
Morad, S.A.; Levin, J.C.; Shanmugavelandy, S.S.; Kester, M.; Fabrias, G.; Bedia, C.; Cabot, M.C. Ceramide-antiestrogen nanoliposomal combinations-novel impact of hormonal therapy in hormone-insensitive breast cancer. Mol. Cancer Ther., 2012, 11(11), 2352-2361.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0594] [PMID: 22962326]
[47]
Vethakanraj, H.S.; Babu, T.A.; Sudarsanan, G.B.; Duraisamy, P.K.; Ashok Kumar, S. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines. Biochem. Biophys. Res. Commun., 2015, 464(3), 833-839.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.047] [PMID: 26188095]
[48]
Vejselova, D.; Kutlu, H.M.; Kuş, G. Examining impacts of ceranib-2 on the proliferation, morphology and ultrastructure of human breast cancer cells. Cytotechnology, 2016, 68(6), 2721-2728.
[http://dx.doi.org/10.1007/s10616-016-9997-7] [PMID: 27380965]
[49]
Vethakanraj, H.S.; Sesurajan, B.P.; Padmanaban, V.P.; Jayaprakasam, M.; Murali, S.; Sekar, A.K. Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα. Anticancer Drugs, 2018, 29(1), 50-60.
[http://dx.doi.org/10.1097/CAD.0000000000000566] [PMID: 29023248]
[50]
Paschall, A.V.; Zimmerman, M.A.; Torres, C.M.; Yang, D.; Chen, M.R.; Li, X.; Bieberich, E.; Bai, A.; Bielawski, J.; Bielawska, A.; Liu, K. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer, 2014, 14, 24.
[http://dx.doi.org/10.1186/1471-2407-14-24] [PMID: 24422988]
[51]
Lucki, N.C.; Sewer, M.B. Genistein stimulates MCF-7 breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression. J. Biol. Chem., 2011, 286(22), 19399-19409.
[http://dx.doi.org/10.1074/jbc.M110.195826] [PMID: 21493710]
[52]
Meščić, A.; Harej, A.; Klobučar, M.; Glavač, D.; Cetina, M.; Pavelić, S.K.; Raić-Malić, S. Discovery of new aid ceramidase- targeted acyclic 5-Alkynyl and 5-Heteroaryl uracil nucleosides. ACS Med. Chem. Lett., 2015, 6(11), 1150-1155.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00298] [PMID: 26617970]
[53]
Hanker, L.C.; Karn, T.; Holtrich, U.; Gätje, R.; Rody, A.; Heinrich, T.; Ruckhäberle, E.; Engels, K. Acid ceramidase (AC)-a key enzyme of sphingolipid metabolism-correlates with better prognosis in epithelial ovarian cancer. Int. J. Gynecol. Pathol., 2013, 32(3), 249-257.
[http://dx.doi.org/10.1097/PGP.0b013e3182673982] [PMID: 23518908]
[54]
Ohta, H.; Sweeney, E.A.; Masamune, A.; Yatomi, Y.; Hakomori, S.; Igarashi, Y. Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation. Cancer Res., 1995, 55(3), 691-697.
[PMID: 7834642]
[55]
Braicu, E.I.; Darb-Esfahani, S.; Schmitt, W.D.; Koistinen, K.M.; Heiskanen, L.; Pöhö, P.; Budczies, J.; Kuhberg, M.; Dietel, M.; Frezza, C.; Denkert, C.; Sehouli, J.; Hilvo, M. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget, 2017, 8(61), 102912-102922.
[http://dx.doi.org/10.18632/oncotarget.22076] [PMID: 29262533]
[56]
EI-Balat A.; Karn, T.; Holtrich, U.; Becker, S.; Kommoss, S.; Gyorffy, B.; Anglesio, M.S.; Huntsman, D.G.; Drosos, Z.; Rody, A.; Gevensleben, H.; Hanker, L.C. Histotype-specific analysis of acid ceramidase expression in ovarian cancer. Virchows Arch., 2020.
[57]
Qing, S.; Tulake, W.; Ru, M.; Li, X.; Yuemaier, R.; Lidifu, D.; Rouzibilali, A.; Hasimu, A.; Yang, Y.; Rouziahong, R.; Upur, H.; Abudula, A. Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection. Tumour Biol., 2017, 39(4), 1010428317697547.
[http://dx.doi.org/10.1177/1010428317697547] [PMID: 28443473]
[58]
Dementiev, A.; Joachimiak, A.; Nguyen, H.; Gorelik, A.; Illes, K.; Shabani, S.; Gelsomino, M.; Ahn, E.E.; Nagar, B.; Doan, N. Molecular mechanism of inhibition of acid ceramidase by carmofur. J. Med. Chem., 2019, 62(2), 987-992.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01723] [PMID: 30525581]
[59]
Liu, P.; Ma, S.; Liu, H.; Han, H.; Wang, S. HCFU inhibits cervical cancer cells growth and metastasis by inactivating Wnt/β- catenin pathway. J. Cell. Biochem., 2017.
[PMID: 29231992]
[60]
Elojeimy, S.; Holman, D.H.; Liu, X.; El-Zawahry, A.; Villani, M.; Cheng, J.C.; Mahdy, A.; Zeidan, Y.; Bielwaska, A.; Hannun, Y.A.; Norris, J.S. New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett., 2006, 580(19), 4751-4756.
[http://dx.doi.org/10.1016/j.febslet.2006.07.071] [PMID: 16901483]
[61]
Seelan, R.S.; Qian, C.; Yokomizo, A.; Bostwick, D.G.; Smith, D.I.; Liu, W. Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer, 2000, 29(2), 137-146.
[http://dx.doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1018>3.0.CO;2-E] [PMID: 10959093]
[62]
Norris, J.S.; Bielawska, A.; Day, T.; El-Zawahri, A.; ElOjeimy, S.; Hannun, Y.; Holman, D.; Hyer, M.; Landon, C.; Lowe, S.; Dong, J.Y.; McKillop, J.; Norris, K.; Obeid, L.; Rubinchik, S.; Tavassoli, M.; Tomlinson, S.; Voelkel-Johnson, C.; Liu, X. Combined therapeutic use of AdGFPFasL and small molecule inhibitors of ceramide metabolism in prostate and head and neck cancers: a status report. Cancer Gene Ther., 2006, 13(12), 1045-1051.
[http://dx.doi.org/10.1038/sj.cgt.7700965] [PMID: 16763610]
[63]
Beckham, T.H.; Lu, P.; Cheng, J.C.; Zhao, D.; Turner, L.S.; Zhang, X.; Hoffman, S.; Armeson, K.E.; Liu, A.; Marrison, T.; Hannun, Y.A.; Liu, X. Acid ceramidase-mediated production of sphingosine 1-phosphate promotes prostate cancer invasion through upregulation of cathepsin B. Int. J. Cancer, 2012, 131(9), 2034-2043.
[http://dx.doi.org/10.1002/ijc.27480] [PMID: 22322590]
[64]
Saad, A.F.; Meacham, W.D.; Bai, A.; Anelli, V.; Elojeimy, S.; Mahdy, A.E.; Turner, L.S.; Cheng, J.; Bielawska, A.; Bielawski, J.; Keane, T.E.; Obeid, L.M.; Hannun, Y.A.; Norris, J.S.; Liu, X. The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol. Ther., 2007, 6(9), 1455-1460.
[http://dx.doi.org/10.4161/cbt.6.9.4623] [PMID: 17881906]
[65]
Mahdy, A.E.M.; Cheng, J.C.; Li, J.; Elojeimy, S.; Meacham, W.D.; Turner, L.S.; Bai, A.; Gault, C.R.; McPherson, A.S.; Garcia, N.; Beckham, T.H.; Saad, A.; Bielawska, A.; Bielawski, J.; Hannun, Y.A.; Keane, T.E.; Taha, M.I.; Hammouda, H.M.; Norris, J.S.; Liu, X. Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol. Ther., 2009, 17(3), 430-438.
[http://dx.doi.org/10.1038/mt.2008.281] [PMID: 19107118]
[66]
Cheng, J.C.; Bai, A.; Beckham, T.H.; Marrison, S.T.; Yount, C.L.; Young, K.; Lu, P.; Bartlett, A.M.; Wu, B.X.; Keane, B.J.; Armeson, K.E.; Marshall, D.T.; Keane, T.E.; Smith, M.T.; Jones, E.E.; Drake, R.R., Jr; Bielawska, A.; Norris, J.S.; Liu, X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J. Clin. Invest., 2013, 123(10), 4344-4358.
[http://dx.doi.org/10.1172/JCI64791] [PMID: 24091326]
[67]
White-Gilbertson, S.; Lu, P.; Norris, J.S.; Voelkel-Johnson, C. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis. J. Lipid Res., 2019, 60(7), 1225-1235.
[http://dx.doi.org/10.1194/jlr.M092247] [PMID: 30988134]
[68]
White-Gilbertson, S.; Lu, P.; Jones, C.M.; Chiodini, S.; Hurley, D.; Das, A.; Delaney, J.R.; Norris, J.S.; Voelkel-Johnson, C. Tamoxifen is a candidate first-in-class inhibitor of acid ceramidase that reduces amitotic division in polyploid giant cancer cells-Unrecognized players in tumorigenesis. Cancer Med., 2020, 9(9), 3142-3152.
[http://dx.doi.org/10.1002/cam4.2960] [PMID: 32135040]
[69]
Mizutani, N.; Inoue, M.; Omori, Y.; Ito, H.; Tamiya-Koizumi, K.; Takagi, A.; Kojima, T.; Nakamura, M.; Iwaki, S.; Nakatochi, M.; Suzuki, M.; Nozawa, Y.; Murate, T. Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J. Biochem., 2015, 158(4), 309-319.
[http://dx.doi.org/10.1093/jb/mvv039] [PMID: 25888580]
[70]
Klobučar, M.; Grbčić, P.; Pavelić, S.K.; Jonjić, N.; Visentin, S.; Sedić, M. Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling. Biochem. Biophys. Res. Commun., 2018, 503(2), 843-848.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.085] [PMID: 29920241]
[71]
Govindarajah, N.; Sutton, P.; Bowden, D.; Vimalachandran, D.; Parsons, J.L. Investigating the role of acid ceramidase (AC) on the radiotherapy response of colorectal cancer cells. EJSO, 2017, 43(11), 2207-2208.
[http://dx.doi.org/10.1016/j.ejso.2017.10.088]
[72]
Selzner, M.; Bielawska, A.; Morse, M.A.; Rüdiger, H.A.; Sindram, D.; Hannun, Y.A.; Clavien, P.A. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res., 2001, 61(3), 1233-1240.
[PMID: 11221856]
[73]
Tirodkar, T.S.; Lu, P.; Bai, A.; Scheffel, M.J.; Gencer, S.; Garrett- Mayer, E.; Bielawska, A.; Ogretmen, B.; Voelkel-Johnson, C. Expression of ceramide synthase 6 transcriptionally activates acid ceramidase in a c-Jun N-terminal kinase (JNK)-dependent manner. J. Biol. Chem., 2015, 290(21), 13157-13167.
[http://dx.doi.org/10.1074/jbc.M114.631325] [PMID: 25839235]
[74]
Vethakanraj, H.S.; Aslan, M.S.; Jayashree, A.; Vishnupriya, P.; Sekar, A.K. Targeting ceramidase and sphingosine kinase 1 of ceramide metabolic pathway induces apoptosis in human colon cancer cells. International Journal of Cell Science and Biotechnology, 2018, 7, 23-27.
[75]
Advani, J.; Subbannayya, Y.; Patel, K.; Khan, A.A.; Patil, A.H.; Jain, A.P.; Solanki, H.S.; Radhakrishnan, A.; Pinto, S.M.; Sahasrabuddhe, N.A.; Thomas, J.K.; Mathur, P.P.; Nair, B.G.; Chang, X.; Prasad, T.S.K.; Sidransky, D.; Gowda, H.; Chatterjee, A. Long-Term cigarette smoke exposure and changes in MiRNA expression and proteome in Non-Small-Cell lung cancer. OMICS, 2017, 21(7), 390-403.
[http://dx.doi.org/10.1089/omi.2017.0045] [PMID: 28692419]
[76]
Titz, B.; Boue, S.; Phillips, B.; Talikka, M.; Vihervaara, T.; Schneider, T.; Nury, C.; Elamin, A.; Guedj, E.; Peck, M.J.; Schlage, W.K.; Cabanski, M.; Leroy, P.; Vuillaume, G.; Martin, F.; Ivanov, N.V.; Veljkovic, E.; Ekroos, K.; Laaksonen, R.; Vanscheeuwijck, P.; Peitsch, M.C.; Hoeng, J. Effects of cigarette smoke, cessation, and switching to two heat-not-burn tobacco products on lung lipid metabolism in C57BL/6 and Apoe-/- Mice-An integrative systems toxicology analysis. Toxicological sciences: an official journal of the Society of Toxicology, 2016, 149(2), 441-457.
[77]
Ramírez de Molina, A.; de la Cueva, A.; Machado-Pinilla, R.; Rodríguez-Fanjul, V.; Gomez del Pulgar, T.; Cebrian, A.; Perona, R.; Lacal, J.C. Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition. Curr. Cancer Drug Targets, 2012, 12(6), 617-624.
[http://dx.doi.org/10.2174/156800912801784811] [PMID: 22515519]
[78]
Yildiz-Ozer, M.; Oztopcu-Vatan, P.; Kus, G. The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro. Cytotechnology, 2018, 70(1), 387-396.
[http://dx.doi.org/10.1007/s10616-017-0154-8] [PMID: 29230631]
[79]
Monick, M.M.; Mallampalli, R.K.; Bradford, M.; McCoy, D.; Gross, T.J.; Flaherty, D.M.; Powers, L.S.; Cameron, K.; Kelly, S. Cooperative prosurvival activity by ERK and Akt in human alveolar macrophages is dependent on high levels of acid ceramidase activity. Journal of Immunology (Baltimore, Md.:1950), 2004, 173(1), 123-35.
[80]
Morales, A.; París, R.; Villanueva, A.; Llacuna, L.; García-Ruiz, C.; Fernández-Checa, J.C. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene, 2007, 26(6), 905-916.
[http://dx.doi.org/10.1038/sj.onc.1209834] [PMID: 16862171]
[81]
Savić, R.; He, X.; Fiel, I.; Schuchman, E.H. Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One, 2013, 8(5), e65620.
[http://dx.doi.org/10.1371/journal.pone.0065620] [PMID: 23724146]
[82]
Erkasap, N. Ceranib-2 inhibits HIF1-α gene expression and induces apoptosis in HepG2 cells. FASEB J., 2019, 13(1)
[83]
Leclerc, J.; Garandeau, D.; Pandiani, C.; Gaudel, C.; Bille, K.; Nottet, N.; Garcia, V.; Colosetti, P.; Pagnotta, S.; Bahadoran, P.; Tondeur, G.; Mograbi, B.; Dalle, S.; Caramel, J.; Levade, T.; Ballotti, R.; Andrieu-Abadie, N.; Bertolotto, C. Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene, 2019, 38(8), 1282-1295.
[http://dx.doi.org/10.1038/s41388-018-0500-0] [PMID: 30254208]
[84]
Liu, Y.; He, J.; Xie, X.; Su, G.; Teitz-Tennenbaum, S.; Sabel, M.S.; Lubman, D.M. Serum autoantibody profiling using a natural glycoprotein microarray for the prognosis of early melanoma. J. Proteome Res., 2010, 9(11), 6044-6051.
[http://dx.doi.org/10.1021/pr100856k] [PMID: 20879797]
[85]
Bedia, C.; Casas, J.; Andrieu-Abadie, N.; Fabriàs, G.; Levade, T. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J. Biol. Chem., 2011, 286(32), 28200-28209.
[http://dx.doi.org/10.1074/jbc.M110.216382] [PMID: 21700700]
[86]
Lai, M.; Realini, N.; La Ferla, M.; Passalacqua, I.; Matteoli, G.; Ganesan, A.; Pistello, M.; Mazzanti, C.M.; Piomelli, D. Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells. Sci. Rep., 2017, 7(1), 7411.
[http://dx.doi.org/10.1038/s41598-017-07606-w] [PMID: 28785021]
[87]
Ortega, J.A.; Arencibia, J.M.; La Sala, G.; Borgogno, M.; Bauer, I.; Bono, L.; Braccia, C.; Armirotti, A.; Girotto, S.; Ganesan, A.; De Vivo, M. Pharmacophore identification and scaffold exploration to discover novel, potent, and chemically stable inhibitors of acid ceramidase in melanoma cells. J. Med. Chem., 2017, 60(13), 5800-5815.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00472] [PMID: 28603987]
[88]
Elojeimy, S.; Liu, X.; McKillop, J.C.; El-Zawahry, A.M.; Holman, D.H.; Cheng, J.Y.; Meacham, W.D.; Mahdy, A.E.; Saad, A.F.; Turner, L.S.; Cheng, J.; A Day, T.; Dong, J.Y.; Bielawska, A.; Hannun, Y.A.; Norris, J.S. Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy. Mol. Ther., 2007, 15(7), 1259-1263.
[http://dx.doi.org/10.1038/sj.mt.6300167] [PMID: 17426710]
[89]
Roh, J.L.; Park, J.Y.; Kim, E.H.; Jang, H. J. Targeting acid ceramidase sensitises head and neck cancer to cisplatin. European Journal of Cancer (Oxford: England: 1990), 2016, 52, 163-72.
[90]
Korbelik, M.; Banáth, J.; Zhang, W.; Saw, K.M.; Szulc, Z.M.; Bielawska, A.; Separovic, D. Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine. Int. J. Cancer, 2016, 139(6), 1372-1378.
[http://dx.doi.org/10.1002/ijc.30171] [PMID: 27136745]
[91]
Separovic, D.; Breen, P.; Boppana, N.B.; Van Buren, E.; Joseph, N.; Kraveka, J.M.; Rahmaniyan, M.; Li, L.; Gudz, T.I.; Bielawska, A.; Bai, A.; Bielawski, J.; Pierce, J.S.; Korbelik, M. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int. J. Oncol., 2013, 43(6), 2064-2072.
[http://dx.doi.org/10.3892/ijo.2013.2132] [PMID: 24126464]
[92]
Doan, N.B.; Alhajala, H.; Al-Gizawiy, M.M.; Mueller, W.M.; Rand, S.D.; Connelly, J.M.; Cochran, E.J.; Chitambar, C.R.; Clark, P.; Kuo, J.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency. Oncotarget, 2017, 8(68), 112662-112674.
[http://dx.doi.org/10.18632/oncotarget.22637] [PMID: 29348854]
[93]
Abuhusain, H.J. Investigating Sphingolipid Metabolism in Glioblastoma., 2013.unsworks.unsw.edu.au
[94]
Doan, N.B.; Nguyen, H.S.; Al-Gizawiy, M.M.; Mueller, W.M.; Sabbadini, R.A.; Rand, S.D.; Connelly, J.M.; Chitambar, C.R.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase confers radioresistance to glioblastoma cells. Oncol. Rep., 2017, 38(4), 1932-1940.
[http://dx.doi.org/10.3892/or.2017.5855] [PMID: 28765947]
[95]
Doan, N.B.; Nguyen, H.S.; Alhajala, H.S.; Jaber, B.; Al-Gizawiy, M.M.; Ahn, E.E.; Mueller, W.M.; Chitambar, C.R.; Mirza, S.P.; Schmainda, K.M. Identification of radiation responsive genes and transcriptome profiling via complete RNA sequencing in a stable radioresistant U87 glioblastoma model. Oncotarget, 2018, 9(34), 23532-23542.
[http://dx.doi.org/10.18632/oncotarget.25247] [PMID: 29805753]
[96]
Doan, N.B.; Nguyen, H.S.; Montoure, A.; Al-Gizawiy, M.M.; Mueller, W.M.; Kurpad, S.; Rand, S.D.; Connelly, J.M.; Chitambar, C.R.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase is a novel drug target for pediatric brain tumors. Oncotarget, 2017, 8(15), 24753-24761.
[http://dx.doi.org/10.18632/oncotarget.15800] [PMID: 28445970]
[97]
Kuş, G.; Özkurt, M.; Öztopcu Vatan, P.; Erkasap, N.; Uyar, R.; Kabadere, S. Comparison of a ceramidase inhibitor (ceranib-2) with C2 ceramide and cisplatin on cytotoxicity and apoptosis of glioma cells. Turk. J. Biol., 2018, 42(3), 259-265.
[PMID: 30814888]
[98]
Tan, S.F.; Liu, X.; Fox, T.E.; Barth, B.M.; Sharma, A.; Turner, S.D.; Awwad, A.; Dewey, A.; Doi, K.; Spitzer, B.; Shah, M.V.; Morad, S.A.; Desai, D.; Amin, S.; Zhu, J.; Liao, J.; Yun, J.; Kester, M.; Claxton, D.F.; Wang, H.G.; Cabot, M.C.; Schuchman, E.H.; Levine, R.L.; Feith, D.J.; Loughran, T.P., Jr Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget, 2016, 7(50), 83208-83222.
[http://dx.doi.org/10.18632/oncotarget.13079] [PMID: 27825124]
[99]
Schmidt, M.; Nagel, S.; Proba, J.; Thiede, C.; Ritter, M.; Waring, J.F.; Rosenbauer, F.; Huhn, D.; Wittig, B.; Horak, I.; Neubauer, A. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood, 1998, 91(1), 22-29.
[http://dx.doi.org/10.1182/blood.V91.1.22] [PMID: 9414265]
[100]
Diaz-Blanco, E.; Bruns, I.; Neumann, F.; Fischer, J.C.; Graef, T.; Rosskopf, M.; Brors, B.; Pechtel, S.; Bork, S.; Koch, A.; Baer, A.; Rohr, U.P.; Kobbe, G.; von Haeseler, A.; Gattermann, N.; Haas, R.; Kronenwett, R. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia, 2007, 21(3), 494-504.
[http://dx.doi.org/10.1038/sj.leu.2404549] [PMID: 17252012]
[101]
Hu, X.; Yang, D.; Zimmerman, M.; Liu, F.; Yang, J.; Kannan, S.; Burchert, A.; Szulc, Z.; Bielawska, A.; Ozato, K.; Bhalla, K.; Liu, K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res., 2011, 71(8), 2882-2891.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2493] [PMID: 21487040]
[102]
Tan, S.F.; Liu, X.; Broeg, K.; Fox, T.E.; Feith, D.J. Jr. Loughran, T.P. Acid Ceramidase Inhibition Impairs Tumor Progression in a Rat Model of LGL Leukemia. Blood, 2015, 126(23), 1246.
[http://dx.doi.org/10.1182/blood.V126.23.1246.1246]
[103]
Bielawska, A.; Linardic, C.M.; Hannun, Y.A. Ceramide-mediated biology. Determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs. J. Biol. Chem., 1992, 267(26), 18493-18497.
[PMID: 1526986]
[104]
Hamtiaux, L.; Hansoulle, L.; Dauguet, N.; Muccioli, G.G.; Gallez, B.; Lambert, D.M. Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism. PLoS One, 2011, 6(10), e26823.
[http://dx.doi.org/10.1371/journal.pone.0026823] [PMID: 22046372]
[105]
Vethakanraj, H.S.; Sekar, A.K. Evaluation of synergistic effect of Ceranib 2 and Tamoxifen in human breast cancer cells. Res. J. Pharm. Biol. Chem. Sci., 2017, 8(4), 1110-1114.
[106]
Samsel, L.; Zaidel, G.; Drumgoole, H.M.; Jelovac, D.; Drachenberg, C.; Rhee, J.G.; Brodie, A.M.; Bielawska, A.; Smyth, M.J. The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate, 2004, 58(4), 382-393.
[http://dx.doi.org/10.1002/pros.10350] [PMID: 14968439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy