Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspectives in Medicinal Chemistry

Brevifoliol and its Analogs: A New Class of Anti-tubercular Agents

Author(s): Balakishan Bhukya*, Sarfaraz Alam, Vinita Chaturvedi, Priyanka Trivedi, Shailesh Kumar, Feroz Khan, Arvind S. Negi* and Santosh Kumar Srivastava*

Volume 21, Issue 9, 2021

Published on: 28 May, 2020

Page: [767 - 776] Pages: 10

DOI: 10.2174/1568026620666200528155236

Price: $65

Abstract

Brevifoliol is an abeo-taxane isolated from the Taxus wallichiana needles; eighteen semisynthetic esters derivatives of brevifoliol were prepared by Steglich esterification and screened for their anti-tubercular potential against Mycobacterium tuberculosis H37Ra avirulent strain. The 3- [chloro (7)] and 3, 5-[dinitro (8)] benzoic acid ester derivatives were most active (MIC 25 ug/ml) against the pathogen. Further, in silico docking studies of the active derivative 7 with mycobacterium enzyme inhA (enoyl-ACP reductase) gave the LibDock score of 152.68 and binding energy of -208.62 and formed three hydrogen bonds with SER94, MET98, and SER94. Similarly, when derivative 8 docked with inhA, it gave the LibDock score of 113.55 and binding energy of -175.46 and formed a single hydrogen bond with GLN100 and Pi-interaction with PHE97. On the other hand, the known standard drug isoniazid (INH) gave the LibDock score of 61.63, binding energy of -81.25 and formed one hydrogen bond with ASP148. These molecular docking results and the way of binding pattern indicated that compounds 7 and 8 bound well within the binding pocket of inhA and showed a higher binding affinity than the known drug isoniazid. Additionally, both the derivatives (7 and 8) showed no cytotoxicity, with CC50 195.10 and 111.36, respectively towards the mouse bone marrow-derived macrophages.

Keywords: Brevifoliol, Semi-synthetic derivatives, Anti-tubercular activity, In-silico studies, Taxus wallichiana, Tuberculosis.

Next »
Graphical Abstract

[1]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol., 2015, 4(3), 165-183.
[http://dx.doi.org/10.1016/j.ijmyco.2015.05.004] [PMID: 27649863]
[2]
Quan, D.; Nagalingam, G.; Payne, R.; Triccas, J.A. New tuberculosis drug leads from naturally occurring compounds. Int. J. Infect. Dis., 2017, 56, 212-220.
[http://dx.doi.org/10.1016/j.ijid.2016.12.024] [PMID: 28062229]
[3]
Salomon, C.E.; Schmidt, L.E. Natural products as leads for tuberculosis drug development. Curr. Top. Med. Chem., 2012, 12(7), 735-765.
[http://dx.doi.org/10.2174/156802612799984526] [PMID: 22283816]
[4]
Huang, Q.; Kirikae, F.; Kirikae, T.; Pepe, A.; Amin, A.; Respicio, L.; Slayden, R.A.; Tonge, P.J.; Ojima, I. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents. J. Med. Chem., 2006, 49(2), 463-466.
[http://dx.doi.org/10.1021/jm050920y] [PMID: 16420032]
[5]
Chattopadhyay, S.K.; Sharma, R.P.; Appendino, G.; Gariboldi, P. A rearranged taxane from the Himalayan Yew. Phytochemistry, 1995, 39, 869-870.
[http://dx.doi.org/10.1016/0031-9422(95)00132-Q]
[6]
Vander Velde, D.G.; Georg, G.I.; Gollapudi, S.R.; Jampani, H.B.; Liang, X.Z.; Mitscher, L.A.; Ye, Q.M. Wallifoliol, a taxol congener with a novel carbon skeleton, from Himalayan Taxus wallichiana. J. Nat. Prod., 1994, 57(6), 862-867.
[http://dx.doi.org/10.1021/np50108a032] [PMID: 7931372]
[7]
Almutairi, F.M.; Faridi, U. Brevifoliol: An ignored cousin of Taxol. Int. J. Phytomed., 2018, 10(3), 153-155.
[8]
Chattopadhyay, S.K.; Tripathi, S.; Darokar, M.P.; Faridi, U.; Sisodia, B.; Negi, S.; Kotesh Kumar, J.; Khanuja, S.P. Syntheses and cytotoxicities of the analogues of the taxoid brevifoliol. Eur. J. Med. Chem., 2008, 43(7), 1499-1505.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.002] [PMID: 17950495]
[9]
Kelland, L.R.; Abel, G. Comparative in vitro cytotoxicity of taxol and Taxotere against cisplatin-sensitive and -resistant human ovarian carcinoma cell lines. Cancer Chemother. Pharmacol., 1992, 30(6), 444-450.
[http://dx.doi.org/10.1007/BF00685595] [PMID: 1356649]
[10]
Tremblay, S.; Soucy, C.; Towers, N.; Gunning, P.J.; Breau, L. Characterization of an abeo-taxane: brevifoliol and derivatives. J. Nat. Prod., 2004, 67(5), 838-845.
[http://dx.doi.org/10.1021/np0304565] [PMID: 15165147]
[11]
Zhao, Y.; Guo, N.; Lou, L.G.; Cong, Y.W.; Peng, L.Y.; Zhao, Q.S. Synthesis, cytotoxic activity, and SAR analysis of the derivatives of taxchinin A and brevifoliol. Bioorg. Med. Chem., 2008, 16(9), 4860-4871.
[http://dx.doi.org/10.1016/j.bmc.2008.03.041] [PMID: 18381240]
[12]
Kalani, K.; Chaturvedi, V.; Trivedi, P.; Tondon, S.; Srivastava, S.K. Dihydroartemisinin and its analogs: a new class of antitubercular agents. Curr. Top. Med. Chem., 2019, 19(8), 594-599.
[http://dx.doi.org/10.2174/1568026619666190304142802] [PMID: 30836916]
[13]
Kalani, K.; Alam, S.; Chaturvedi, V.; Singh, S.; Khan, F.; Srivastava, S.K. In vitro, in silico and ex vivo studies of dihydroartemisinin derivatives as antitubercular agents. Curr. Top. Med. Chem., 2019, 19(8), 633-644.
[http://dx.doi.org/10.2174/1568026619666190305131425] [PMID: 30834834]
[14]
Kalani, K.; Chaturvedi, V.; Alam, S.; Khan, F.; Srivastava, S.K. Anti-tubercular agents from Glycyrrhiza glabra. Curr. Top. Med. Chem., 2015, 15(11), 1043-1049.
[http://dx.doi.org/10.2174/1568026615666150317223323] [PMID: 25786503]
[15]
Dwivedi, G.R.; Gupta, S.; Roy, S.; Kalani, K.; Pal, A.; Thakur, J.P.; Saikia, D.; Sharma, A.; Darmwal, N.S.; Darokar, M.P.; Srivastava, S.K. Tricyclic sesquiterpenes from Vetiveria zizanoides (L.) Nash as antimycobacterial agents. Chem. Biol. Drug Des., 2013, 82, 587-594.
[16]
Harish, C. Upadhyay, Jay Prakash Thakur, Dharmendra Saikia, Santosh K. Srivastava, Anti-tubercular agents from Ammannia baccifera (Linn.). Med. Chem. Res., 2013, 22, 16-21.
[http://dx.doi.org/10.1007/s00044-012-9998-9]
[17]
Upadhyay, H.C.; Dwivedi, G.R.; Darokar, M.P.; Chaturvedi, V.; Srivastava, S.K. Bioenhancing and antimycobacterial agents from Ammannia multiflora. Planta Med., 2012, 78(1), 79-81.
[http://dx.doi.org/10.1055/s-0031-1280256] [PMID: 21969115]
[18]
Gupta, S.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antimycobacterial activity of fractions and isolated compounds from Vetiveria zizanioides. Med. Chem. Res., 2012, 21, 1283-1289.
[http://dx.doi.org/10.1007/s00044-011-9639-8]
[19]
Bhukya, B.; Fatima, K.; Nagar, A.; Lakshmi, V.; Dubey, P.; Kumar, S.; Kumar, Y.; Luqman, S.; Chanda, D.; Tandon, S.; Shanker, K.; Khan, F. Brevifoliol ester induces apoptosis in prostate cancer cells by activation of caspase pathway. Chem. Biol. Drug Des., 2020, 95, 150-161.
[20]
McClatchy, K. Susceptibility testing of mycobacteria. J. Lab. Med., 1978, 9, 47-52.
[http://dx.doi.org/10.1093/labmed/9.3.47]
[21]
Kapkoti, D.S.; Singh, S.; Alam, S.; Khan, F.; Luqman, S.; Bhakuni, R.S. In vitro antiproliferative activity of glabridin derivatives and their in silico target identification. Nat. Prod. Res., 2018, 1-8.
[http://dx.doi.org/10.1080/14786419.2018.1530228] [PMID: 30580626]
[22]
Alam, S.; Khan, F. 3D-QSAR studies on Maslinic acid analogs for Anticancer activity against breast cancer cell line MCF-7. Sci. Rep., 2017, 7(1), 6019.
[http://dx.doi.org/10.1038/s41598-017-06131-0] [PMID: 28729623]
[23]
Tyagi, R.; Verma, S.; Mishra, S.; Srivastava, M.; Alam, S.; Khan, F.; Srivastava, S.K. In vitro and in silico studies of glycyrrhetinic acid derivatives as anti-filarial agents. Curr. Top. Med. Chem., 2019, 19(14), 1191-1200.
[24]
Alam, S.; Khan, F. Virtual screening, docking, ADMET and system pharmacology studies on garcinia caged xanthone derivatives for anticancer activity. Sci. Rep., 2018, 8(1), 5524.
[http://dx.doi.org/10.1038/s41598-018-23768-7] [PMID: 29615704]
[25]
Alam, S.; Khan, F. QSAR, docking, ADMET, and system pharmacology studies on tormentic acid derivatives for anticancer activity. J. Biomol. Struct. Dyn., 2018, 36(9), 2373-2390.
[http://dx.doi.org/10.1080/07391102.2017.1355846] [PMID: 28705120]
[26]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183-195.
[PMID: 24516330]
[27]
Alam, S.; Khan, F. 3D-QSAR, Docking, ADME/Tox studies on flavone analogs reveal anticancer activity through Tankyrase inhibition. Sci. Rep., 2019, 9(1), 5414.
[28]
Kaur, R.; Chattopadhyay, S.K.; Chatterjee, A.; Prakash, O.; Khan, F.; Suri, N. Synthesis and in vitro anticancer activity of brevifoliol derivatives substantiated by in silico approach. Med. Chem. Res., 2014, 23(9), 4138-4148.
[http://dx.doi.org/10.1007/s00044-014-0980-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy