Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection

Author(s): Agnieszka Chylewska*, Małgorzata Ogryzek and Mariusz Makowski*

Volume 26, Issue 1, 2019

Page: [121 - 165] Pages: 45

DOI: 10.2174/0929867324666171023164813

Price: $65

Abstract

Background: Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).

Methods: Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.

Results: The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.

Discussion: Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.

Keywords: Microorganisms, electrophoretic, nucleic-acid-based, immunomagnetic techniques, separation methods, microbes.

[1]
Nugen, S.R.; Baeumner, A.J. Trends and opportunities in food pathogen detection. Anal. Bioanal. Chem., 2008, 391, 451-454.
[2]
Pedrero, M.; Campuzano, S.; Pingarrón, J.M. Electroanalytical Sensors and devices for multiplexed detection of foodborne pathogen microorganisms. Sensors, 2009, 9, 5503-5520.
[3]
Byrne, B.; Stack, E.; Gilmartin, N.; O’ Kennedy, R. Antibodybased sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors, 2009, 9, 4407-4445.
[4]
Raz, S.R.; Haasnoot, W. Multiplex bioanalytical methods for food and environmental monitoring. Trends Analyt. Chem., 2011, 30, 1526-1537.
[5]
Gehring, A.G.; Tu, S.I. High-throughput biosensors for multiplexed food-borne pathogen detection. Annu. Rev. Anal. Chem., 2011, 4, 151-172.
[6]
Hammack, T.S.; Amaguana, R.M.; June, G.A.; Sherrod, P.S.; Andrews, W.H. Relative effectiveness of selenite cystine broth, tetrathionate broth, and Rappaport-Vassiliadis medium for the recovery of Salmonella from foods with a low microbial load. J. Food Prot., 1999, 62, 16-21.
[7]
Vasavada, P.C. Advances in Pathogen Detection. Food Test. Anal, 1997, 47, 18-23.
[8]
Hammack, T.S.; Valentin-Bon, T.; Jacobson, A.P.; Andrews, W.H. Relative effectiveness of the Bacteriological Analytical Manual method for the recovery of Salmonella from whole cantaloupes and cantaloupe rinses with selected preenrichment media and rapid methods. J. Food Prot., 2004, 67, 870-877.
[9]
0′ Connell, P. J.; Guilbault, G. G. Future Trends in Biosensor Research Mini-Review. Anal. Lett., 2001, 34, 1223-1232.
[10]
Rand, A.G.; Ye, J.; Brown, C.W.; Letcher, S.V. Optical biosensors for food pathogen detection. Food Technol., 2002, 56, 32-39.
[11]
Bartlett, K.H.; Kennedy, S.M.; Brauer, M. van Netten; Dill, B. Evaluation and a predictive model of airborne fungal concentrations in school classrooms. Annals of Occup Hyg., 2004, 48, 547-554.
[12]
Bartlett, K.H.; Kennedy, S.M.; Brauer, M. van Netten; Dill, B. Evaluation and determinants of airborne bacterial concentrations in school classrooms. J. Occup. Environ. Hyg., 2004, 1, 639-647.
[13]
Beguin, H.; Nolard, N. Prevalence of fungi in carpeted floor environment: analysis of dust samples from living-rooms, bedrooms, offices and school classrooms. Aerobiologia, 1996, 12, 113-120.
[14]
Rehm, B.H.A. Microbial production of biopolymers and polymer precursors. Applications and perspectives; Caister Academic Press, 2008.
[15]
Diaz, E. Microbial biodegradation. Genomics and molecular biology, 1st ed; Caister Academic Press, 2008.
[16]
Tannock, G.W. Probiotics and Prebiotics. Scientific Aspects; Caister Academic Press, 2005.
[17]
Mengesha, A.; Dubois, L.; Paesmans, K. Clostridia in Anti-tumor Therapy, Clostridia, Molecular Biology in the Post-genomic Era; Caister Academic Press, 2009, pp. 199-214.
[18]
Bashan, Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv., 1998, 16, 729-770.
[19]
Black, J.G. Microbiology: Priciples and Explorations; Wiley: New York, USA, 2008.
[20]
Maukonen, J.; Matto, J.; Wirtanen, G.; Raaska, L.; Mattila-Sandholm, T.; Saarlea, M. Methodologies for the evaluation of microbes in industrial environments: a review. J. Ind. Microbiol. Biotechnol., 2003, 30, 327-356.
[21]
Andersson, A.; Ronner, U.; Granum, P.E. What problems does the food industy have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol., 1995, 28, 145-155.
[22]
Araujo, M.; Sueiro, R.A.; Gomez, M.J.; Garrido, M.J. Evaluation of fluorogenic TSC agar for recovering Clostridium perfringens in groundwater samples. Water Sci. Technol., 2001, 43, 201-204.
[23]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2008, 6, 29-40.
[24]
Shinn, E.A.; Griffin, D.W.; Seba, D.B. Atmospheric transport of mold spores in clouds of desert dust. Arch. Environ. Health, 2003, 58, 498-504.
[25]
Armstrong, D.W.; Schulte, G.; Schneiderheinze, J.M.; Westenberg, D.J. Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal. Chem., 1999, 71, 5465-5469.
[26]
Cabeen, M.T.; Jacobs-Wagner, C. Bacterial cell shape. Nat. Rev. Microbiol., 2005, 3, 601-610.
[27]
Young, K.D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev., 2006, 70, 660-703.
[28]
Armstrong, D.W.; He, L. (2001), Rapid determination of cell viability in single or mixed samples, using capillary electrophoresis LIF microfluidic systems. Anal. Chem., 2001, 2001(73), 4551-4557.
[29]
Lewin, E.; Cassimeris, L.; Lingappa, V.R.; Plopper, G. Cells; Jones and Bartlett Publishers: Sudbury, MA, USA, 2006.
[30]
Ubbink, J.; Schar-Zammaretti, P. Colloidal properties and specific interactions of bacterial surfaces. Curr. Opin. Colloid Interface Sci., 2007, 12, 263-270.
[31]
Beveridge, T.J.; Graham, L.L. Surface layers of bacteria. Microbiol. Rev., 1991, 55, 684-705.
[32]
Beveridge, T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 1999, 181, 4725-4733.
[33]
Soni, K.A.; Balasubramanian, A.K.; Beskok, A.; Pillai, S.D. Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr. Microbiol., 2008, 56, 93-97.
[34]
Radko, S.P.; Chrambach, A. Separation and characterization of sub-microm- and microm-sized particles by capillary zone electrophoresis. Electrophoresis, 2002, 23, 1957-1972.
[35]
Henry, D.C. The Cataphoresis of Suspended Particles. Part I. The Equation of Cataphoresis. Proc. R. Soc. Lond., 1931, 133, 106-129.
[36]
Bos, R.; van der Mei, H.C.; Busscher, H.J. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study. FEMS Microbiol. Rev., 1999, 23, 179-230.
[37]
Eboigbodin, K.E.; Newton, J.R.A.; Routh, A.F.; Biggs, C.A. Role of nonadsorbing polymers in bacterial aggregation. Langmuir, 2005, 21, 12315-12319.
[38]
Busscher, H.J.; Weerkamp, A.H.; van der Mei, H.C.; van Pelt, A.W.J.; de Jong, H.P.; Arends, J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol., 1984, 48, 980-983.
[39]
van Loosdrecht, M.C.M.; Lynkema, J.; Norde, W.; Zehnder, A.J.B. Bacterial adhesion: a physicochemical approach. Microb. Ecol., 1989, 17, 1-15.
[40]
Fegan, M.; Hayward, C. Genetic diversity of bacterial plant pathogens. In: Plant Microbiology; Gallings, M.; Holmes, A., Eds.; BIOS Scientific Publishers London, 2004; pp. 181-204.
[41]
Janse, J.D. Phytobacteriology-principles and practice; CABI Publishing: Cambridge, 2005, pp. 43-75.
[42]
Tripathi, D.P. Introductory Plant Bacteriology; Kalyani publishers: New Delhi, 2008, pp. 34-36.
[43]
Kambara, H.; Nagai, K. Electrophoretic apparatus having arrayed electrophoresis lanes, Hitachi Ltd., notification No. US 07/800,042, Patent No. US 5192412 A, 1993.
[44]
Harstad, R.K.; Johnson, A.C.; Weisenberger, M.M.; Bowser, M.T. Capillary Electrophoresis. Anal. Chem., 2016, 88(1), 299-319.
[45]
Desai, M.J.; Armstrong, D.W. Separation, Identification, and Characterization of Microorganisms by Capillary Electrophoresis. Microbiol. Mol. Biol. Rev., 2003, 67, 38-51.
[46]
Kłodzińska, E.; Buszewski, B. Electrokinetic Detection and Characterization of Intact Microorganisms. Anal. Chem., 2009, 81, 8-15.
[47]
Petr, J.; Maier, V. Analysis of microorganisms by capillary electrophoresis. Trends Analyt. Chem., 2012, 31, 9-22.
[48]
Khatib, R.M.; Konanavar, V.N. Modern Identification Methods of Bacteria, Research and Reviews. J. Agricul. Allied Scie, 2014, 3, 32-38.
[49]
Kremser, L.; Bilek, G.; Blaas, D.; Kenndler, E. Capillary electrophoresis of viruses, subviral particles and virus complexes. J. Sep. Sci., 2007, 30, 1704-1713.
[50]
Kostal, V.; Arriaga, E.A. Recent advances in the analysis of biological particles by capillary electrophoresis. Electrophoresis, 2008, 29, 2578-2586.
[51]
Hjertan, S.; Eldenbring, K.; Kilar, F.; Liao, J.L.; Chn, A.J.; Siebert, C.J.; Zhu, M.D. Carreir-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chromatogr. Ser. A, 1987, 403, 390-395.
[52]
Grossman, P.D.; Soane, D.S. Orientation effects on the electrophoretic mobility of rod-shaped molecules in free solution. Anal. Chem., 1990, 62, 1592-1596.
[53]
Schnabel, U.; Groiss, F.; Blaas, D.; Kenndler, E. Determination of the pI of Human Rhinovirus Serotype 2 by Capillary Isoelectric Focusing. Anal. Chem., 1996, 68, 4300-4303.
[54]
Okun, V.M.; Blaas, D.; Kenndler, E. Separation and biospecific identification of subviral particles of human Rhinovirus Serotype 2 by capillary zone electrophoresis. Anal. Chem., 1999, 71, 4480-4485.
[55]
Okun, V.M.; Ronacher, B.; Blaas, D.; Kenndler, E. Analysis of Common Cold Virus (Human Rhinovirus Serotype 2) by Capillary Zone Electrophoresis: The Problem of Peak Identification. Anal. Chem., 1999, 71, 2028-2032.
[56]
Mann, B.; Traina, J.A.; Soderblom, C.; Murakami, P.K.; Lehmberg, E.; Lee, D.; Irving, J.; Nestaas, E.; Pungor, E.J. Capillary zone electrophoresis of a recombinant adenovirus. J. Chromatogr. Ser. A, 2000, 895, 329-337.
[57]
Okun, V.M.; Ronacher, B.; Blaas, D.; Kenndler, E. Capillary Electrophoresis with Postcolumn Infectivity Assay for the Analysis of Different Serotypes of Human Rhinovirus (Common Cold Virus). Anal. Chem., 2000, 72, 2553-2558.
[58]
Okun, V.M.; Ronacher, B.; Blaas, D.; Kenndler, E. Capillary Electrophoresis with Postcolumn Infectivity Assay for the Analysis of Different Serotypes of Human Rhinovirus (Common Cold Virus). Anal. Chem., 2000, 72, 4634-4639.
[59]
Okun, V.M.; Moser, R.; Blaas, D.; Kenndler, E. Complexes between Monoclonal Antibodies and Receptor Fragments with a Common Cold Virus: Determination of Stoichiometry by Capillary Electrophoresis. Anal. Chem., 2001, 73, 3900-3906.
[60]
Pavski, V.; Le, X.C. Detection of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using Aptamers as Probes in Affinity Capillary Electrophoresis. Anal. Chem., 2001, 73, 6070-6076.
[61]
Garcı’a-Lerma, J.G.; Schinazi, R.F.; Juodawlkis, A.S.; Soriano, V.; Lin, Y.; Tatti, K.; Rimland, D.; Folks, T.M.; Heneine, W. A rapid non-culture-based assay for clinical monitoring of phenotypic resistance of human immunodeficiency virus type 1 to lamivudine (3TC). Antimicrob. Agents Chemother., 1999, 43, 264-270.
[62]
Vegvari, A.; Hjerten, S. Hybrid microdevice electrophoresis of peptides, proteins, DNA, viruses, and bacteria in various separation media, using UV-detection. Electrophoresis, 2003, 24, 3815-3820.
[63]
Konecsni, T.; Kremser, L.; Snyers, L.; Rankl, C.; Kilar, F.; Kenndler, E.; Blaas, D. Twelve receptor molecules attach per viral particle of human rhinovirus serotype 2 via multiple modules. FEBS Lett., 2004, 568, 99-104.
[64]
Liu, Z.; Pawliszyn, J. Coupling of solid-phase microextraction and capillary isoelectric focusing with liquid-core waveguide laser-induced fluorescence whole-column imaging detection. Anal. Biochem., 2005, 336, 94-101.
[65]
Liu, Z.; Pawliszyn, J. Behaviors of the MS2 virus and related antibodies in capillary isoelectric focusing with whole-column imaging detection. Electrophoresis, 2005, 26, 556-562.
[66]
Nicodemou, A.; Petsch, M.; Konecsni, T.; Kremser, L.; Kenndler, E.; Casasnovas, J.M.; Blaas, D. Rhinovirus-stabilizing activity of artificial VLDL-receptor variants defines a new mechanism for virus neutralization by soluble receptors. FEBS Lett., 2005, 579, 5507-5511.
[67]
Kremser, L.; Petsch, M.; Blaas, D.; Kenndler, E. Capillary electrophoresis of affinity complexes between subviral 80S particles of human rhinovirus and monoclonal antibody 2G2. Electrophoresis, 2006, 27, 2630-2637.
[68]
Kremser, L.; Bilek, G.; Blaas, D.; Kenndler, E. Influence of detergent additives on mobility of native and subviral rhinovirus particles in capillary electrophoresis. Electrophoresis, 2006, 27, 1112-1121.
[69]
Weiss, W.U.; Kolivoska, V.; Kremser, L.; Gas, B.; Blaas, D.; Kenndler, E. Virus analysis by electrophoresis on a microfluid chip. J. Chromatogr. B, 2007, 860, 173-179.
[70]
Bilek, G.; Kremser, L.; Wruss, J.; Blaas, D.; Kenndler, E. Mimicking Early Events of Virus Infection: Capillary Electrophoretic Analysis of Virus Attachment to Receptor-Decorated Liposomes. Anal. Chem., 2007, 79, 1620-1625.
[71]
Weiss, V.U.; Bilek, G.; Pickl-Herk, A.; Subirats, X.; Niespodziana, K.; Valenta, R.; Blaas, D.; Kenndler, E. Liposomal Leakage Induced by Virus-Derived Peptides, Viral Proteins, and Entire Virions: Rapid Analysis by Chip Electrophoresis. Anal. Chem., 2010, 82, 8146-8152.
[72]
Halewyck, H.; Oita, I.; Thys, B.; Dejaegher, B.; Heyden, Y.V.; Rombau, B. Identification of poliovirions and subviral particles by capillary electrophoresis. Electrophoresis, 2010, 31, 3281-3287.
[73]
Weiss, V.U.; Subirats, X.; Pickl-Herk, A.; Bilek, G.; Winkler, W.; Kumar, M.; Allmaier, G.; Blaas, D.; Kenndler, E. Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas-phase electrophoretic mobility molecular analysis: Part I. Electrophoresis, 2012, 33, 1833-1841.
[74]
Tricht, E.; Geurink, L.; Pajic, B.; Nijenhuis, J.; Backus, H.; Germano, M.; Somsen, G.W.; Sanger-van de Griend, C.E. New capillary gel electrophoresis method for fast and accurate identification and quantification of multiple viral proteins in influenza. Talanta, 2015, 144, 1030-1035.
[75]
Ebersole, R.C.; McCormick, R.M. 1993. Separation and isolation of viable bacteria by capillary zone electrophoresis. Biotechnol, 1993, 11, 1278-1282.
[76]
Hjertan, S.; Kubo, K. A new type of pH- and detergent-stable coating for elimination of electroendosmosis and adsorption in (capillary) electrophoresis. Electrophoresis, 1993, 14, 390-395.
[77]
Pfetsch, A.; Welsch, T. 1997. Determination of the electrophoretic mobility of bacteria and their separation by capillary zone electrophoresis. Fresenius J. Anal. Chem., 1997, 359, 198-201.
[78]
Glynn, J.R.; Belongia, B.M.; Arnold, R.G.; Ogden, K.L.; Baygents, J.C. Capillary Electrophoresis Measurements of Electrophoretic Mobility for Colloidal Particles of Biological Interest. Appl. Environ. Microbiol., 1998, 64, 2572-2577.
[79]
Landers, J.P. Handbook of capillary electrophoresis; CRC Press: Ann Arbor, Mich., 1994.
[80]
Torimura, M.; Ito, S.; Kano, K.; Ikeda, T.; Esaka, Y.; Ueda, T. Surface characterization and on-line activity measurements of microorganisms by capillary zone electrophoresis. J. Chromatogr. B, 1999, 721, 31-37.
[81]
Iki, N.; Yeung, E.S. Non-bonded poly(ethylene oxide) polymer-coated column for protein separation by capillary electrophoresis. J. Chromatogr. A, 1996, 731, 273-282.
[82]
Shen, Y.; Berger, S.J.; Smith, R.D. 2000. Capillary isoelectric focusing of yeast cells. Anal. Chem., 2000, 72, 4603-4607.
[83]
Yamada, K.; Torimura, M.; Kurata, S.; Kamagata, Y.; Kanagawa, T.; Kano, K.; Ikeda, T.; Yokomaku, T.; Kurane, R. Application of capillary electrophoresis to monitor populations of Cellulomonas cartae KYM-7 and Agrobacterium tumefaciens KYM-8 in mixed culture. Electrophoresis, 2001, 22, 3413-3417.
[84]
Palenzuela, B.; Simonet, B.M.; Garcia, R.M.; Rios, A.; Valcarcel, M. Monitoring of Bacterial Contamination in Food Samples Using Capillary Zone Electrophoresis. Anal. Chem., 2004, 76, 3012-3017.
[85]
Horká, M.; Ruzicka, F.; Hola, V.; Slais, K. Dynamic modification of microorganisms by pyrenebutanoate for fluorometric detection in capillary zone electrophoresis. Electrophoresis, 2005, 26, 548-555.
[86]
Szumski, M.; Kłodzińska, E.; Buszewski, B. Application of a fluorescence stereomicroscope as an in-line detection unit for electrophoretic separation of bacteria. Mikrochim. Acta, 2009, 164, 287-291.
[87]
Petr, J.; Jiang, C.; Sevcik, J.; Tesarova, E.; Armstrong, D.W. Sterility testing by CE: A comparison of online preconcentration approaches in capillaries with greater internal diameters. Electrophoresis, 2009, 30, 3870-3876.
[88]
Oukacine, F.; Quirino, J.P.; Garrelly, L.; Romestand, B.; Zou, T.; Cottet, H. Simultaneous Electrokinetic and Hydrodynamic Injection for High Sensitivity Bacteria Analysis in Capillary Electrophoresis. Anal. Chem., 2011, 83, 4949-4954.
[89]
Oukacine, F.; Romestand, B.; Goodall, D.M.; Massiera, G.; Garrelly, L.; Cottet, H. Study of Antibacterial Activity by Capillary Electrophoresis Using Multiple UV Detection Points. Anal. Chem., 2012, 84, 3302-3310.
[90]
Shintani, T.; Yamada, K.; Torimora, M. Optimization of a rapid sensitive identification system for Salmonella enteritidis by capillary electrophoresis with laser-induced fluorescence. FEMS Microbiol. Lett., 2002, 210, 245-249.
[91]
Schneiderheinze, J.M.; Armstrong, D.W.; Schulte, G.; Westenberg, D.J. High efficiency separation of microbial aggregates using capillary electrophoresis. FEMS Microbiol. Lett., 2000, 189, 39-44.
[92]
Zheng, J.; Yeung, E.S. Mechanism of microbial aggregation during capillary electrophoresis. Anal. Chem., 2003, 75, 818-824.
[93]
Rodriguez, M.A.; Lantz, A.W.; Armstrong, D.W. Capillary Electrophoretic Method for the Detection of Bacterial Contamination. Anal. Chem., 2006, 78, 4759-4767.
[94]
Armstrong, D.W.; Girod, M.; He, L.; Rodriguez, M.A.; Wei, W.; Zheng, J.; Yeung, E.S. Mechanistic Aspects in the Generation of Apparent Ultrahigh Efficiencies for Colloidal (Microbial) Electrokinetic Separations. Anal. Chem., 2002, 74, 5523-5530.
[95]
Duffy, C.F.; McEathron, A.A.; Arriaga, E.A. Determination of individual microsphere properties by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis, 2002, 23, 2040-2047.
[96]
Buszewski, B.; Szumski, M.; Kłodzińska, E.; Dahm, H. Separation of bacteria by capillary electrophoresis. J. Sep. Sci., 2003, 26, 1045-1049.
[97]
Szumski, M.; Kłodzińska, E.; Buszewski, B. Separation of microorganisms using electromigration techniques. J. Chromatogr. A, 2005, 1084, 186-193.
[98]
Kłodzińska, E.; Szumski, M.; Hrynkiewicz, K.; Dziubakiewicz, E.; Jackowski, M.; Buszewski, B. Differentiation of Staphylococcus aureus strains by CE, zeta potential and coagulase gene polymorphism. Electrophoresis, 2009, 30, 3086-3091.
[99]
Kłodzińska, E.; Dahm, H.; Różycki, H.; Szeliga, J.; Jackowski, M.; Buszewski, B. Rapid identification of Escherichia coli and Helicobacter pylori in biological samples by capillary zone electrophoresis. J. Sep. Sci., 2006, 29, 1180-1187.
[100]
Buszewski, B.; Klodzinska, E. Determination of pathogenic bacteria by CZE with surface-modified capillaries. Electrophoresis, 2008, 29, 4177-4184.
[101]
Courtois, J.; Bystrom, E.; Irgum, K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer, 2006, 47, 2603-2611.
[102]
Jarmalavičienė, R.; Kłodzińska, E.; Szumski, M.; Buszewski, B.; Maruška, A. Migration of bacteria through a monolith. J. Chromatogr. A, 2009, 1216, 6146-6150.
[103]
Lantz, A.W.; Bao, Y.; Armstrong, D.W. Single-Cell Detection: Test of Microbial Contamination Using Capillary Electrophoresis. Anal. Chem., 2007, 79, 1720-1724.
[104]
Bao, Y.; Lantz, A.W.; Crank, J.A.; Huang, J.; Armstrong, D.W. The use of cationic surfactants and ionic liquids in the detection of microbial contamination by capillary electrophoresis. Electrophoresis, 2008, 29, 2587-2592.
[105]
Haugg, M.; Kaiser, V.; Schmidtkunz, C.; Welsch, T. The effect of aggregation on the separation performance of bacteria in capillary electrophoresis. Electrophoresis, 2009, 30, 396-402.
[106]
Nelson, R.; Lantz, A. Capillary Electrophoresis Based Microbial Detection and Separation. Undergraduate Res. Creat. Pract, 2009, 20, 1-9.
[107]
Horká, M.; Ruzicka, F.; Kubesova, A.; Salis, K. Dynamic labeling of dignostically significant microbial cells in cerebrospinal fluid by red chromoforic non-ionogenic surfactant for capillary electrophoresis. Anal. Chim. Acta, 2012, 728, 86-92.
[108]
Horká, M.; Karasek, P.; Ruzicka, F.; Dvorackova, M.; Sittova, M.; Roth, M. Separation of methicillin-resistant from methicillin-susceptible Staphylococcus aureus by electrophoretic methods in fused silica capillaries etched with supercritical water. Anal. Chem., 2014, 86, 9701-9708.
[109]
Moradi, A.; Nasiri, J.; Abdollahi, H.; Almasi, M. Development and evaluation of a loop-mediated isothermal amplification assay for detection of Erwinia amylovora based on chromosomal DNA. Eur. J. Plant Pathol., 2012, 133, 609-620.
[110]
Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology, 2010, 100, 1282-1288.
[111]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28, E63.
[112]
Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc., 2008, 3, 877-882.
[113]
Liu, C.; Mauk, M.G.; Bau, H.H. A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves. Microfluid. Nanofluidics, 2011, 11, 209-220.
[114]
Nakamura, N.; Fukuda, T.; Nonen, S.; Hashimoto, K.; Azuma, J.; Gemma, N. Simple and accurate determination of CYP2D6 gene copy number by a loop-mediated isothermal amplification method and an electrochemical DNA chip. Clin. Chim. Acta, 2010, 411, 568-573.
[115]
Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived frommagnesium pyrophosphate formation. Biochem. Biophys. Research. Commun., 2001, 289, 150-154.
[116]
Karthik, K.; Rathore, R.; Thomas, P.; Arun, T.R.; Viswas, K.N.; Dhama, K.; Agarwal, R.K. New closed tube loop mediated isothermal amplification assay for prevention of product cross- contamination. MethodsX, 2014, 1, 137-143.
[117]
Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques, 2009, 46, 167-172.
[118]
Iwamoto, T.; Sonobe, T.; Hayashi, K. 2005. Loop-Mediated Isothermal Amplification for Direct Detection of Mycobacterium tuberculosis Complex, M. avium and M. intracellulare in sputum samples. J. Clin. Microbiol., 2003, 41, 2616-2622.
[119]
Seki, M.; Yamashita, Y.; Torigoe, H.; Tsuda, H.; Sato, S.; Maeno, M. Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae. J. Clin. Microbiol., 2005, 43, 1581-1586.
[120]
Yoshida, A.; Nagashima, S.; Ansai, T.; Tachibana, M.; Kato, H.; Watari, H.; Notomi, T.; Takehara, T. Loop-mediated isothermal amplification method for rapid detection of the periodontopathic bacteria Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. J. Clin. Microbiol., 2005, 43, 2418-2424.
[121]
Qiao, Y.M.; Guo, Y.C.; Zhang, X.E.; Zhou, Y.F.; Zhang, Z.P.; Wei, H.P. Yang, R. F.; Wang, D.B. Loop-mediated isothermal amplification for rapid detection of Bacillus anthracis spores. Biotechnol. Lett., 2007, 29, 1939-1946.
[122]
Kato, H.; Yoshida, A.; Ansai, T.; Watari, H.; Notomi, T.; Takehara, T. Loop-mediated isothermal amplification method for the rapid detection of Enterococcus faecalis in infected root canals. Oral Microbiol. Immunol., 2007, 22, 131-135.
[123]
Zhao, X.; Wang, L.; Li, Y.; Xu, Z.; Li, L.; He, X.; Liu, Y.; Wang, J.; Yang, L. Development and application of a loop-mediated isothermal amplification method on rapid detection of Pseudomonas aeruginosa strains. World J. Microbiol. Biotechnol., 2011, 27, 181-184.
[124]
Tang, M.J.; Zhou, S.; Zhang, X.Y.; Pu, J.H.; Ge, Q.L.; Tang, X.J.; Gao, Y.S. Rapid and sensitive detection of Listeria monocytogenes by Loop-mediated isothermal amplification. Curr. Microbiol., 2011, 63, 511-516.
[125]
Ji, H.W.; Li, H.T.; Zhu, L.; Zhang, H.; Wang, Y.; Zuo, Z.C.; Guo, W.Z.; Xu, Z.W. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Actinobacillus pleuropneumoniae based the dsbE-like gene. Pesq. Veter. Brasil., 2012, 32, 757-760.
[126]
Zhao, X.; Li, Y.; Park, M.; Wang, J.; Zhang, Y.; He, X.; Forghani, F.; Wang, L.; Yu, G.; Oh, D.H. Loop-mediated isothermal amplification assay targeting the femA gene for rapid detection of Staphylococcus aureus from clinical and food samples. J. Microbiol. Biotechnol., 2013, 23, 246-250.
[127]
Lim, K. T.; Teh, C. S. J.; Thong, K. L. Loop-mediated Isothermal amplification assay for the rapid detection of Staphylococcus aureus. BioMed Research Internat, 2013, ID 895816.
[128]
Chen, H. W.; Weissenberger, G.; Atkins, E.; Chao, C. C.; Suputtamongkol, Y.; Ching, W. M. Highly sensitive loopmediated isothermal amplification for the detection of Leptospira. Internat. J. Bacteriol., 2015, ID 147173
[http://dx.doi.org/10.1155/2015/147173]
[129]
Wang, F.; Jiang, L.; Yang, Q.; Prinyawiwatkul, W.; Ge, B. Rapid and specific detection of Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157 in ground beef, beef trim, and produce by loop-mediated isothermal amplification. Appl. Environ. Microbiol., 2012, 78, 2727-2736.
[130]
Hill, J.; Beriwal, S.; Chandra, I.; Paul, V.K.; Kapil, A.; Singh, T.; Wadowsky, R.M.; Singh, V.; Goyal, A.; Jahnukainen, T.; Johnson, J.R.; Tarr, P.I.; Vats, A. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J. Clin. Microbiol., 2008, 46, 2800-2804.
[131]
Hara-Kudo, Y.; Nemoto, J.; Ohtsuka, K.; Segawa, Y.; Takatori, K.; Kojima, T.; Ikedo, M. Sensitive and rapid detection of Vero toxin-producing Escherichia coli using loop-mediated isothermal amplification. J. Med. Microbiol., 2007, 56, 398-406.
[132]
Ohtsuka, K.; Tanaka, M.; Ohtsuka, T.; Takatori, K.; Hara-Kudo, Y. Comparison of detection methods for Escherichia coli O157 in beef livers and carcasses. Foodborne Pathog. Dis., 2010, 7, 1563-1567.
[133]
Zhao, X.H.; Li, Y.M.; Wang, L.; You, L.J.; Xu, Z.B.; Li, L.; He, X.; Liu, Y.; Wang, J.; Yang, L. Development and application of a loop-mediated isothermal amplification method on rapid detection Escherichia coli O157 strains from food samples. Mol. Biol. Rep., 2010, 37, 2183-2188.
[134]
Tang, T.; Cheng, A.; Wang, M.; Li, X.; He, Q.; Jia, R.; Zhu, D.; Chen, X. Development and clinical verification of a loop-mediated isothermal amplification method for detection of Salmonella species in suspect infected ducks. Poult. Sci., 2012, 91, 979-986.
[135]
Techathuvanan, C.; Draughon, F.A.; D’Souza, D.H. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Salmonella Typhimurium from pork. J. Food Sci., 2010, 75, M165-M172.
[136]
Ye, Y.X.; Wang, B.; Huang, F.; Song, Y.S.; Yan, H.; Alam, M.J. Application of in situ loop-mediated isothermal amplification method for detection of Salmonella in foods. Food Control, 2011, 22, 438-444.
[137]
Zhao, X.H.; Wang, L.; Chu, J.; Li, Y.Y.; Li, Y.M.; Xu, Z.B. Development and application of a rapid and simple loop mediated isothermal amplification method for food-borne Salmonella detection. Food Sci. Biotechnol., 2010, 19, 1655-1659.
[138]
Xu, Y.; Li, S.; Li, D.; Zhang, H.; Jiang, Y. Rapid detection of Vibrio cholera by loop mediated isothermal amplification LAMP method. Chin. J. Biotechnol., 2010, 26, 398-403.
[139]
Yamazaki, W.; Ishibashi, M.; Kawahara, R.; Inoue, K. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol., 2008, 8, 163-170.
[140]
Su, X.; Xu, Q.; Pan, Y.; Lan, W.; Vivian, C. A loop-mediated isothermal amplification method for rapid detection of Vibrio parahaemolyticus in seafood. Ann. Microbiol., 2011, 62, 263-271.
[141]
Lu, Q.F.; Zheng, W.; Luo, P.; Wu, Z.H.; Li, H.; Shen, J.G. Establishment of loop-mediated isothermal amplification method for detection of Legionella pneumophila. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2010, 39, 305-310.
[142]
Uemura, N.; Makimura, K.; Onozaki, M.; Otsuka, Y.; Shibuya, Y.; Yazaki, H.; Kikuchi, Y.; Abe, S.; Kudoh, S. Development of a loop-mediated isothermal amplification method for diagnosing Pneumocystis pneumonia. J. Med. Microbiol., 2008, 57, 50-57.
[143]
Kuboki, N.; Inoue, N.; Sakurai, T.; Di Cello, F.; Grab, D.J.; Suzuki, H.; Sugimoto, C.; Igarashi, I. Loop-mediated isothermal amplification for detection of African trypanosomes. J. Clin. Microbiol., 2003, 41, 5517-5524.
[144]
Mekata, T.; Sudhakaran, R.; Itami, T. Development and evaluation of real-time loop-mediated isothermal amplification methods for the rapid detection of Penaeid Viruses. Bull. Fish. Agen., 2012, 35, 39-50.
[145]
Pham, H.M.; Nakajima, C.; Ohashi, K.; Onuma, M. Loop-mediated isothermal amplification for rapid detection of newcastle disease virus. J. Clin. Microbiol., 2005, 43, 1646-1650.
[146]
Chena, H.T.; Zhanga, J.; Suna, D.H.; Maa, L.N.; Liua, X.T.; Quanb, K.; Liua, Y.S. Reverse transcription loop-mediated isothermal amplification for the detection of highly pathogenic porcine reproductive and respiratory syndrome virus. J. Virol. Met., 2008, 153, 266-268.
[147]
Compton, J. Nucleic acid sequence-based amplification. Nature, 1991, 350, 91-92.
[148]
Deiman, B.; van Aarle, P.; Sillekens, P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol. Biotechnol., 2002, 20, 163-179.
[149]
Hahm, B.K.; Bhunia, A.K. Effect of environmental stresses on antibody-based detection of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J. Appl. Microbiol., 2006, 100, 1017-1027.
[150]
Asiello, P.J.; Baeumner, A.J. Miniaturized isothermal nucleic acid amplification, a review. Lab Chip, 2011, 11, 1420-1430.
[151]
Guatelli, J.C.; Whitfield, K.M.; Kwoh, D.Y.; Barringer, K.J.; Richman, D.D.; Gingeras, T.R. Isothermal, in Vitro Amplification of Nucleic Acids by a Multienzyme Reaction Modeled after Retroviral Replication. Proc. Natl. Acad. Sci. USA, 1990, 87, 1874-1878.
[152]
Burchill, S.; Perebolte, L.; Johnston, C.; Top, B.; Selby, P. Comparison of the RNA-Amplification Based Methods RT-PCR and NASBA for the Detection of Circulating Tumour Cells. Br. J. Cancer, 2002, 86, 102-109.
[153]
van der Vliet, G.M.E.; Schukkink, R.A.F.; van Gemen, B.; Schepers, P.; Klatser, P.R. Nucleic acid sequence-based amplification (NASBA) for the identification of mycobacteria. J. Gen. Microbiol., 1993, 139, 2423-2429.
[154]
Ieven, M.; Goossens, H. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory. Clin. Microbiol. Rev., 1997, 10, 242-256.
[155]
Simpkins, S.A.; Chan, A.B.; Hays, J. Pop ping, B.; Cook, N. An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett. Appl. Microbiol., 2000, 30, 75-79.
[156]
Min, J.; Baeumner, A.J. Highly sensitive and specific detection of viable Escherichia coli in drinking water. Anal. Biochem., 2002, 303, 186-193.
[157]
Baeumner, A.J.; Cohen, R.N.; Miksic, V.; Min, J. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron., 2003, 18, 405-413.
[158]
Churruca, E.; Girbau, C.; Martinez, I.; Mateo, E.; Alonso, R.; Fernandez-Astorga, A. Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int. J. Food Microbiol., 2007, 117, 85-90.
[159]
Fykse, E.M.; Skogan, G.; Davies, W.; Olsen, J.S.; Blatny, J.M. Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl. Environ. Microbiol., 2007, 73, 1457-1466.
[160]
Loens, K.; Beck, T.; Goossens, H.; Ursi, D.; Overdijk, M.; Sillekens, P.; Ieven, M. Development of conventional and real-time nucleic acid sequence-based amplification assays for detection of Chlamydophila pneumoniae in respiratory specimens. J. Clin. Microbiol., 2006, 44, 1241-1244.
[161]
Gill, P.; Ramezani, R.; Amiri, M.V.P.; Ghaemi, A.; Hashempour, T.; Eshraghi, N.; Ghalami, M.; Tehrani, H.A. Enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification for molecular detection of M. tuberculosis. Biochem. Biophys. Res. Commun., 2006, 347, 1151-1157.
[162]
Perlin, D.S.; Zhao, Y. Molecular diagnostic platforms for detecting Aspergillus. Med. Mycol., 2009, 47, S223-S232.
[163]
Kim, S.H.; Park, C.; Kwon, E.Y.; Shin, N.Y.; Kwon, J.C.; Park, S.H.; Choi, S.M.; Lee, D.G.; Choi, J.H.; Yoo, J.H. Real-time nucleic acid sequence-based amplification to predict the clinical outcome of invasive aspergillosis. J. Korean Med. Sci., 2012, 27, 10-15.
[164]
Hibbitts, S.; Rahman, A.; John, R.; Westmoreland, D.; Fox, J.D. Development and evaluation of Nuclisens basic kit NASBA for diagnosis of parainfluenza virus infection with end point and real-time detection. J. Virol. Methods, 2003, 108, 145-155.
[165]
Zaytseva, N.V.; Montagna, R.A.; Lee, E.M.; Baeumner, A.J. Multi-analyte single-membrane biosensor for the serotype-specific detection of Dengue virus. Anal. Bioanal. Chem., 2004, 380, 46-53.
[166]
Casper, E.T.; Patterson, S.S.; Smith, M.C.; Paul, J.H. Development and evaluation of a method to detect and quantify enteroviruses using NASBA and internal control RNA (IC-NASBA). J. Virol. Methods, 2005, 124, 149-155.
[167]
Schoone, G.J.; Oskam, L.; Kroon, N.C.M.; Schallig, H.D.F.H.; Omar, S.A. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J. Clin. Microbiol., 2000, 38, 4072-4075.
[168]
Schneider, P.; Wolters, L.; Schoone, G.; Schallig, H.; Sillekens, P.; Hermsen, R.; Sauerwein, R. Real-time nucleic acid sequence- based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J. Clin. Microbiol., 2005, 43, 402-405.
[169]
Lizardi, P.M.; Huang, X.H.; Zhu, Z.R.; Bray-Ward, P.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet., 1998, 19, 225-232.
[170]
Liu, D.; Daubendiek, S.L.; Zillman, M.A.; Ryan, K.; Kool, E.T. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc., 1996, 118, 1587-1594.
[171]
Capobianco, M.L.; Carcuro, A.; Tondelli, L.; Garbesi, A.; Bonora, G.M. One pot solution synthesis of cyclic oligodeoxyribonucleotides. Nucleic Acids Res., 1990, 18, 2661-2669.
[172]
Najafzadeh, M.; Dolatabadi, S.; Saradeghi Keisari, M.; Naseri, A.; Feng, P. De hoog, G. 2013. Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J. Microbiol. Methods, 2013, 94, 338-342.
[173]
Kuhn, H.; Demidov, V.V.; Frank-Kamenetskii, M.D. Rolling-circle amplification under topological constraints. Nucleic Acids Res., 2002, 30, 574-580.
[174]
Zhang, D.; Wu, J.; Ye, F.; Feng, T.; Lee, I.; Yin, B. Amplification of circularizable probes for the detection of target nucleic acids and proteins. Clin. Chim. Acta, 2006, 363, 61-70.
[175]
Kingsmore, S.F.; Patel, D.D. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Curr. Opin. Biotechnol., 2003, 14, 74-81.
[176]
Gusev, Y.; Sparkowski, J.; Raghunathan, A.; Ferguson, J.R.H.; Montano, J.; Bogdan, N.; Schweitzer, B.; Wiltshire, S.; Kingsmore, S.F.; Maltzman, W. Rolling circle amplification: a new approach to increase sensitivity for immunohistochemistry and flow cytometry. Am. J. Pathol., 2001, 159, 63-69.
[177]
Sun, J.; Najafzadeh, J.; Zhang, J.; Vicente, V.A.; Xi, L.; de Hoog, G.S. Molecular identification of Penicillium marneffei using rolling circle amplification. Mycoses, 2011, 54, e751-e759.
[178]
Huang, Y.Y.; Hsu, H.Y.; Huang, C. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags. J. Biosens. Bioelectron., 2007, 22, 980-985.
[179]
Schweitzer, B.; Roberts, S.; Grimwade, B.; Shao, W.; Wang, M.; Fu, Q.; Shu, Q.; Laroche, I.; Zhou, Z.; Tchernev, V.T.; Christiansen, J.; Velleca, M.; Kingsmore, S.F. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol., 2002, 20, 359-365.
[180]
Lizardi, P.M.; Huang, X.; Zhu, Z.; Bray-ward, P.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet., 1998, 19, 225-232.
[181]
Tsui, C.; Woodhall, J.; Chen, W.; Lévesque, C.A.; Lau, A.; Schoen, C.D.; Baschien, C.; Najafzadeh, M.J. De hoog, G. S. Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus, 2011, 2, 177-189.
[182]
Nilsson, M.; Malmgren, H.; Samiotaki, M.; Kwiatkowski, M.; Chowdhary, B.P.; Landegren, U. Padlock probes: Circularizing oligonucleotides for localized DNA detection. Science, 1994, 265, 2085-2088.
[183]
Asiello, P.J.; Baeumner, A.J. Miniaturized isothermal nucleic acid amplification, a review. Lab on a Chip, 2011, 11, 1420-1430.
[184]
Yan, L.; Zhou, J.; Zheng, Y.; Gamson, A.S.; Roembke, B.T.; Nakayama, S.; Sintim, H.O. Isothermal amplified detection of DNA and RNA. Mol. Biosyst., 2014, 10, 970-1003.
[185]
Jehan, T.; Lakhanpaul, S. 2006. Single nucleotide polymorphism (SNP)-Methods and applications in plant genetics: A review. Int. J. Biotechnol., 2006, 5, 435-459.
[186]
Mothershed, E.A.; Whitney, A.M. Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clin. Chim. Acta, 2006, 363, 206-220.
[187]
Demidov, V.V. 10 years of rolling the minicircles: RCA assays in DNA diagnostics. Expert Rev. Mol. Diagn., 2005, 5, 477-478.
[188]
Kuhn, H.; Demidov, V.V.; Frank-Kamenetskii, M.D. Rolling-circle amplification under topological constraints. Nucleic Acids Res., 2002, 30, 574-580.
[189]
Szemes, M.; Bonants, P. De weerdt, M.; Baner, J.; Landegren, U.; Schoen, C. D. Diagnostic application of padlock probes multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res., 2005, 33, e70-e83.
[190]
Blab, G.A.; Schmidt, T.; Nilsson, M. Homogeneous detection of single rolling circle replication products. Anal. Chem., 2004, 76, 495-498.
[191]
Banér, J.; Nilsson, M.; Mendel-Hartvig, M.; Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res., 1998, 26, 5073-5078.
[192]
Smolina, I.V.; Demidov, V.V.; Cantor, C.R.; Broude, N.E. Real-time monitoring of branched rolling-circle DNA amplification with peptide nucleic acid beacon. Anal. Biochem., 2004, 335, 326-329.
[193]
Yi, J.; Zhang, W.; Zhang, D.Y. Molecular Zipper: a fluorescent probe for real-time isothermal DNA amplification. Nucleic Acids Res., 2006, 34, e81-e85.
[194]
Di Giusto, D.A.; Wlassoff, W.A.; Gooding, J.J.; Messerle, B.A.; King, G.C. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res., 2005, 33, e64-e70.
[195]
Ali, M.M.; Li, Y. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew. Chem., 2009, 121, 3564-3567.
[196]
Maruyama, F.; Kenzaka, T.; Yamaguchi, N.; Tani, K.; Nasu, M. Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification. Appl. Environ. Microbiol., 2005, 71, 7933-7940.
[197]
Murakami, T.; Sumaoka, J.; Komiyama, M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res., 2009, 37, e19-e27.
[198]
Long, Y.; Zhou, X.; Xing, D. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. J. Biosens. Bioelectron., 2011, 26, 2897-2904.
[199]
Moreira, M.; Adamoski, D.; Sun, J.; Najafzadeh, M.J.; Fidelis do Nascimento, M.M.; Rodrigues Gomes, R.; de Sant’Anna Barbieri, D.; Glienke, C.; do Rocio Klisiowicz, D.; Vicente, V.A. Detection of Streptococcus mutans using Padlock Probe Based on Rolling Circle Amplification (RCA). Braz. Arch. Biol. Technol., 2015, 58, 54-60.
[200]
Wamsley, H.L.; Barbet, A.F. In situ detection of Anaplasma spp. by DNA target-primed rolling-circle amplification of a padlock probe and intracellular colocalization with immunofluorescently labeled host cell von Willebrand factor. J. Clin. Microbiol., 2008, 46, 2314-2319.
[201]
Zhou, X.; Kong, F.; Sorrell, T.; Wang, H.; Duan, Y.; Chen, S.C.A. Practical Method for Detection and Identification of Candida, Aspergillus, and Scedosporium spp. by Use of Rolling-Circle Amplification. J. Clin. Microbiol., 2008, 46, 2423-2427.
[202]
Kong, F.; Tong, Z.; Chen, X.; Sorrell, T.; Wang, B.; Wu, Q.; Ellis, D.; Chen, S. Rapid Identification and Differentiation of Trichophyton Species, Based on Sequence Polymorphisms of the Ribosomal Internal Transcribed Spacer Regions, by Rolling-Circle Amplification. J. Clin. Microbiol., 2008, 46, 1192-1199.
[203]
Feng, P.; Klaassen, C.H.; Meis, J.F.; Najafzadeh, M. Van den ende, A. G.; Xi, L.; de Hoog, G. S. Identification and typing of isolates of Cyphellophora and relatives by use of amplified fragment length polymorphism and rolling circle amplification. J. Clin. Microbiol., 2013, 51, 931-937.
[204]
Najafzadeh, J.; Sun, J.; Vicente, V.A.; de Hoog, G.S. Rapid identification of fungal pathogens by rolling circle amplification using Fonsecaea as a model. Mycoses, 2011, 54, e577-e582.
[205]
Steaina, M.C.; Dwyerb, D.E.; Hurtc, A.C.; Kold, C.; Saksenad, N.K.; Cunninghamd, A.L.; Wang, B. Detection of influenza A H1N1 and H3N2 mutations conferring resistance to oseltamivir using rolling circle amplification. Antiviral Res., 2009, 84, 242-248.
[206]
Henriksson, S.; Blomström, A.L.; Fuxler, L.; Fossum, C.; Berg, M.; Nilsson, M. Development of an in situ assay for simultaneous detection of the genomic and replicative form of PCV2 using padlock probes and rolling circle amplification. Virol. J., 2011, 8, 37-46.
[207]
Wang, B.; Potter, S.J.; Lin, Y.; Cunningham, A.L.; Dwyer, D.E.; Su, Y.; Ma, X.; Hou, Y.; Saksena, N.K. Rapid and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus by Rolling Circle Amplification. J. Clin. Microbiol., 2005, 43, 2339-2344.
[208]
Bhunia, A.K. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv. Food Nutr. Res., 2008, 54, 1-44.
[209]
Chen, W.T.; Hendrickson, R.L.; Huang, C.P.; Sherman, D.; Geng, T.; Bhunia, A.K.; Ladisch, M.R. (2005) Mechanistic study of membrane concentration and recovery of Listeria monocytogenes. Biotechnol. Bioeng., 2005, 2005(89), 263-273.
[210]
Hunter, D.M.; Leskinen, S.D.; Magaña, S.; Schlemmer, S.M.; Lim, D.V. Dead-end ultrafi ltration concentration and IMS/ATP-bioluminescence detection of Escherichia coli O157:H7 in recreational water and produce wash. J. Microbiol. Methods, 2011, 87, 338-342.
[211]
Stevens, K.A.; Jaykus, L.A. Bacterial separation and concentration from complex sample matrices: A review. Crit. Rev. Microbiol., 2004, 30, 7-24.
[212]
Fu, Z.; Rogelj, S.; Kieft, T.L. Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol., 2005, 99, 47-57.
[213]
Ugelstad, J.; Berge, A.; Ellingsen, T.; Schmid, R.; Nilsen, T.N.; Mork, P.C.; Hornes, E.; Olsvik, O. Preparation and application of new monosized polymer particles. Prog. Polym. Sci., 1992, 17, 87-161.
[214]
Muir, P.; Nicholson, F.; Jhetam, M.; Neogi, S.; Banatval, J.E. Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. J. Clin. Microbiol., 1993, 31, 31-38.
[215]
Liberti, P.A.; Feeley, B.P. Ferrofluid as a matrix for magnetic separation. In Magnetic separation techniques applied to cellular and molecular biology. Kemshead, J. T., Ed. Wordsmiths' Conference Publications, Somerset, England: 1991, 47-61.
[216]
Sachar, K.S.; Goldstein, B. Optimization of the controlled separation of biologically active diagnostic magnetic probes. Comput. Phys., 1990, 22, 837-844.
[217]
Ugelstad, J.; Kilaas, L.; Stenstad, P.; Ellingsen, T.; Bjorgum, J.; Aune, O.; Nilsen, T.N.; Schmid, R.; Berge, A. Preparation and application of monosized polymer particles. In Magnetic separation techniques applied to cellular and molecular biology. Kemshead, J. T., Ed. Wordsmiths' Conference Publications, Somerset, England: 1991, 235-254.
[218]
Aminul Islam, M.; Heuvelink, A.E.; Talukder, K.A.; de Boer, E. Immunoconcentration of Shiga toxin-producing Escherichia coli O157 from animal faeces and raw meats by using Dynabeadsanti- E. coli O157 and the VIDAS system. Int. J. Food Microbiol., 2006, 109, 151-156.
[219]
Lee, J.; Deininger, R.A. Detection of E. coli in beach water within 1 hour using immunomagnetic separation and ATP bioluminescence. Luminescence, 2004, 19, 31-36.
[220]
Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique. J. Appl. Microbiol., 2009, 106, 432-441.
[221]
Su, X.L.; Li, Y. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem., 2004, 76, 4806-4810.
[222]
Qiu, J.; Zhou, Y.; Chen, H.; Lin, J.M. Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta, 2009, 79, 787-795.
[223]
Sivagnanam, V.; Song, B.; Vandevyver, C.; Bunzli, J.C.G.; Gijst, M.A.M. Selective breast cancer cell capture, culture, and immunocytochemical analysis using self-assembled magnetic bead patterns in a microfluidic chip. Langmuir, 2010, 26, 6091-6096.
[224]
Spanová, A.; Rittich, B.; Karpisková, R.; Cechová, L.; Skapová, D. PCR identification of Salmonella cells in food and stool samples after immunomagnetic separation. Bioseparation, 2000, 9, 379-384.
[225]
Leskinen, S.D.; Brownell, M.; Lim, D.V.; Harwood, V.J. Hollow-fiber ultrafiltration and PCR detection of human-associated genetic markers from various types of surface water in Florida. Appl. Environ. Microbiol., 2010, 76, 4116-4117.
[226]
Mull, B.; Hill, V.R. Recovery and detection of Escherichia coli O157:H7 in surface water using ultrafiltration and real-time PCR. Appl. Environ. Microbiol., 2009, 75, 3593-3597.
[227]
Ayaz, N.D.; Ayaz, Y.; Kaplan, Y.Z.; Dogru, A.K.; Aksoy, M.H. Rapid detection of Listeria monocytogenes in chicken carcasses by IMS-PCR. Ann. Microbiol., 2009, 59, 741-744.
[228]
Mercanoglu, B.; Griffiths, M.W. 2009. Combination of immunomagnetic separation with real-time PCR for rapid detection of Salmonella in milk, ground beef, and alfalfa sprouts. J. Food Prot., 2005, 68, 557-561.
[229]
Beyor, N.; Yi, L.; Seo, T.S.; Mathies, R.A. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal. Chem., 2009, 81, 3523-3528.
[230]
Miyatake, T.; MacGregor, B.J.; Boschker, H.T. Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl. Environ. Microbiol., 2009, 75, 4927-4935.
[231]
Baselt, D.R.; Lee, G.U.; Natesan, M.; Metzger, S.W.; Sheehan, P.E.; Colton, R.J. A biosensor based on magnetoresistance technology. Biosens. Bioelectron., 1998, 13, 731-739.
[232]
Besse, P.A.; Boero, G.; Demierre, M.; Pott, V.; Popovic, R. Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl. Phys. Lett., 2002, 80, 4199-4201.
[233]
Shelton, D.R.; Karns, J.S. 2001. Quantitative detection of Escherichia coli O157 in surface waters by using immunomagnetic electrochemiluminescence. Appl. Environ. Microbiol., 2001, 67, 2908-2915.
[234]
Yu, H.; Bruno, J.G. Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl. Environ. Microbiol., 1996, 62, 587-592.
[235]
Steinhauser, M.L.; Bailey, A.P.; Senyo, S.E.; Guillermier, C.; Perlstein, T.S.; Gould, A.P.; Lee, R.T.; Lechene, C.P. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature, 2012, 481, 516-519.
[236]
Watrous, J.D.; Dorrestein, P.C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol., 2011, 9, 683-694.
[237]
Yang, Y.L. XuY.; StraightP. D.; DorresteinP.C. Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol., 2009, 5, 885-887.
[238]
Hill, W.E.; Carlisle, C.L. Loss of plasmids turing enrichment for Escherichia coli. Appl. Environ. Microbiol., 1981, 41, 1046-1048.
[239]
Hornes, E.; Wasteson, Y.; Olsvil, O. 1991. Detection of Escherichia coli heat-stable enterotoxin genes in pig stool specimens by an immobilized, colorimetric nested polymerase chain reaction. J. Clin. Microbiol., 1991, 29, 2375-2379.
[240]
Okrend, A.J.G.; Rose, B.E. Lattuada; C. P. Isolation of Escherichia coli 0157:H7 using 0157 specific antibody coated magnetic beads. J. Food Prot., 1992, 55, 214-217.
[241]
Fratamico, P.M.; Schultz, F.J.; Buchanan, R.L. Rapid isolation of Escherichia coli 0157:H7 from enrichment cultures of foods using an immunomagnetic separation method. Food Microbiol., 1992, 9, 105-113.
[242]
Jayamohan, H.; Gale, B.K.; Minson, B.J.; Lambert, C.J.; Gordon, N.; Sant, H.J. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads. Sensors, 2015, 15, 12034-12052.
[243]
Jeníková, G.; Pazlarová, J.; Demnerová, K. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assai. Int. Microbiol., 2000, 3, 225-229.
[244]
Widjojoatmodjo, M.N.; Fluit, A.C.; Torensma, R.; Keller, B.H.I.; Verhoef, J. Evaluation of magnetic immune PCR assay for rapid detection of Salmonella. Eur. J. Clin. Microbiol. Infect. Dis., 1991, 10, 935-938.
[245]
Widjojoatmodjo, M.N.; Fluit, A.C.; Torensma, R.; Verdonk, G.P.H.T.; Verhoef, J. The magnetic immuno polymerase chain reaction assay for direct detection of Salmonellae in fecal samples. J. Clin. Microbiol., 1992, 30, 3195-3199.
[246]
Favrin, S.J.; Jassim, S.A.; Griffiths, M.W. Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica Serovar Enteritidis in broth. Appl. Environ. Microbiol., 2001, 67, 217-224.
[247]
Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. in Mass Spectrom., 2001, 15, 1068-1074.
[248]
Madonna, A.J.; Van Cuyk, S.; Voorhees, K.J. Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplifi cation coupled with matrixassisted laser desorption/ionization time-of-fl ight mass spectrometry. Rapid Commun. in Mass Spectrom., 2003, 17, 257-263.
[249]
Chakraborty, R.; Hazen, T.C.; Joyner, D.C.; Küsel, K.; Singer, M.E.; Sitte, J.; Torok, T. Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples. J. Microbiol. Methods, 2011, 86, 204-209.
[250]
Morgan, J.A.; Winstranley, W.C.; Pickup, R.W.; Saunders, J. Rapid immunocapture of Pseudomonas putida cells from lake water by using bacterial flagella. Appl. Environ. Microbiol., 1991, 57, 503-509.
[251]
Christensen, B.; Torsvik, T.; Lien, T. Immunomagnetically captured thermophilic sulfate-reducing bacteria from the North Sea oil field waters. Appl. Environ. Microbiol., 1992, 58, 1244-1248.
[252]
Wang, Z.; Wang, J.; Yue, T.; Yuan, Y. Cai1, R.; Niu, C. Immunomagnetic Separation Combined with Polymerase Chain Reaction for the Detection of Alicyclobacillus acidoterrestris in Apple Juice. PLoS One, 2013, 8, e82376.
[253]
Pain, N.A.; Green, J.R.; Gammie, F.; Oxonnell, R.J. Immunomagnetic isolation of viable intracellular hyphae of Colletotrichum lindemuthianum (Sacc. & Magn.) Briosi & Cav. from infected bean leaves using a monoclonal antibody. New Phytol., 1994, 127, 223-232.
[254]
Katsu, M.; Ando, A.; Ikeda, R.; Mikami, Y.; Nishimura, K. Immunomagnetic isolation of Cryptococcus neoformans by Beads Coated with Anti-Cryptococcus Serum. Jpn. J. Med. Mycol., 2003, 44, 139-144.
[255]
Apaire-Marchais, V.; Kempf, M.; Lefrançois, C.; Marot, A.; Licznar, P.; Cottin, J.; Poulain, D.; Robert, R. Evaluation of an immunomagnetic separation method to capture Candida yeasts cells in blood. BMC Microbiol., 2008, 8, 157-161.
[256]
Brinckmann, J.E.; Gaudernack, G.; Thorsby, E.; Jonassen, T.O.; Vartdal, F. Reliable isolation of human immunodeficiency virus from cultures of naturally infected CD+ T cells. J. Virol. Methods, 1989, 25, 293-300.
[257]
Ushuima, H.; Honma, H.; Tsuchie, T.; Kitamura, T.; Takahashi, I. 1990. Removal of HIV antigens and HIV-infected cells in vitro using immunomagnetic beads. J. Virol. Methods, 1990, 29, 23-32.
[258]
Myrmel, M.; Rimstad, E.; Wasteson, Y. Immunomagnetic separation of a Norwalk-like virus (genogroup I) in artificially contaminated environmental water samples. Int. J. Food Microbiol., 2000, 62, 17-26.
[259]
Zhao, W.; Zhang, W.; Zhang, Z.; He, R.; Lin, Y.; Xie, M.; Wang, H.; Pang, D. Robust and Highly Sensitive Fluorescence Approach for Point-of-Care Virus Detection Based on Immunomagnetic Separation. Anal. Chem., 2012, 84, 2358-2365.
[260]
Stancik, L.M.; Stancik, D.M.; Schmidt, B.; Barnhart, D.M.; Yoncheva, Y.N.; Slonczewski, J.L. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol., 2002, 184, 4246-4258.
[261]
Geng, T.; Hahm, B.K.; Bhunia, A.K. 2006. Selective enrichment media affect the antibody based detection of stress- exposed Listeria monocytogenes due to differential expression of antibody- reactive antigens identifi ed by protein sequencing. J. of Food Protect, 2006, 69, 1879-1886.
[262]
Dwivedi, H.P.; Jaykus, L.A. Detection of pathogens in foods: The current state- of the-art and future directions. Crit. Rev. Microbiol., 2011, 37, 40-63.
[263]
Reyes, D.R.; Iossifidis, D.; Auroux, P.A.; Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem., 2002, 74, 2623-2636.
[264]
Auroux, P.A.; Iossifidis, D.; Reyes, D.R.; Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem., 2002, 74, 2637-2652.
[265]
Koch, R. Zur Untersuchung von pathogenen Organismen. Mitteilungen aus der Kaiserlichen Gesundheitshamte. Berlin Heft, 1881, 48, 1-49.
[266]
Bridle, H.; Kersaudy-Kerhoas, M.; Miller, B.; Gavriilidou, D.; Katzer, F.; Innes, E.A.; Desmulliez, M.P.Y. Detection of Cryptosporidium in miniaturised fluidic devices. Water Res., 2012, 46, 1641-1661.
[267]
Bridle, H.; Miller, B.; Desmulliez, M.P. Application of microfluidics in waterborne pathogen monitoring: A review. Water Res., 2014, 55, 256-271.
[268]
Rotariu, O.; Ogden, I.D.; MacRae, M.; Udrea, L.E.; Strachan, N.J. Multiple sample flow through immunomagnetic separator for concentrating pathogenic bacteria. Phys. Med. Biol., 2005, 50, 2967-2977.
[269]
Ramadan, Q.; Christophe, L.; Teo, W. ShuJun. L.; Hua, F. H. Flow-through immunomagnetic separation system Focus Lab on a Chip for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation. Anal. Chim. Acta, 2010, 673, 101-108.
[270]
Laczka, O.; Maesa, J.M.; Godino, N.; del Campo, J.; Fougt-Hansen, M.; Kutter, J.P.; Baldrich, E. Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosens. Bioelectron., 2011, 26, 3633-3640.
[271]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442, 368-373.
[272]
Liu, B.; Ozaki, M.; Hisamoto, H.; Luo, Q.; Utsumi, Y.; Hattori, T.; Terabe, S. Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Anal. Chem., 2005, 77, 573-578.
[273]
Sin, A.; Murthy, S.K.; Revzin, A.; Tompkins, R.G.; Toner, M. Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes. Biotechnol. Bioeng., 2005, 91, 816-826.
[274]
Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem., 1998, 70, 4974-4984.
[275]
Campbell, G.A.; Mutharasan, R.A. Method of measuring Escherichia coli O157: H7 at 1 cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimetersized cantilever sensor. Environ. Sci. Technol., 2007, 41, 1668-1674.
[276]
Su, X.L.; Li, Y. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157: H7. Biosens. Bioelectron., 2004, 19, 563-574.
[277]
Luo, M.; Sweeney, F.; Risbud, S.R.; Drazer, G.; Frechette, J. Irreversibility and pinching in deterministic particle separation. Appl. Phys. Lett., 2011, 99, 064102-064104.
[278]
Kulrattanarak, T.; Sman, R.G.M.; Schroën, C.G.P.H.; Boom, R.M. Analysis of mixed motion in deterministic ratchets via experimentand particle simulation. Microfluid. Nanofluidics, 2010, 10, 843-853.
[279]
Beech, J.P.; Tegenfeldt, J.O. Tuneable separation in elastomeric microfluidics devices. Lab on a Chip, 2008, 8, 657-659.
[280]
Huang, L.R.; Cox, E.C.; Austin, R.H.; Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science, 2004, 304, 987-990.
[281]
Inglis, D.W.; Herman, N.; Vesey, G. Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics, 2010, 4, 024109-024117.
[282]
Green, J.V.; Radisic, M.; Murthy, S.K. Deterministic Lateral Displacement as a Means to Enrich Large Cells for Tissue Engineering. Anal. Chem., 2009, 81, 9178-9182.
[283]
Holm, S.H.; Beech, J.P.; Barrett, M.P.; Tegenfeldt, J.O. Separation of parasites from human blood using deterministic lateral displacement. Lab on a Chip, 2011, 11, 1326-1332.
[284]
Pamme, N. Continuous flow separations in microfluidic devices. Lab on a Chip, 2007, 7, 1644-1659.
[285]
Adams, A.A.; Okagbare, P.I.; Feng, J.; Hupert, M.L.; Patterson, D.; Gottert, J.; McCarley, R.L.; Nikitopoulos, D.; Murphy, M.C.; Soper, S. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. A. J. Am. Chem. Soc., 2008, 130, 8633-8641.
[286]
Dharmasiri, U.; Balamurugan, S.; Adams, A.A.; Okagbare, P.I.; Obubuafo, A.; Soper, S.A. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis, 2009, 30, 3289-3300.
[287]
Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U.J.; Tompkins, R.G.; Haber, D.A.; Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007, 450, 1235-1239.
[288]
Liu, R.H.; Yang, J.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem., 2004, 76, 1824-1831.
[289]
Beyor, N.; Seo, T.S.; Liu, P.; Mathies, R.A. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed. Microdevices, 2008, 10, 909-917.
[290]
Dharmasiri, U.; Witek, M.A.; Adams, A.A.; Osiri, J.K.; Hupert, M.L.; Bianchi, T.S.; Roelke, D.L.; Soper, S.A. Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal. Chem., 2010, 82, 2844-2849.
[291]
Jing, W.W.; Zhao, W.; Liu, S.; Li, L.; Tsai, C.T.; Fan, X.Y. Microfluidic Device for Efficient Airborne Bacteria Capture and Enrichment. Anal. Chem., 2013, 85, 5255-5262.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy