Generic placeholder image

Current Chromatography

Editor-in-Chief

ISSN (Print): 2213-2406
ISSN (Online): 2213-2414

Research Article

Liquid Chromatographic Analysis of Methotrexate and Minocycline-relevance to the Determination in Plasma/Nanoparticulate Formulations

Author(s): Kumar Janakiraman, Venkateshwaran Krishnaswami, Vaidevi Sethuraman, Vijaya Rajendran* and Ruckmani Kandasamy*

Volume 8, Issue 1, 2021

Published on: 03 September, 2021

Article ID: e030921196136 Pages: 12

DOI: 10.2174/2213240608666210903143432

Price: $65

Abstract

Aims: To develop RP-HPLC method for the simultaneous estimation of methotrexate (MTX) and minocycline (MNC).

Background: Different HPLC methods were reported for the estimation of MTX/MNC individually, but there is no report for the simultaneous estimation of both MTX and MNC in a simple method.

Objective: The objective of the developed method is to utilize the method for the estimation of MTX/MNC in different pharmaceutical formulations and in biological fluids.

Methods: An HPLC method for the estimation of Methotrexate (MTX) and Minocycline (MNC) relevance to the evaluation of nanoparticulate formulations has been developed and validated. Chromatographic estimation was achieved using the mobile phase composition of sodium acetate buffer and acetonitrile (70:30% v/v) at pH 4.0 at a flow rate of 0.2 mL/min at 307 nm.

Results: The calibration curve for MTX and MNC was found to be linear at nanogram (5 to 25 ng.mL-1) and microgram (5 to 25 μg.mL-1) levels at correlation coefficient range of 0.98 to 0.99 for both MTX/MNC. The lower limit of detection and limit of quantification were found to be 0.026 ng.mL-1 and 0.079 ng.mL-1 for MTX and MNC, respectively. The percentage relative standard deviation for validation parameters of both drugs was found to be less than 6.5%. The amount of MTX and MNC present within the nanoparticles was found to be MTX (0.84 mg/mL) and MNC (0.61 mg/mL). The in vitro release showed an immediate release pattern for MTX (64.95±2.08%) and MNC (90.90±1.78%) within 12 h.

Conclusion: The developed analytical method for the simultaneous estimation of MTX and MNC was found to be simple, affordable, dynamic, low cost, rapid and easy to perform with good repeatability. This method is also time consuming, since the peaks were obtained within a moderate analysis time.

Keywords: Methotrexate, minocycline, HPLC, quantification, oral dosage form, analysis.

Graphical Abstract

[1]
Puig, L. Methotrexate: new therapeutic approaches. Actas Dermosifiliogr., 2014, 105(6), 583-589.
[http://dx.doi.org/10.1016/j.adengl.2014.05.011] [PMID: 23434058]
[2]
Tomescu, A.; Sirbu, R.; Paris, S.; Cadar, E.; Erimia, C.L.; Tomescu, C.L. Methotrexate therapy in obstetricaĺ diseases. Eur. J. Inf. Syst., 2016, 2(1), 9-16.
[3]
Shinde, C.G.; Venkatesh, M.P.; Kumar, T.M.; Shivakumar, H.G. Methotrexate: a gold standard for treatment of rheumatoid arthritis. J. Pain Palliat. Care Pharmacother., 2014, 28(4), 351-358.
[http://dx.doi.org/10.3109/15360288.2014.959238] [PMID: 25322199]
[4]
Cipriani, P.; Ruscitti, P.; Carubbi, F.; Liakouli, V.; Giacomelli, R. Methotrexate in rheumatoid arthritis: optimizing therapy among different formulations. Current and emerging paradigms. Clin. Ther., 2014, 36(3), 427-435.
[http://dx.doi.org/10.1016/j.clinthera.2014.01.014] [PMID: 24612941]
[5]
Chan, E.S.L.; Cronstein, B.N. Mechanisms of action of methotrexate. Bull. Hosp. Jt. Dis., 2013, 71(1)(Suppl. 1), S5-S8.
[PMID: 24219035]
[6]
Elkayam, O.; Ben Itzhak, S.; Avrahami, E.; Meidan, Y.; Doron, N.; Eldar, I.; Keidar, I.; Liram, N.; Yaron, M. Multidisciplinary approach to chronic back pain: prognostic elements of the outcome. Clin. Exp. Rheumatol., 1996, 14(3), 281-288.
[PMID: 8809442]
[7]
Conway, R.; Low, C.; Coughlan, R.J.; O’Donnell, M.J.; Carey, J.J. Methotrexate and lung disease in rheumatoid arthritis: A meta- analysis of randomized controlled trials. Arthritis Rheumatol., 2014, 66(4), 803-812.
[http://dx.doi.org/10.1002/art.38322] [PMID: 24757133]
[8]
Langevitz, P.; Livneh, A.; Bank, I.; Pras, M. Benefits and risks of minocycline in rheumatoid arthritis. Drug Saf., 2000, 22(5), 405-414.
[http://dx.doi.org/10.2165/00002018-200022050-00007] [PMID: 10830256]
[9]
Kim, H.S.; Suh, Y.H. Minocycline and neurodegenerative diseases. Behav. Brain Res., 2009, 196(2), 168-179.
[http://dx.doi.org/10.1016/j.bbr.2008.09.040] [PMID: 18977395]
[10]
Chandrappa, M.; Biswas, S. Glucocorticoids in management of adult rheumatoid arthritis-current prescribing practices and perceptions of physicians in india: glumar survey. Arthritis Rheum., 2017, 7, 220.
[11]
Li, S.; Yu, Y.; Yue, Y.; Zhang, Z.; Su, K. Microbial infection and rheumatoid arthritis. J. Clin. Cell. Immunol., 2013, 4(6), 174.
[PMID: 25133066]
[12]
Oliveira, I.M.; Goncalves, C.; Reis, R.L.; Oliveira, J.M. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Res., 2018, 11(9), 4489-4506.
[http://dx.doi.org/10.1007/s12274-018-2071-3]
[13]
Sharma, R.; Kim, S.Y.; Sharma, A.; Zhang, Z.; Kambhampati, S.P.; Kannan, S.; Kannan, R.M. Activated microglia targeting dendrimer-minocycline conjugate as therapeutics for neuroinflammation. Bioconjug. Chem., 2017, 28(11), 2874-2886.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00569] [PMID: 29028353]
[14]
Oliveira, A.R.; Caland, L.B.; Oliveira, E.G.; Egito, E.S.T.; Pedrosa, M.F.F.; Junior, A.A.S. HPLCDAD and UV visible spectrophotometric methods for methotrexate assay in different biodegradable microparticles. JBCS, 2015, 26(4), 649-659.
[15]
Li, Y.D.; Li, Y.; Liang, N.S.; Yang, F.; Kuang, Z.P. A reversed-phase high performance liquid chromatography method for quantification of methotrexate in cancer patients serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1002, 107-112.
[http://dx.doi.org/10.1016/j.jchromb.2015.08.017] [PMID: 26319303]
[16]
Barca, M.; Ilie, M.; Baconi, D.L.; Ciobanu, A.M.; Balalau, D.; Burcea, G.T. Spectrofluorimetric methotrexate assay in human plasma. Farmacia, 2010, 58(1), 95-101.
[17]
Mohite, P.B.; Pandhare, R.B.; Khanage, S.G.; Bhaskar, V.H. Derivative spectrophotometric estimation of minocycline hydrochloride in bulk and pharmaceutical dosage forms. Int. J. Pharm. Tech. Res., 2010, 2(1), 177-180.
[18]
Kamel, A.M.; Brown, P.R.; Munson, B. Electrospray ionization mass spectrometry of tetracycline, oxytetracycline, chlorotetracycline, minocycline, and methacycline. Anal. Chem., 1999, 71(5), 968-977.
[http://dx.doi.org/10.1021/ac9807114] [PMID: 21662767]
[19]
Naidong, W.; Hua, S.; Roets, E.; Hoogmartens, J. Assay and purity control of minocycline by thin-layer chromatography using UV and fluorescence densitometry-a comparison with liquid chromatography. J. Pharm. Biomed. Anal., 1995, 13(7), 905-910.
[http://dx.doi.org/10.1016/0731-7085(95)01330-N] [PMID: 8562615]
[20]
Abolhasani, J.; Farajzadeh, N. A new spectrofluorimetric method for the determination of some tetracyclines based on their interfering effect on resonance fluorescence energy transfer. Luminescence, 2015, 30(3), 257-262.
[http://dx.doi.org/10.1002/bio.2722] [PMID: 25059920]
[21]
Giguère, S.; Burton, A.J.; Berghaus, L.J.; Haspel, A.D. Comparative pharmacokinetics of minocycline in foals and adult horses. J. Vet. Pharmacol. Ther., 2017, 40(4), 335-341.
[http://dx.doi.org/10.1111/jvp.12366] [PMID: 27682322]
[22]
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Aboul-Enein, H.Y. Recent trends in chiral separations by nano liquid chromatography and nano capillary electrophoresis. Curr. Chromatogr., 2014, 1, 81-89.
[http://dx.doi.org/10.2174/2213240601666140301001948]
[23]
Hanai, T. Definition of HILIC system and quantitative analysis of retention mechanisms. Curr. Chromatogr., 2018, 5, 43-52.
[http://dx.doi.org/10.2174/2213240605666180207093716]
[24]
Aboul-Enein, H.Y.; Ali, I. Comparison of the chiral resolution of econazole, miconazole, and sulconazole by HPLC using normal-phase amylose CSPs. Fresenius J. Anal. Chem., 2001, 370(7), 951-955.
[http://dx.doi.org/10.1007/s002160100884] [PMID: 11569882]
[25]
Erol, D. The third international symposium on pharmaceutical chemistry (ISPC-3). Farmaco, 2002, 57, 511.
[http://dx.doi.org/10.1016/S0014-827X(02)01282-X]
[26]
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Asnin, L.; Chudinov, A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J. Sep. Sci., 2014, 37(18), 2447-2466.
[http://dx.doi.org/10.1002/jssc.201400587] [PMID: 25044566]
[27]
Al-Othman, Z.A.; Al-Warthan, A.; Ali, I. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography. J. Sep. Sci., 2014, 37(9-10), 1033-1057.
[http://dx.doi.org/10.1002/jssc.201301326] [PMID: 24634395]
[28]
Aboul-Enein, H.Y.; Ali, I. Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases. Farmaco, 2002, 57(7), 513-529.
[http://dx.doi.org/10.1016/S0014-827X(02)01242-9] [PMID: 12164206]
[29]
Ghulam, A.; Shabir, W.; Lough, J.; Arain, S.A.; Bradshaw, T.K. Evaluation and application of best practice in analytical method validation. J. Liq. Chromatogr. Relat. Technol., 2007, 30(3), 311-333.
[http://dx.doi.org/10.1080/10826070601084753]
[30]
el-Hady, D.A.; el-Maali, N.A.; Gotti, R.; Bertucci, C.; Mancini, F.; Andrisano, V. Methotrexate determination in pharmaceuticals by enantioselective HPLC. J. Pharm. Biomed. Anal., 2005, 37(5), 919-925.
[http://dx.doi.org/10.1016/j.jpba.2004.07.046] [PMID: 15862667]
[31]
Turci, R.; Fiorentino, M.L.; Sottani, C.; Minoia, C. Determination of methotrexate in human urine at trace levels by solid phase extraction and high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2000, 14(3), 173-179.
[http://dx.doi.org/10.1002/(SICI)1097-0231(20000215)14:3<173::AID-RCM862>3.0.CO;2-K] [PMID: 10637424]
[32]
Begas, E.; Papandreou, C.; Tsakalof, A.; Daliani, D.; Papatsibas, G.; Asprodini, E. Simple and reliable HPLC method for the monitoring of methotrexate in osteosarcoma patients. J. Chromatogr. Sci., 2014, 52(7), 590-595.
[http://dx.doi.org/10.1093/chromsci/bmt081] [PMID: 23800772]
[33]
Lobo, E.D.; Balthasar, J.P. Pharmacokinetic-pharmacodynamic modeling of methotrexate-induced toxicity in mice. J. Pharm. Sci., 2003, 92(8), 1654-1664.
[http://dx.doi.org/10.1002/jps.10431] [PMID: 12884252]
[34]
Nelson, J.A.; Harris, B.A.; Decker, W.J.; Farquhar, D. Analysis of methotrexate in human plasma by high-pressure liquid chromatography with fluorescence detection. Cancer Res., 1977, 37(11), 3970-3973.
[PMID: 302738]
[35]
Aboleneen, H.; Simpson, J.; Backes, D. Determination of methotrexate in serum by high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl., 1996, 681(2), 317-322.
[http://dx.doi.org/10.1016/0378-4347(95)00580-3] [PMID: 8811442]
[36]
Mascher, H.J. Determination of minocycline in human plasma by high-performance liquid chromatography with UV detection after liquid-liquid extraction. J. Chromatogr. A, 1998, 812(1-2), 339-342.
[http://dx.doi.org/10.1016/S0021-9673(98)00402-6] [PMID: 9691330]
[37]
Wrightson, W.R.; Myers, S.R.; Galandiuk, S. Analysis of minocycline by high-performance liquid chromatography in tissue and serum. J. Chromatogr. B Biomed. Sci. Appl., 1998, 706(2), 358-361.
[http://dx.doi.org/10.1016/S0378-4347(97)00647-6] [PMID: 9551825]
[38]
Araujo, M.V.F.; Ifa, D.R.; Ribeiro, W.; Moraes, M.E.; Moraes, M.O.; de Nucci, G. Determination of minocycline in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: application to bioequivalence study. J. Chromatogr. B Biomed. Sci. Appl., 2001, 755(1-2), 1-7.
[http://dx.doi.org/10.1016/S0378-4347(00)00472-2] [PMID: 11393692]
[39]
Colovic, M.; Caccia, S. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 791(1-2), 337-343.
[http://dx.doi.org/10.1016/S1570-0232(03)00247-2] [PMID: 12798193]
[40]
Michail, K.; Moneeb, M.S. Determination of methotrexate and indomethacin in urine using SPE-LC-DAD after derivatization. J. Pharm. Biomed. Anal., 2011, 55(2), 317-324.
[http://dx.doi.org/10.1016/j.jpba.2011.01.032] [PMID: 21330088]
[41]
Sczesny, F.; Hempel, G.; Boos, J.; Blaschke, G. Capillary electrophoretic drug monitoring of methotrexate and leucovorin and their metabolites. J. Chromatogr. B Biomed. Sci. Appl., 1998, 718(1), 177-185.
[http://dx.doi.org/10.1016/S0378-4347(98)00367-3] [PMID: 9832374]
[42]
Lariya, N.K.; Agrawal, G.P. Development and Validation of RP-HPLC Method for Simultaneous Determination of Methotrexate, Dexamethasone and Indomethacin. Int. J. Pharm. Pharm. Sci., 2014, 7(3), 443-446.
[43]
Soneji, P.D.; Shah, J.S.; Maheswari, D.G. Development and validation of analytical method for simultaneous estimation of leflunomide and methotrexate in synthetic mixture by Q-absorbance ratio method. IJPT, 2015, 6(4), 7500-7512.
[44]
Lin, Y.K.; Huang, Z.R.; Zhuo, R.Z.; Fang, J.Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomedicine, 2010, 5, 117-128.
[PMID: 20309398]
[45]
Armstrong, N.; Richez, M.; Raoult, D.; Chabriere, E. Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple’s disease. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1060, 166-172.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.011] [PMID: 28622620]
[46]
Matos, A.C.; Pinto, R.V.; Bettencourt, A.F. Easy-assessment of levofloxacin and minocycline in relevant biomimetic media by HPLC-UV analysis. J. Chromatogr. Sci., 2017, 55(7), 757-765.
[http://dx.doi.org/10.1093/chromsci/bmx033] [PMID: 28444354]
[47]
Milane, A.; Fernandez, C.; Vautier, S.; Bensimon, G.; Meininger, V.; Farinotti, R. Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood-brain barrier. J. Neurochem., 2007, 103(1), 164-173.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04772.x] [PMID: 17635670]
[48]
Singh, G.; Pai, R.S.; Pandit, V. Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma. J. Adv. Pharm. Technol. Res., 2012, 3(2), 130-135.
[http://dx.doi.org/10.4103/2231-4040.97296] [PMID: 22837962]
[49]
Natesan, S.; Thanasekaran, D.; Krishnaswami, V.; Ponnusamy, C. Improved Rp- Hplc method for the simultaneous estimation of tranexamic acid and mefenamic acid in tablet dosage form. Pharm. Anal. Acta, 2011, 2(1), 115.
[http://dx.doi.org/10.4172/2153-2435.1000115]
[50]
Bluett, J.; Riba-Garcia, I.; Hollywood, K.; Verstappen, S.M.; Barton, A.; Unwin, R.D.A. A HPLC-SRM-MS based method for the detection and quantification of methotrexate in urine at doses used in clinical practice for patients with rheumatological disease: a potential measure of adherence. Analyst (Lond.), 2015, 140(6), 1981-1987.
[http://dx.doi.org/10.1039/C4AN02321H] [PMID: 25671614]
[51]
Raichurvinay, D.; V.K., Development and validation of a highly sensitive high-performance liquid chromatography (Hplc) method for the estimation of methotrexate (MTX) pure drug and marketed formulation in spiked rat plasma. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 1-10.
[52]
Roy, M.; Mohite, M.; Shah, S. Development and validation of RP- HPLC method for the determination of methotrexate in bulk and pharmaceutical tablet dosage form. EJPMR, 2016, 3(5), 355-358.
[53]
Montemurro, M.; De Zan, M.M.; Robles, J.C. Optimized high performance liquid chromatography-ultraviolet detection method using core-shell particles for the therapeutic monitoring of methotrexate. J. Pharm. Anal., 2016, 6(2), 103-111.
[http://dx.doi.org/10.1016/j.jpha.2015.12.001] [PMID: 29403969]
[54]
De Abreu, C.C.; Rosa, P.C.; Alves, Bda.C.; Azzalis, L.A.; Gehrke, Fde.S.; Pereira, E.C.; Junqueira, V.B.; Perazzo, F.F.; Fonseca, F.L. Development and validation of HPLC method to determination of Methotrexate in children oncologic patients. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(8), 1373-1380.
[PMID: 25967711]
[55]
Orti, V.; Audran, M.; Gibert, P.; Bougard, G.; Bressolle, F. High-performance liquid chromatographic assay for minocycline in human plasma and parotid saliva. J. Chromatogr. B Biomed. Sci. Appl., 2000, 738(2), 357-365.
[http://dx.doi.org/10.1016/S0378-4347(99)00547-2] [PMID: 10718653]
[56]
Agarwal, A.; Singhvi, I.J.; Gupta, S.K.; Gupta, K.C.; Thakkar, M. Method development and validation for assay of minocycline hydrochloride in dosage forms by RP-HPLC. IJCSR, 2012, 10(4), 2191-2198.
[57]
Nikolaidou, K.I.; Samanidou, V.F.; Papadoyannis, I.N. Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple’s disease. J Liq Chrom Relat Tech., 2008, 31(14), 2141-2158.
[http://dx.doi.org/10.1080/10826070802225445]
[58]
Rahimi, M.; Safa, K.D.; Alizadeh, E.; Salehi, R. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J. Chem., 2017, 41(8), 3177-3189.
[http://dx.doi.org/10.1039/C6NJ04107H]
[59]
Sharma, H.S.; Patel, A.; Dwivedi, N.; Kaurav, N.; Bashani, S.; Patel, S. Development and validation of RP-HPLC method for simultaneous estimation of Methotrexate and tretinoin. JMPI, 2016, 3(18), 25-34.
[60]
Ruckmani, K.; Sivakumar, M.; Ganeshkumar, P.A. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 2006, 6(9-10), 2991-2995.
[http://dx.doi.org/10.1166/jnn.2006.457] [PMID: 17048509]
[61]
Nagpal, K.; Singh, S.K.; Mishra, D.N. Formulation, optimization, in vivo pharmacokinetic, behavioral and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chem. Pharm. Bull. (Tokyo), 2013, 61(3), 258-272.
[http://dx.doi.org/10.1248/cpb.c12-00732] [PMID: 23449195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy