Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis

Author(s): Marta Spodzieja*, Sylwia Rodziewicz-Motowidło and Aneta Szymanska*

Volume 26, Issue 1, 2019

Page: [104 - 120] Pages: 17

DOI: 10.2174/0929867324666171003113019

Price: $65

Abstract

Amyloidoses are a group of diseases caused by the extracellular deposition of proteins forming amyloid fibrils. The amyloidosis is classified according to the main protein or peptide that constitutes the amyloid fibrils. The most effective methods for the diagnosis of amyloidosis are based on mass spectrometry. Mass spectrometry enables confirmation of the identity of the protein precursor of amyloid fibrils in biological samples with very high sensitivity and specificity, which is crucial for proper amyloid typing. Due to the fact that biological samples are very complex, mass spectrometry is usually connected with techniques such as liquid chromatography or capillary electrophoresis, which enable the separation of proteins before MS analysis. Therefore mass spectrometry constitutes an important part of the so called “hyphenated techniques” combining, preferentially in-line, different analytical methods to provide comprehensive information about the studied problem. Hyphenated methods are very useful in the discovery of biomarkers in different types of amyloidosis. In systemic forms of amyloidosis, the analysis of aggregated proteins is usually performed based on the tissues obtained during a biopsy of an affected organ or a subcutaneous adipose tissue. In some cases, when the diagnostic biopsy is not possible due to the fact that amyloid fibrils are formed in organs like the brain (Alzheimer’s disease), the study of biomarkers presented in body fluids can be carried out. Currently, large-scale studies are performed to find and validate more effective biomarkers, which can be used in diagnostic procedures. We would like to present the methods connected with mass spectrometry which are used in the diagnosis of amyloidosis based on the analysis of proteins occurring in tissues, blood and cerebrospinal fluid.

Keywords: Amyloidosis, neurodegeneration, biomarker, diagnosis, proteomics, tandem mass spectrometry.

[1]
Merlini, G.; Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med., 2003, 349(6), 583-596.
[2]
Rambaran, R.N.; Serpell, L.C. Amyloid fibrils: abnormal protein assembly. Prion, 2008, 2(3), 112-117.
[3]
Tennent, G.A.; Lovat, L.B.; Pepys, M.B. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl. Acad. Sci. USA, 1995, 92(10), 4299-4303.
[4]
Merlini, G.; Seldin, D.C.; Gertz, M.A. Amyloidosis: pathogenesis and new therapeutic options. J. Clin. Oncol., 2011, 29(14), 1924-1933.
[5]
Magy-Bertrand, N.; Dupond, J-L.; Mauny, F.; Dupond, A-S.; Duchene, F.; Gil, H.; Kantelip, B. Incidence of amyloidosis over 3 years: the AMYPRO study. Clin. Exp. Rheumatol., 2008, 26(6), 1074-1078.
[6]
Loizos, S.; Shiakalli Chrysa, T.; Christos, G.S. Amyloidosis: Review and imaging findings. Semin. Ultrasound, CT MRI, 2014, 35(3), 225-239.
[7]
Day, H.J.; Hooker, E.Z. Amyloidosis. Part II. Implications for neuroscience nurses: Alzheimer’s disease. Axone, 1992, 13(3), 81-86.
[8]
Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid, 2014, 21(4), 221-224.
[9]
Howie, A.J.; Brewer, D.B.; Howell, D.; Jones, A.P. Physical basis of colors seen in Congo red-stained amyloid in polarized light. Lab. Invest., 2008, 88(3), 232-242.
[10]
Gertz, M.A.; Comenzo, R.; Falk, R.H.; Fermand, J.P.; Hazenberg, B.P.; Hawkins, P.N.; Merlini, G.; Moreau, P.; Ronco, P.; Sanchorawala, V.; Sezer, O.; Solomon, A.; Grateau, G. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am. J. Hematol., 2005, 79(4), 319-328.
[11]
Holmgren, G.; Ericzon, B.G.; Groth, C.G.; Steen, L.; Suhr, O.; Andersen, O.; Wallin, B.G.; Seymour, A.; Richardson, S.; Hawkins, P.N. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet, 1993, 341(8853), 1113-1116.
[12]
Stangou, A.J.; Hawkins, P.N. Liver transplantation in transthyretin-related familial amyloid polyneuropathy. Curr. Opin. Neurol., 2004, 17(5), 615-620.
[13]
Gertz, M.A.; Kyle, R.A. Primary systemic amyloidosis--a diagnostic primer. Mayo Clin. Proc., 1989, 64(12), 1505-1519.
[14]
Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Hayman, S.R. Amyloidosis: diagnosis and management. Clin. Lymphoma Myeloma, 2005, 6(3), 208-219.
[15]
Lachmann, H.J.; Booth, D.R.; Booth, S.E.; Bybee, A.; Gilbertson, J.A.; Gillmore, J.D.; Pepys, M.B.; Hawkins, P.N. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N. Engl. J. Med., 2002, 346(23), 1786-1791.
[16]
Picken, M.M.; Herrera, G.A. The burden of “sticky” amyloid: typing challenges. Arch. Pathol. Lab. Med., 2007, 131(6), 850-851.
[17]
Kebbel, A.; Röcken, C. Immunohistochemical classification of amyloid in surgical pathology revisited. Am. J. Surg. Pathol., 2006, 30(6), 673-683.
[18]
Hawkins, P.N.; Ando, Y.; Dispenzeri, A.; Gonzalez-Duarte, A.; Adams, D.; Suhr, O.B. Evolving landscape in the management of transthyretin amyloidosis. Ann. Med., 2015, 47(8), 625-638.
[19]
Arbustini, E.; Verga, L.; Concardi, M.; Palladini, G.; Obici, L.; Merlini, G. Electron and immuno-electron microscopy of abdominal fat identifies and characterizes amyloid fibrils in suspected cardiac amyloidosis. Amyloid, 2002, 9(2), 108-114.
[20]
Silver, M.M.; Hearn, S.A.; Walton, J.C.; Lines, L.A.; Walley, V.M. Immunogold quantitation of immunoglobulin light chains in renal amyloidosis and kappa light chain nephropathy. Am. J. Pathol., 1990, 136(5), 997-1007.
[21]
Lavatelli, F.; Perlman, D.H.; Spencer, B.; Prokaeva, T.; McComb, M.E.; Théberge, R.; Connors, L.H.; Bellotti, V.; Seldin, D.C.; Merlini, G.; Skinner, M.; Costello, C.E. Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol. Cell. Proteomics, 2008, 7(8), 1570-1583.
[22]
Westermark, P.; Benson, L.; Juul, J.; Sletten, K. Use of subcutaneous abdominal fat biopsy specimen for detailed typing of amyloid fibril protein-AL by amino acid sequence analysis. J. Clin. Pathol., 1989, 42(8), 817-819.
[23]
Westermark, P.; Davey, E.; Lindbom, K.; Enqvist, S. Subcutaneous fat tissue for diagnosis and studies of systemic amyloidosis. Acta Histochem., 2006, 108(3), 209-213.
[24]
Brambilla, F.; Lavatelli, F.; Merlini, G.; Mauri, P. Clinical proteomics for diagnosis and typing of systemic amyloidoses. Proteomics Clin. Appl., 2013, 7(1-2), 136-143.
[25]
Tachibana, N.; Tokuda, T.; Yoshida, K.; Taketomi, T.; Nakazato, M.; Li, Y.F.; Masuda, Y.; Ikeda, S. Usefulness of MALDI/TOF mass spectrometry of immunoprecipitated serum variant transthyretin in the diagnosis of familial amyloid polyneuropathy. Amyloid, 1999, 6(4), 282-288.
[26]
Théberge, R.; Connors, L.; Skinner, M.; Skare, J.; Costello, C.E. Characterization of transthyretin mutants from serum using immunoprecipitation, HPLC/electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 1999, 71(2), 452-459.
[27]
Bergen, H.R., III; Zeldenrust, S.R.; Naylor, S. An on-line assay for clinical detection of amyloidogenic transthyretin variants directly from serum. Amyloid, 2003, 10(3), 190-197.
[28]
Théberge, R.; Infusini, G.; Tong, W.; McComb, M.E.; Costello, C.E. Top-Down Analysis of Small Plasma Proteins Using an LTQ-Orbitrap. Int. J. Mass Spectrom., 2011, 300(2-3), 130-142.
[29]
Heegaard, N.H.H.; Hansen, M.Z.; Sen, J.W.; Christiansen, M.; Westermark, P. Immunoaffinity chromatographic and immunoprecipitation methods combined with mass spectrometry for characterization of circulating transthyretin. J. Sep. Sci., 2006, 29(3), 371-377.
[30]
Lavatelli, F.; Brambilla, F.; Valentini, V.; Rognoni, P.; Casarini, S.; Di Silvestre, D.; Perfetti, V.; Palladini, G.; Sarais, G.; Mauri, P.; Merlini, G. A novel approach for the purification and proteomic analysis of pathogenic immunoglobulin free light chains from serum. Biochim. Biophys. Acta, 2011, 1814(3), 409-419.
[31]
Bergen, H.R., III; Abraham, R.S.; Johnson, K.L.; Bradwell, A.R.; Naylor, S. Characterization of amyloidogenic immunoglobulin light chains directly from serum by on-line immunoaffinity isolation. Biomed. Chromatogr., 2004, 18(3), 191-201.
[32]
Núñez Galindo, A.; Kussmann, M.; Dayon, L. Proteomics of Cerebrospinal Fluid: Throughput and Robustness Using a Scalable Automated Analysis Pipeline for Biomarker Discovery. Anal. Chem., 2015, 87(21), 10755-10761.
[33]
Dayon, L.; Núñez Galindo, A.; Corthésy, J.; Cominetti, O.; Kussmann, M. Comprehensive and Scalable Highly Automated MS-Based Proteomic Workflow for Clinical Biomarker Discovery in Human Plasma. J. Proteome Res., 2014, 13(8), 3837-3845.
[34]
Cominetti, O.; Núñez Galindo, A.; Corthésy, J.; Oller Moreno, S.; Irincheeva, I.; Valsesia, A.; Astrup, A.; Saris, W.H.M.; Hager, J.; Kussmann, M.; Dayon, L. Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry. J. Proteome Res., 2016, 15(2), 389-399.
[35]
Dittrich, J.; Becker, S.; Hecht, M.; Ceglarek, U. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. Proteomics Clin. Appl., 2015, 9(1-2), 5-16.
[36]
Getz, E.B.; Xiao, M.; Chakrabarty, T.; Cooke, R.; Selvin, P.R. A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal. Biochem., 1999, 273(1), 73-80.
[37]
Zabet-Moghaddam, M.; Kawamura, T.; Yatagai, E.; Niwayama, S. Electrospray ionization mass spectroscopic analysis of peptides modified with N-ethylmaleimide or iodoacetanilide. Bioorg. Med. Chem. Lett., 2008, 18(17), 4891-4895.
[38]
Cañas, B.; Piñeiro, C.; Calvo, E.; López-Ferrer, D.; Gallardo, J.M. Trends in sample preparation for classical and second generation proteomics. J. Chromatogr. A, 2007, 1153(1-2), 235-258.
[39]
Brownridge, P.; Beynon, R.J. The importance of the digest: proteolysis and absolute quantification in proteomics. Methods, 2011, 54(4), 351-360.
[40]
Yates, J.R., III Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 297-316.
[41]
Loo, R.R.; Dales, N.; Andrews, P.C. Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Sci., 1994, 3(11), 1975-1983.
[42]
Banerjee, S.; Mazumdar, S.; Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem., 2012, 2012, 282574.
[43]
Louris, J.N.; Brodbelt-Lustig, J.S.; Graham Cooks, R.; Glish, G.L.; van Berkel, G.J.; McLuckey, S.A. Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. Int. J. Mass Spectrom. Ion Process., 1990, 96(2), 117-137.
[44]
Payne, A.H.; Glish, G.L. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. Methods Enzymol., 2005, 402(05), 109-148.
[45]
Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev., 1998, 17(1), 1-35.
[46]
March, R.E. An Introduction to Quadrupole Ion Trap Mass Spectrometry. J. Mass Spectrom., 1997, 32(4), 351-369.
[47]
Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, 20(18), 3551-3567.
[48]
Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2003, 17(20), 2337-2342.
[49]
Eng, J.K.; McCormack, A.L.; Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 1994, 5(11), 976-989.
[50]
MacCoss, M.J.; Wu, C.C.; Yates, J.R. III Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem., 2002, 74(21), 5593-5599.
[51]
Shilov, I.V.; Seymour, S.L.; Patel, A.A.; Loboda, A.; Tang, W.H.; Keating, S.P.; Hunter, C.L.; Nuwaysir, L.M.; Schaeffer, D.A. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics, 2007, 6(9), 1638-1655.
[52]
Craig, R.; Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 2004, 20(9), 1466-1467.
[53]
Geer, L.Y.; Markey, S.P.; Kowalak, J.A.; Wagner, L.; Xu, M.; Maynard, D.M.; Yang, X.; Shi, W.; Bryant, S.H. Open mass spectrometry search algorithm. J. Proteome Res., 2004, 3(5), 958-964.
[54]
Kellie, J.F.; Catherman, A.D.; Durbin, K.R.; Tran, J.C.; Tipton, J.D.; Norris, J.L.; Witkowski, C.E., II; Thomas, P.M.; Kelleher, N.L. Robust analysis of the yeast proteome under 50 kDa by molecular-mass-based fractionation and top-down mass spectrometry. Anal. Chem., 2012, 84(1), 209-215.
[55]
McLafferty, F.W.; Breuker, K.; Jin, M.; Han, X.; Infusini, G.; Jiang, H.; Kong, X.; Begley, T.P. Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J., 2007, 274(24), 6256-6268.
[56]
McLafferty, F.W.; Bryce, T.A. Metastable-ion characteristics: characterization of isomeric molecules. Chem. Commun., 1967, (23), 1215.
[57]
Roepstorff, P.; Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom., 1984, 11(11), 601.
[58]
Chawner, R.; Gaskell, S.J.; Eyers, C.E. Proposal for a common nomenclature for peptide fragment ions generated following sequence scrambling during collision-induced dissociation. Rapid Commun. Mass Spectrom., 2012, 26(2), 205-206.
[59]
Zubarev, R.A.; Zubarev, A.R.; Savitski, M.M. Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet? J. Am. Soc. Mass Spectrom., 2008, 19(6), 753-761.
[60]
McLafferty, F.W.; Horn, D.M.; Breuker, K.; Ge, Y.; Lewis, M.A.; Cerda, B.; Zubarev, R.A.; Carpenter, B.K. Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J. Am. Soc. Mass Spectrom., 2001, 12(3), 245-249.
[61]
Syka, J.E.P.; Coon, J.J.; Schroeder, M.J.; Shabanowitz, J.; Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9528-9533.
[62]
Zubarev, R.A. Electron-capture dissociation tandem mass spectrometry. Curr. Opin. Biotechnol., 2004, 15(1), 12-16.
[63]
Nielsen, M.L.; Savitski, M.M.; Zubarev, R.A. Improving protein identification using complementary fragmentation techniques in fourier transform mass spectrometry. Mol. Cell. Proteomics, 2005, 4(6), 835-845.
[64]
Whitelegge, J. Intact protein mass spectrometry and top-down proteomics. Expert Rev. Proteomics, 2013, 10(2), 127-129.
[65]
Karabacak, N.M.; Li, L.; Tiwari, A.; Hayward, L.J.; Hong, P.; Easterling, M.L.; Agar, J.N. Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol. Cell. Proteomics, 2009, 8(4), 846-856.
[66]
Tsai, Y.S.; Scherl, A.; Shaw, J.L.; MacKay, C.L.; Shaffer, S.A.; Langridge-Smith, P.R.R.; Goodlett, D.R. Precursor ion independent algorithm for top-down shotgun proteomics. J. Am. Soc. Mass Spectrom., 2009, 20(11), 2154-2166.
[67]
Zamdborg, L.; LeDuc, R. D.; Glowacz, K. J.; Kim, Y.-B.; Viswanathan, V.; Spaulding, I. T.; Early, B. P.; Bluhm, E. J.; Babai, S.; Kelleher, N. L. ProSight PTM 2.0: Improved protein identification and characterization for top down mass spectrometry Nucleic Acids Res, 2007, 35, (Web Server issue), W701-W706.
[68]
Di Girolamo, F.; Lante, I.; Muraca, M.; Putignani, L. The role of mass spectrometry in the “Omics” Era. Curr. Org. Chem., 2013, 17(23), 2891-2905.
[69]
Giusti, L.; Lucacchini, A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev. Proteomics, 2013, 10(2), 165-177.
[70]
Tanca, A.; Pagnozzi, D.; Falchi, G.; Tonelli, R.; Rocca, S.; Roggio, T.; Uzzau, S.; Addis, M.F. Application of 2-D DIGE to formalin-fixed, paraffin-embedded tissues. Proteomics, 2011, 11(5), 1005-1011.
[71]
Ralton, L.D.; Murray, G.I. The use of formalin fixed wax embedded tissue for proteomic analysis. J. Clin. Pathol., 2011, 64(4), 297-302.
[72]
Thavarajah, R.; Mudimbaimannar, V.K.; Elizabeth, J.; Rao, U.K.; Ranganathan, K. Chemical and physical basics of routine formaldehyde fixation. J. Oral Maxillofac. Pathol., 2012, 16(3), 400-405.
[73]
Steiner, C.; Ducret, A.; Tille, J-C.; Thomas, M.; McKee, T.A.; Rubbia-Brandt, L.; Scherl, A.; Lescuyer, P.; Cutler, P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics, 2014, 14(4-5), 441-451.
[74]
van Gameren, I.I.; Hazenberg, B.P.C.; Bijzet, J.; Haagsma, E.B.; Vellenga, E.; Posthumus, M.D.; Jager, P.L.; van Rijswijk, M.H. Amyloid load in fat tissue reflects disease severity and predicts survival in amyloidosis. Arthritis Care Res. (Hoboken), 2010, 62(3), 296-301.
[75]
Kettwich, L.G.; Sibbitt, W.L., Jr; Emil, N.S.; Ashraf, U.; Sanchez-Goettler, L.; Thariani, Y.; Bankhurst, A.D. New device technologies for subcutaneous fat biopsy. Amyloid, 2012, 19(2), 66-73.
[76]
Vrana, J.A.; Gamez, J.D.; Madden, B.J.; Theis, J.D.; Bergen, H.R., III; Dogan, A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood, 2009, 114(24), 4957-4959.
[77]
Lavatelli, F.; Vrana, J.A. Proteomic typing of amyloid deposits in systemic amyloidoses. Amyloid, 2011, 18(4), 177-182.
[78]
Klein, C.J.; Vrana, J.A.; Theis, J.D.; Dyck, P.J.; Dyck, P.J.B.; Spinner, R.J.; Mauermann, M.L.; Bergen, H.R., III; Zeldenrust, S.R.; Dogan, A. Mass spectrometric-based proteomic analysis of amyloid neuropathy type in nerve tissue. Arch. Neurol., 2011, 68(2), 195-199.
[79]
Rowczenio, D.; Dogan, A.; Theis, J.D.; Vrana, J.A.; Lachmann, H.J.; Wechalekar, A.D.; Gilbertson, J.A.; Hunt, T.; Gibbs, S.D.J.; Sattianayagam, P.T.; Pinney, J.H.; Hawkins, P.N.; Gillmore, J.D. Amyloidogenicity and clinical phenotype associated with five novel mutations in apolipoprotein A-I. Am. J. Pathol., 2011, 179(4), 1978-1987.
[80]
Sethi, S.; Vrana, J.A.; Theis, J.D.; Leung, N.; Sethi, A.; Nasr, S.H.; Fervenza, F.C.; Cornell, L.D.; Fidler, M.E.; Dogan, A. Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis. Kidney Int., 2012, 82(2), 226-234.
[81]
Vrana, J.A.; Theis, J.D.; Dasari, S.; Mereuta, O.M.; Dispenzieri, A.; Zeldenrust, S.R.; Gertz, M.A.; Kurtin, P.J.; Grogg, K.L.; Dogan, A. Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica, 2014, 99(7), 1239-1247.
[82]
Washburn, M.P.; Wolters, D.; Yates, J.R., III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol., 2001, 19(3), 242-247.
[83]
Mauri, P.; Scigelova, M. Multidimensional protein identification technology for clinical proteomic analysis. Clin. Chem. Lab. Med., 2009, 47(6), 636-646.
[84]
Gilar, M.; Olivova, P.; Chakraborty, A.B.; Jaworski, A.; Geromanos, S.J.; Gebler, J.C. Comparison of 1-D and 2-D LC MS/MS methods for proteomic analysis of human serum. Electrophoresis, 2009, 30(7), 1157-1167.
[85]
Hsieh, Y.L.; Wang, H.; Elicone, C.; Mark, J.; Martin, S.A.; Regnier, F. Automated analytical system for the examination of protein primary structure. Anal. Chem., 1996, 68(3), 455-462.
[86]
Brambilla, F.; Lavatelli, F.; Di Silvestre, D.; Valentini, V.; Rossi, R.; Palladini, G.; Obici, L.; Verga, L.; Mauri, P.; Merlini, G. Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood, 2012, 119(8), 1844-1847.
[87]
Anderson, N.L.; Anderson, N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 2002, 1(11), 845-867.
[88]
Zolla, L. Proteomics studies reveal important information on small molecule therapeutics: a case study on plasma proteins. Drug Discov. Today, 2008, 13(23-24), 1042-1051.
[89]
Tam, S.W.; Pirro, J.; Hinerfeld, D. Depletion and fractionation technologies in plasma proteomic analysis. Expert Rev. Proteomics, 2004, 1(4), 411-420.
[90]
Falk, R.H.; Skinner, M. The systemic amyloidoses: an overview. Adv. Intern. Med., 2000, 45, 107-137.
[91]
Lim, A.; Prokaeva, T.; McComb, M.E.; O’Connor, P.B.; Théberge, R.; Connors, L.H.; Skinner, M.; Costello, C.E. Characterization of transthyretin variants in familial transthyretin amyloidosis by mass spectrometric peptide mapping and DNA sequence analysis. Anal. Chem., 2002, 74(4), 741-751.
[92]
Cornwell, G.G., III; Murdoch, W.L.; Kyle, R.A.; Westermark, P.; Pitkänen, P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am. J. Med., 1983, 75(4), 618-623.
[93]
Ando, Y.; Ohlsson, P.I.; Suhr, O.; Nyhlin, N.; Yamashita, T.; Holmgren, G.; Danielsson, A.; Sandgren, O.; Uchino, M.; Ando, M. A new simple and rapid screening method for variant transthyretin-related amyloidosis. Biochem. Biophys. Res. Commun., 1996, 228(2), 480-483.
[94]
Ando, Y.; Suhr, O.; Yamashita, T.; Ohlsson, P.I.; Holmgren, G.; Obayashi, K.; Terazaki, H.; Mambule, C.; Uchino, M.; Ando, M. Detection of different forms of variant transthyretin (Met30) in cerebrospinal fluid. Neurosci. Lett., 1997, 238(3), 123-126.
[95]
Pont, L.; Benavente, F.; Barbosa, J.; Sanz-Nebot, V. Analysis of transthyretin in human serum by capillary zone electrophoresis electrospray ionization time-of-flight mass spectrometry. Application to familial amyloidotic polyneuropathy type I. Electrophoresis, 2015, 36(11-12), 1265-1273.
[96]
Pont, L.; Benavente, F.; Vilaseca, M.; Giménez, E.; Sanz-Nebot, V. Characterisation of serum transthyretin by electrospray ionisation-ion mobility mass spectrometry: Application to familial amyloidotic polyneuropathy type I (FAP-I). Talanta, 2015, 144, 1216-1224.
[97]
Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H. Jr Ion mobility-mass spectrometry. J. Mass Spectrom., 2008, 43(1), 1-22.
[98]
Barnidge, D.R.; Dispenzieri, A.; Merlini, G.; Katzmann, J.A.; Murray, D.L. Monitoring free light chains in serum using mass spectrometry. Clin. Chem. Lab. Med., 2016, 54(6), 1073-1083.
[99]
Brebner, J.A.; Stockley, R.A. Polyclonal free light chains: a biomarker of inflammatory disease or treatment target? F1000 Med. Rep., 2013, 5, 4.
[100]
Muchtar, E.; Buadi, F.K.; Dispenzieri, A.; Gertz, M.A. Immunoglobulin light-chain amyloidosis: from basics to new developments in diagnosis, prognosis and therapy. Acta Haematol., 2016, 135(3), 172-190.
[101]
Lewczuk, P.; Esselmann, H.; Bibl, M.; Paul, S.; Svitek, J.; Miertschischk, J.; Meyrer, R.; Smirnov, A.; Maler, J.M.; Klein, C.; Otto, M.; Bleich, S.; Sperling, W.; Kornhuber, J.; Rüther, E.; Wiltfang, J. Electrophoretic separation of amyloid beta peptides in plasma. Electrophoresis, 2004, 25(20), 3336-3343.
[102]
van Oijen, M.; Hofman, A.; Soares, H.D.; Koudstaal, P.J.; Breteler, M.M.B. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol., 2006, 5(8), 655-660.
[103]
Graff-Radford, N.R.; Crook, J.E.; Lucas, J.; Boeve, B.F.; Knopman, D.S.; Ivnik, R.J.; Smith, G.E.; Younkin, L.H.; Petersen, R.C.; Younkin, S.G. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol., 2007, 64(3), 354-362.
[104]
Mayeux, R.; Honig, L.S.; Tang, M-X.; Manly, J.; Stern, Y.; Schupf, N.; Mehta, P.D. Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology, 2003, 61(9), 1185-1190.
[105]
Lambert, J-C.; Schraen-Maschke, S.; Richard, F.; Fievet, N.; Rouaud, O.; Berr, C.; Dartigues, J-F.; Tzourio, C.; Alpérovitch, A.; Buée, L.; Amouyel, P. Association of plasma amyloid beta with risk of dementia: the prospective Three-City Study. Neurology, 2009, 73(11), 847-853.
[106]
Koyama, A.; Okereke, O.I.; Yang, T.; Blacker, D.; Selkoe, D.J.; Grodstein, F. Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch. Neurol., 2012, 69(7), 824-831.
[107]
Pannee, J.; Törnqvist, U.; Westerlund, A.; Ingelsson, M.; Lannfelt, L.; Brinkmalm, G.; Persson, R.; Gobom, J.; Svensson, J.; Johansson, P.; Zetterberg, H.; Blennow, K.; Portelius, E. The amyloid-β degradation pattern in plasma--a possible tool for clinical trials in Alzheimer’s disease. Neurosci. Lett., 2014, 573, 7-12.
[108]
Gallien, S.; Duriez, E.; Domon, B. Selected reaction monitoring applied to proteomics. J. Mass Spectrom., 2011, 46(3), 298-312.
[109]
Picotti, P.; Aebersold, R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods, 2012, 9(6), 555-566.
[110]
Lista, S.; Faltraco, F.; Prvulovic, D.; Hampel, H. Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Prog. Neurobiol., 2013, 101-102, 1-17.
[111]
Baird, A.L.; Westwood, S.; Lovestone, S. Blood-Based Proteomic Biomarkers of Alzheimer’s Disease Pathology. Front. Neurol., 2015, 6, 236.
[112]
Zürbig, P.; Jahn, H. Use of proteomic methods in the analysis of human body fluids in Alzheimer research. Electrophoresis, 2012, 33(24), 3617-3630.
[113]
Kiddle, S.J.; Sattlecker, M.; Proitsi, P.; Simmons, A.; Westman, E.; Bazenet, C.; Nelson, S.K.; Williams, S.; Hodges, A.; Johnston, C.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Newhouse, S.; Lovestone, S.; Dobson, R.J. Candidate blood proteome markers of Alzheimer’s disease onset and progression: a systematic review and replication study. J. Alzheimers Dis., 2014, 38(3), 515-531.
[114]
Thambisetty, M.; Tripaldi, R.; Riddoch-Contreras, J.; Hye, A.; An, Y.; Campbell, J.; Sojkova, J.; Kinsey, A.; Lynham, S.; Zhou, Y.; Ferrucci, L.; Wong, D.F.; Lovestone, S.; Resnick, S.M. Proteome-based plasma markers of brain amyloid-β deposition in non-demented older individuals. J. Alzheimers Dis., 2010, 22(4), 1099-1109.
[115]
Ashton, N.J.; Kiddle, S.J.; Graf, J.; Ward, M.; Baird, A.L.; Hye, A.; Westwood, S.; Wong, K.V.; Dobson, R.J.; Rabinovici, G.D.; Miller, B.L.; Rosen, H.J.; Torres, A.; Zhang, Z.; Thurfjell, L.; Covin, A.; Hehir, C.T.; Baker, D.; Bazenet, C.; Lovestone, S. Blood protein predictors of brain amyloid for enrichment in clinical trials? Alzheimers Dement. (Amst.), 2015, 1(1), 48-60.
[116]
Zhang, J. Proteomics of human cerebrospinal fluid - the good, the bad, and the ugly. Proteomics Clin. Appl., 2007, 1(8), 805-819.
[117]
Hühmer, A.F.; Biringer, R.G.; Amato, H.; Fonteh, A.N.; Harrington, M.G. Protein analysis in human cerebrospinal fluid: Physiological aspects, current progress and future challenges. Dis. Markers, 2006, 22(1-2), 3-26.
[118]
Spector, R.; Robert Snodgrass, S.; Johanson, C.E. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp. Neurol., 2015, 273, 57-68.
[119]
Brinker, T.; Stopa, E.; Morrison, J.; Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS, 2014, 11, 10.
[120]
Larssen, E.; Brede, C.; Hjelle, A.B.; Øysaed, K.B.; Tjensvoll, A.B.; Omdal, R.; Ruoff, P. A rapid method for preparation of the cerebrospinal fluid proteome. Proteomics, 2015, 15(1), 10-15.
[121]
Liu, Y.; Qing, H.; Deng, Y. Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int. J. Mol. Sci., 2014, 15(5), 7865-7882.
[122]
Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schlossmacher, M.; Whaley, J.; Swindlehurst, C. Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature, 1992, 359(6393), 325-327.
[123]
Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; Meguro, K.; O’brien, J.; Pasquier, F.; Robert, P.; Rossor, M.; Salloway, S.; Stern, Y.; Visser, P.J.; Scheltens, P. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol., 2007, 6(8), 734-746.
[124]
Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; Cappa, S.; Crutch, S.; Engelborghs, S.; Frisoni, G.B.; Fox, N.C.; Galasko, D.; Habert, M.O.; Jicha, G.A.; Nordberg, A.; Pasquier, F.; Rabinovici, G.; Robert, P.; Rowe, C.; Salloway, S.; Sarazin, M.; Epelbaum, S.; de Souza, L.C.; Vellas, B.; Visser, P.J.; Schneider, L.; Stern, Y.; Scheltens, P.; Cummings, J.L. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol., 2014, 13(6), 614-629.
[125]
Molinuevo, J.L.; Blennow, K.; Dubois, B.; Engelborghs, S.; Lewczuk, P.; Perret-Liaudet, A.; Teunissen, C.E.; Parnetti, L. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement., 2014, 10(6), 808-817.
[126]
Forlenza, O.V.; Radanovic, M.; Talib, L.L.; Aprahamian, I.; Diniz, B.S.; Zetterberg, H.; Gattaz, W.F. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia. Alzheimer’s Dement. Diagnosis, Assess. Dis. Mon., 2015, 1(December), 1-9.
[127]
Choe, L.H.; Dutt, M.J.; Relkin, N.; Lee, K.H. Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis, 2002, 23(14), 2247-2251.
[128]
Davidsson, P.; Westman-Brinkmalm, A.; Nilsson, C.L.; Lindbjer, M.; Paulson, L.; Andreasen, N.; Sjögren, M.; Blennow, K. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport, 2002, 13(5), 611-615.
[129]
Puchades, M.; Hansson, S.F.; Nilsson, C.L.; Andreasen, N.; Blennow, K.; Davidsson, P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol. Brain Res., 2003, 118(1-2), 140-146.
[130]
Korolainen, M.A.; Nyman, T.A.; Aittokallio, T.; Pirttilä, T. An update on clinical proteomics in Alzheimer’s research. J. Neurochem., 2010, 112(6), 1386-1414.
[131]
Unlü, M.; Morgan, M.E.; Minden, J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18(11), 2071-2077.
[132]
Alban, A.; David, S.O.; Bjorkesten, L.; Andersson, C.; Sloge, E.; Lewis, S.; Currie, I. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1), 36-44.
[133]
Hu, Y.; Malone, J.P.; Fagan, A.M.; Townsend, R.R.; Holtzman, D.M. Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol. Cell. Proteomics, 2005, 4(12), 2000-2009.
[134]
Hu, Y.; Hosseini, A.; Kauwe, J.S.K.; Gross, J.; Cairns, N.J.; Goate, A.M.; Fagan, A.M.; Townsend, R.R.; Holtzman, D.M. Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clin. Appl., 2007, 1(11), 1373-1384.
[135]
Perrin, R.J.; Craig-Schapiro, R.; Malone, J.P.; Shah, A.R.; Gilmore, P.; Davis, A.E.; Roe, C.M.; Peskind, E.R.; Li, G.; Galasko, D.R.; Clark, C.M.; Quinn, J.F.; Kaye, J.A.; Morris, J.C.; Holtzman, D.M.; Townsend, R.R.; Fagan, A.M. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One, 2011, 6(1), e16032.
[136]
Lista, S.; Zetterberg, H.; Dubois, B.; Blennow, K.; Hampel, H. Cerebrospinal fluid analysis in Alzheimer’s disease: technical issues and future developments. J. Neurol., 2014, 261(6), 1234-1243.
[137]
Kang, J-H.; Korecka, M.; Toledo, J.B.; Trojanowski, J.Q.; Shaw, L.M. Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-β(1-42) and τ proteins as Alzheimer disease biomarkers. Clin. Chem., 2013, 59(6), 903-916.
[138]
Zhu, W.; Smith, J.W.; Huang, C.M. Mass spectrometry-based label-free quantitative proteomics. J. Biomed. Biotechnol., 2010.
[139]
Dayon, L.; Hainard, A.; Licker, V.; Turck, N.; Kuhn, K.; Hochstrasser, D.F.; Burkhard, P.R.; Sanchez, J-C. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem., 2008, 80(8), 2921-2931.
[140]
Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 1999, 17(10), 994-999.
[141]
Shiio, Y.; Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc., 2006, 1(1), 139-145.
[142]
Zhang, J.; Goodlett, D.R.; Quinn, J.F.; Peskind, E.; Kaye, J.A.; Zhou, Y.; Pan, C.; Yi, E.; Eng, J.; Wang, Q.; Aebersold, R.H.; Montine, T.J. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis., 2005, 7(2), 125-133.
[143]
Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D.J. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 2004, 3(12), 1154-1169.
[144]
Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A.K.; Hamon, C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., 2003, 75(8), 1895-1904.
[145]
Pichler, P.; Köcher, T.; Holzmann, J.; Mazanek, M.; Taus, T.; Ammerer, G.; Mechtler, K. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem., 2010, 82(15), 6549-6558.
[146]
Abdi, F.; Quinn, J.F.; Jankovic, J.; McIntosh, M.; Leverenz, J.B.; Peskind, E.; Nixon, R.; Nutt, J.; Chung, K.; Zabetian, C.; Samii, A.; Lin, M.; Hattan, S.; Pan, C.; Wang, Y.; Jin, J.; Zhu, D.; Li, G.J.; Liu, Y.; Waichunas, D.; Montine, T.J.; Zhang, J. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis., 2006, 9(3), 293-348.
[147]
Choe, L.; D’Ascenzo, M.; Relkin, N.R.; Pappin, D.; Ross, P.; Williamson, B.; Guertin, S.; Pribil, P.; Lee, K.H. 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics, 2007, 7(20), 3651-3660.
[148]
Lehnert, S.; Jesse, S.; Rist, W.; Steinacker, P.; Soininen, H.; Herukka, S-K.; Tumani, H.; Lenter, M.; Oeckl, P.; Ferger, B.; Hengerer, B.; Otto, M. iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp. Neurol., 2012, 234(2), 499-505.
[149]
Rogeberg, M.; Almdahl, I.S.; Wettergreen, M.; Nilsson, L.N.G.; Fladby, T. Isobaric quantification of cerebrospinal fluid amyloid-β peptides in Alzheimer’s disease: C-terminal truncation relates to early measures of neurodegeneration. J. Proteome Res., 2015, 14(11), 4834-4843.
[150]
Hölttä, M.; Minthon, L.; Hansson, O.; Holmén-Larsson, J.; Pike, I.; Ward, M.; Kuhn, K.; Rüetschi, U.; Zetterberg, H.; Blennow, K.; Gobom, J. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J. Proteome Res., 2015, 14(2), 654-663.
[151]
Simonsen, A.H.; McGuire, J.; Podust, V.N.; Hagnelius, N.O.; Nilsson, T.K.; Kapaki, E.; Vassilopoulos, D.; Waldemar, G. A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer’s disease versus normal aging and frontotemporal dementia. Dement. Geriatr. Cogn. Disord., 2007, 24(6), 434-440.
[152]
Oe, T.; Ackermann, B.L.; Inoue, K.; Berna, M.J.; Garner, C.O.; Gelfanova, V.; Dean, R.A.; Siemers, E.R.; Holtzman, D.M.; Farlow, M.R.; Blair, I.A. Quantitative analysis of amyloid beta peptides in cerebrospinal fluid of Alzheimer’s disease patients by immunoaffinity purification and stable isotope dilution liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20(24), 3723-3735.
[153]
Lame, M.E.; Chambers, E.E.; Blatnik, M. Quantitation of amyloid beta peptides Aβ(1-38), Aβ(1-40), and Aβ(1-42) in human cerebrospinal fluid by ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Biochem., 2011, 419(2), 133-139.
[154]
Pannee, J.; Portelius, E.; Oppermann, M.; Atkins, A.; Hornshaw, M.; Zegers, I.; Höjrup, P.; Minthon, L.; Hansson, O.; Zetterberg, H.; Blennow, K.; Gobom, J. A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ38, Aβ40, and Aβ42 in cerebrospinal fluid of Alzheimer’s disease patients and healthy controls. J. Alzheimers Dis., 2013, 33(4), 1021-1032.
[155]
Lewczuk, P.; Esselmann, H.; Otto, M.; Maler, J.M.; Henkel, A.W.; Henkel, M.K.; Eikenberg, O.; Antz, C.; Krause, W-R.; Reulbach, U.; Kornhuber, J.; Wiltfang, J. Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol. Aging, 2004, 25(3), 273-281.
[156]
Dorey, A.; Perret-Liaudet, A.; Tholance, Y.; Fourier, A.; Quadrio, I. Cerebrospinal fluid Aβ40 improves the interpretation of Aβ42 concentration for diagnosing Alzheimer’s disease. Front. Neurol., 2015, 6, 247.
[157]
Hansson, O.; Zetterberg, H.; Buchhave, P.; Andreasson, U.; Londos, E.; Minthon, L.; Blennow, K. Prediction of Alzheimer’s disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord., 2007, 23(5), 316-320.
[158]
Mattsson, N.; Zegers, I.; Andreasson, U.; Bjerke, M.; Blankenstein, M.A.; Bowser, R.; Carrillo, M.C.; Gobom, J.; Heath, T.; Jenkins, R.; Jeromin, A.; Kaplow, J.; Kidd, D.; Laterza, O.F.; Lockhart, A.; Lunn, M.P.; Martone, R.L.; Mills, K.; Pannee, J.; Ratcliffe, M.; Shaw, L.M.; Simon, A.J.; Soares, H.; Teunissen, C.E.; Verbeek, M.M.; Umek, R.M.; Vanderstichele, H.; Zetterberg, H.; Blennow, K.; Portelius, E. Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomarkers Med., 2012, 6(4), 409-417.
[159]
Kvartsberg, H.; Duits, F.H.; Ingelsson, M.; Andreasen, N.; Öhrfelt, A.; Andersson, K.; Brinkmalm, G.; Lannfelt, L.; Minthon, L.; Hansson, O.; Andreasson, U.; Teunissen, C.E.; Scheltens, P.; Van der Flier, W.M.; Zetterberg, H.; Portelius, E.; Blennow, K. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement., 2015, 11(10), 1180-1190.
[160]
Korecka, M.; Waligorska, T.; Figurski, M.; Toledo, J.B.; Arnold, S.E.; Grossman, M.; Trojanowski, J.Q.; Shaw, L.M. Qualification of a surrogate matrix-based absolute quantification method for amyloid-β42 in human cerebrospinal fluid using 2D UPLC-tandem mass spectrometry. J. Alzheimers Dis., 2014, 41(2), 441-451.
[161]
Shi, M.; Movius, J.; Dator, R.; Aro, P.; Zhao, Y.; Pan, C.; Lin, X.; Bammler, T.K.; Stewart, T.; Zabetian, C.P.; Peskind, E.R.; Hu, S.C.; Quinn, J.F.; Galasko, D.R.; Zhang, J. Cerebrospinal fluid peptides as potential Parkinson disease biomarkers: a staged pipeline for discovery and validation. Mol. Cell. Proteomics, 2015, 14(3), 544-555.
[162]
Wildsmith, K.R.; Schauer, S.P.; Smith, A.M.; Arnott, D.; Zhu, Y.; Haznedar, J.; Kaur, S.; Mathews, W.R.; Honigberg, L.A. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol. Neurodegener., 2014, 9(1), 22.
[163]
Heywood, W.E.; Galimberti, D.; Bliss, E.; Sirka, E.; Paterson, R.W.; Magdalinou, N.K.; Carecchio, M.; Reid, E.; Heslegrave, A.; Fenoglio, C.; Scarpini, E.; Schott, J.M.; Fox, N.C.; Hardy, J.; Bhatia, K.; Heales, S.; Sebire, N.J.; Zetterberg, H.; Mills, K. Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Mol. Neurodegener., 2015, 10, 64.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy