Abstract
Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis (MTB) and still an important public health problem worldwide. Some factors like the emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) strains make urgent the research of new active compounds. Searching for new inorganic compounds against TB, three new dioxovanadium(V) complexes were obtained upon reaction of [VO(acac)2] with hydrazone and thiosemicarbazone ligands derived from di-2-pyridyl ketone. Spectroscopic studies and X-ray crystallography revealed asymmetrically oxo bridged binuclear complexes of the type [{VO(L1,2)}2(μ-O)2], involving the hydrazone ligands, while a mononuclear square pyramidal complex of the type [VO2(L3)] was formed with the thiosemicarbazone ligand. The compounds were tested against M. tuberculosis and three of them, with MICs values between 2.00 and 3.76 μM were considered promising for TB treatment. Such MIC values are comparable or better than those found for some drugs currently used in TB treatment.
Keywords: Dioxovanadium(V), hydrazone, Mycobacterium tuberculosis, new antituberculosis compounds, thiosemicarbazone.