Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview

Author(s): Daniele Zampieri* and Maria G. Mamolo

Volume 21, Issue 9, 2021

Published on: 19 August, 2020

Page: [777 - 788] Pages: 12

DOI: 10.2174/1568026620666200819151342

Price: $65

Abstract

Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.

Keywords: Antimycobacterial, Cytotoxicity, Hybridization, MIC, MDR, MTDLs, Tuberculosis.

Graphical Abstract

[1]
OMS global. TB report 2019, 2019. Available from: https://www.who.int/tb/publications/global_report/en/
[2]
WHO. Implemental the End TB strategy: the essentials, 2015. Available from: https://www.who.int/tb/publications/2015/The_Essentials_to_End_TB/en/
[3]
FDA. FDA approves new drug for treatment – resistant forms of tuberculosis that affects lungs, 2019. Avaialble from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-resistant-forms-tuberculosis-affects-lungs
[4]
Wenzel, T.J.; Klegeris, A. Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer’s disease. Life Sci., 2018, 207, 314-322.
[http://dx.doi.org/10.1016/j.lfs.2018.06.025] [PMID: 29940242]
[5]
Morphy, R.; Rankovic, Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des., 2009, 15(6), 587-600.
[http://dx.doi.org/10.2174/138161209787315594] [PMID: 19199984]
[6]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[7]
Morphy, R.; Rankovic, Z. The physicochemical challenges of designing multiple ligands. J. Med. Chem., 2006, 49(16), 4961-4970.
[http://dx.doi.org/10.1021/jm0603015] [PMID: 16884308]
[8]
Merk, D.; Schubert-Zsilavecz, M. The Linker Approach.In: Drug Selectivity: An Evolving Concept in Medicinal Chemistry; Handler, N.; Buschmann, H.; Mannhold, R.; Holenz, J., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2017, pp. 207-245.
[http://dx.doi.org/10.1002/9783527674381.ch8]
[9]
Stelitano, G.; Sammartino, J.C.; Chiarelli, L.R. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules, 2020, 25(5), 12391256.
[http://dx.doi.org/10.3390/molecules25051239] [PMID: 32182964]
[10]
Choi, J.J.; McCarthy, M.W. Cefiderocol: a novel siderophore cephalosporin. Expert Opin. Investig. Drugs, 2018, 27(2), 193-197.
[http://dx.doi.org/10.1080/13543784.2018.1426745] [PMID: 29318906]
[11]
Ghosh, M.; Miller, P.A.; Möllmann, U.; Claypool, W.D.; Schroeder, V.A.; Wolter, W.R.; Suckow, M.; Yu, H.; Li, S.; Huang, W.; Zajicek, J.; Miller, M.J. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant acinetobacter baumannii both in vitro and in vivo. J. Med. Chem., 2017, 60(11), 4577-4583.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00102] [PMID: 28287735]
[12]
Liu, R.; Miller, P.A.; Vakulenko, S.B.; Stewart, N.K.; Boggess, W.C.; Miller, M.J. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J. Med. Chem., 2018, 61(9), 3845-3854.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00218] [PMID: 29554424]
[13]
Wencewicz, T.A.; Long, T.E.; Möllmann, U.; Miller, M.J. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjug. Chem., 2013, 24(3), 473-486.
[http://dx.doi.org/10.1021/bc300610f] [PMID: 23350642]
[14]
Wencewicz, T.A.; Miller, M.J. Biscatecholate-monohydroxamate mixed ligand siderophore-carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii. J. Med. Chem., 2013, 56(10), 4044-4052.
[http://dx.doi.org/10.1021/jm400265k] [PMID: 23614627]
[15]
Seidi, F.; Jenjob, R.; Crespy, D. Designing smart polymer conjugates for controlled release of payloads. Chem. Rev., 2018, 118(7), 3965-4036.
[http://dx.doi.org/10.1021/acs.chemrev.8b00006] [PMID: 29533067]
[16]
Weinreb, O.; Amit, T.; Bar-Am, O.; Yogev-Falach, M.; Youdim, M.B. The neuroprotective mechanism of action of the multimodal drug ladostigil. Front. Biosci., 2008, 13, 5131-5137.
[http://dx.doi.org/10.2741/3069] [PMID: 18508575]
[17]
Walles, M.; Connor, A.; Hainzl, D. ADME and safety aspects of non-cleavable linkers in drug discovery and development. Curr. Top. Med. Chem., 2017, 17(32), 3463-3475.
[http://dx.doi.org/10.2174/1568026618666180118153502] [PMID: 29357804]
[18]
Carramiñana, V.; Ochoa de Retana, A.M.; de Los Santos, J.M.; Palacios, F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur. J. Med. Chem., 2020, 185, 111771.
[http://dx.doi.org/10.1016/j.ejmech.2019.111771] [PMID: 31671309]
[19]
Jallapally, A.; Addla, D.; Yogeeswari, P.; Sriram, D.; Kantevari, S. 2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2014, 24(23), 5520-5524.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.084] [PMID: 25451998]
[20]
Oliveira, C.G. da S Maia, P.I.; Souza, P.C.; Pavan, F.R.; Leite, C.Q.; Viana, R.B.; Batista, A.A.; Nascimento, O.R.; Deflon, V.M. Manganese(II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents. J. Inorg. Biochem., 2014, 132, 21-29.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.10.011] [PMID: 24188534]
[21]
Arancibia, R.; Hugo Klahn, A.; Lapier, M.; Maya, J.D.; Ibanez, A.; Teresa Garland, M.; Carrere-Kremer, S.; Kremer, L.; Biot, C. Synthesis, characterization and in vitro anti-Trypanosoma cruzi and anti-Mycobacterium tuberculosis evaluations of cyrhetrenyl and ferrocenyl thiosemicarbazones. J. Organomet. Chem., 2014, 755, 1-6.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.049]
[22]
Rane, R.A.; Naphade, S.S.; Bangalore, P.K.; Palkar, M.B.; Shaikh, M.S.; Karpoormath, R. Synthesis of novel 4-nitropyrrole-based semicarbazide and thiosemicarbazide hybrids with antimicrobial and anti-tubercular activity. Bioorg. Med. Chem. Lett., 2014, 24(14), 3079-3083.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.018] [PMID: 24878195]
[23]
Cade, C.E.; Dlouhy, A.C.; Medzihradszky, K.F.; Salas-Castillo, S.P.; Ghiladi, R.A. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci., 2010, 19(3), 458-474.
[PMID: 20054829]
[24]
Zhao, X.; Yu, H.; Yu, S.; Wang, F.; Sacchettini, J.C.; Magliozzo, R.S. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry, 2006, 45(13), 4131-4140.
[http://dx.doi.org/10.1021/bi051967o] [PMID: 16566587]
[25]
Bechet, K.H.; Draber, W.; Regal, K. Clubbed triazoles: A novel approach to antitubercular drugs. Drugs Germ., 1972, 15, 79-82.
[26]
Mamolo, M.G.; Zampieri, D.; Falagiani, V.; Vio, L.; Fermeglia, M.; Ferrone, M.; Pricl, S.; Banfi, E.; Scialino, G. Antifungal and antimycobacterial activity of new N1-[1-aryl-2-(1H-imidazol-1-yl and 1H-1,2,4-triazol-1-yl)-ethylidene]-pyridine-2-carboxamidrazone derivatives: a combined experimental and computational approach. ARCHIVOK, 2004, 231-250.
[27]
Banfi, E.; Scialino, G.; Zampieri, D.; Mamolo, M.G.; Vio, L.; Ferrone, M.; Fermeglia, M.; Paneni, M.S.; Pricl, S. Antifungal and antimycobacterial activity of new imidazole and triazole derivatives. A combined experimental and computational approach. J. Antimicrob. Chemother., 2006, 58(1), 76-84.
[http://dx.doi.org/10.1093/jac/dkl182] [PMID: 16709593]
[28]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Scialino, G.; Banfi, E.; Vio, L. 2-aryl-3-(1H-azol-1-yl)-1H-indole derivatives: a new class of antimycobacterial compounds - conventional heating in comparison with MW-assisted synthesis. Arch. Pharm. (Weinheim), 2009, 342(12), 716-722.
[http://dx.doi.org/10.1002/ardp.200900031] [PMID: 19921681]
[29]
Kakwani, M.D.; Palsule Desai, N.H.; Lele, A.C.; Ray, M.; Rajan, M.G.R.; Degani, M.S. Synthesis and preliminary biological evaluation of novel N-(3-aryl-1,2,4-triazol-5-yl) cinnamamide derivatives as potential antimycobacterial agents: an operational Topliss Tree approach. Bioorg. Med. Chem. Lett., 2011, 21(21), 6523-6526.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.076] [PMID: 21917452]
[30]
Sriram, D.; Yogeeswari, P.; Madhu, K. Synthesis and in vitro and in vivo antimycobacterial activity of isonicotinoyl hydrazones. Bioorg. Med. Chem. Lett., 2005, 15(20), 4502-4505.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.011] [PMID: 16115763]
[31]
Kumar, P.; Narasimhan, B.; Yogeeswari, P.; Sriram, D. Synthesis and antitubercular activities of substituted benzoic acid N′-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides. Eur. J. Med. Chem., 2010, 45(12), 6085-6089.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.030] [PMID: 20828886]
[32]
Pandit, U.; Dodiya, A. Synthesis and antitubercular activity of novel pyrazole–quinazolinone hybrid analogues. Med. Chem. Res., 2013, 22, 3364-3371.
[http://dx.doi.org/10.1007/s00044-012-0351-0]
[33]
Aragade, P.; Palkar, M.; Ronad, P.; Satyanarayana, D. Coumarinyl pyrazole derivatives of INH: promising antimycobacterial agents. Med. Chem. Res., 2013, 22, 2279-2283.
[http://dx.doi.org/10.1007/s00044-012-0222-8]
[34]
Horrocks, P.; Pickard, M.R.; Parekh, H.H.; Patel, S.P.; Pathak, R.B. Synthesis and biological evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Org. Biomol. Chem., 2013, 11(29), 4891-4898.
[http://dx.doi.org/10.1039/c3ob27290g] [PMID: 23779132]
[35]
Nayak, N.; Ramprasad, J.; Dalimba, U. New INH-pyrazole analogs: Design, synthesis and evaluation of antitubercular and antibacterial activity. Bioorg. Med. Chem. Lett., 2015, 25(23), 5540-5545.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.057] [PMID: 26520663]
[36]
Rai, D.; Johar, M.; Srivastav, N.C.; Manning, T.; Agrawal, B.; Kunimoto, D.Y.; Kumar, R. Inhibition of Mycobacterium tuberculosis, Mycobacterium bovis, and Mycobacterium avium by novel dideoxy nucleosides. J. Med. Chem., 2007, 50(19), 4766-4774.
[http://dx.doi.org/10.1021/jm070391t] [PMID: 17696514]
[37]
Neres, J.; Labello, N.P.; Somu, R.V.; Boshoff, H.I.; Wilson, D.J.; Vannada, J.; Chen, L.; Barry, C.E., III; Bennett, E.M.; Aldrich, C.C. Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J. Med. Chem., 2008, 51(17), 5349-5370.
[http://dx.doi.org/10.1021/jm800567v] [PMID: 18690677]
[38]
Kumar, K.; Singh, P.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone chimeric scaffolds. Dalton Trans., 2012, 41(19), 5778-5781.
[http://dx.doi.org/10.1039/c2dt30514c] [PMID: 22473422]
[39]
Kumar, K.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Azide-alkyne cycloaddition en route towards 1H-1,2,3-triazole-tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone conjugates: synthesis and in vitro anti-tubercular evaluation. Dalton Trans., 2013, 42(5), 1492-1500.
[http://dx.doi.org/10.1039/C2DT32148C] [PMID: 23108229]
[40]
Singh, A.; Biot, C.; Viljoen, A.; Dupont, C.; Kremer, L.; Kumar, K.; Kumar, V. 1H-1,2,3-triazole-tethered uracil-ferrocene and uracil-ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation. Chem. Biol. Drug Des., 2017, 89(6), 856-861.
[http://dx.doi.org/10.1111/cbdd.12908] [PMID: 27860285]
[41]
Visentin, M.; Zhao, R.; Goldman, I.D. The antifolates. Hematol. Oncol. Clin. North Am., 2012, 26(3), 629-648.
[http://dx.doi.org/10.1016/j.hoc.2012.02.002] [PMID: 22520983]
[42]
Nixon, M.R.; Saionz, K.W.; Koo, M.S.; Szymonifka, M.J.; Jung, H.; Roberts, J.P.; Nandakumar, M.; Kumar, A.; Liao, R.; Rustad, T.; Sacchettini, J.C.; Rhee, K.Y.; Freundlich, J.S.; Sherman, D.R. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. Chem. Biol., 2014, 21(7), 819-830.
[http://dx.doi.org/10.1016/j.chembiol.2014.04.009] [PMID: 24954008]
[43]
Keshipeddy, S.; Reeve, S.M.; Anderson, A.C.; Wright, D.L. Nonracemic antifolates stereoselectively recruit alternate cofactors and overcome resistance in S. aureus. J. Am. Chem. Soc., 2015, 137(28), 8983-8990.
[http://dx.doi.org/10.1021/jacs.5b01442] [PMID: 26098608]
[44]
Hajian, B.; Scocchera, E.; Keshipeddy, S. G-Dayanandan, N.; Shoen, C.; Krucinska, J.; Reeve, S.; Cynamon, M.; Anderson, A.C.; Wright, D.L. G-Dayanandan, N.; Shoen, C.; Krucinska, J.; Reeve, S.; Cynamon, M.; Anderson, A.C.; Wright, D.L. Propargyl-linked antifolates are potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. PLoS One, 2016, 11(8), e0161740.
[http://dx.doi.org/10.1371/journal.pone.0161740] [PMID: 27580226]
[45]
Zhou, L.; Ishizaki, H.; Spitzer, M.; Taylor, K.L.; Temperley, N.D.; Johnson, S.L.; Brear, P.; Gautier, P.; Zeng, Z.; Mitchell, A.; Narayan, V.; McNeil, E.M.; Melton, D.W.; Smith, T.K.; Tyers, M.; Westwood, N.J.; Patton, E.E. ALDH2 mediates 5-nitrofuran activity in multiple species. Chem. Biol., 2012, 19(7), 883-892.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.017] [PMID: 22840776]
[46]
Tangallapally, R.P.; Yendapally, R.; Lee, R.E.; Hevener, K.; Jones, V.C.; Lenaerts, A.J.M.; McNeil, M.R.; Wang, Y.; Franzblau, S.; Lee, R.E. Synthesis and evaluation of nitrofuranylamides as novel antituberculosis agents. J. Med. Chem., 2004, 47(21), 5276-5283.
[http://dx.doi.org/10.1021/jm049972y] [PMID: 15456272]
[47]
Tangallapally, R.P.; Yendapally, R.; Lee, R.E.; Lenaerts, A.J.M.; Lee, R.E. Synthesis and evaluation of cyclic secondary amine substituted phenyl and benzyl nitrofuranyl amides as novel antituberculosis agents. J. Med. Chem., 2005, 48(26), 8261-8269.
[http://dx.doi.org/10.1021/jm050765n] [PMID: 16366608]
[48]
Hurdle, J.G.; Lee, R.B.; Budha, N.R.; Carson, E.I.; Qi, J.; Scherman, M.S.; Cho, S.H.; McNeil, M.R.; Lenaerts, A.J.; Franzblau, S.G.; Meibohm, B.; Lee, R.E. A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. J. Antimicrob. Chemother., 2008, 62(5), 1037-1045.
[http://dx.doi.org/10.1093/jac/dkn307] [PMID: 18693235]
[49]
Rakesh, B.D.; Bruhn, D.F.; Scherman, M.S.; Woolhiser, L.K.; Madhura, D.B.; Maddox, M.M.; Singh, A.P.; Lee, R.B.; Hurdle, J.G.; McNeil, M.R.; Lenaerts, A.J.; Meibohm, B.; Lee, R.E. Pentacyclic nitrofurans with in vivo efficacy and activity against nonreplicating Mycobacterium tuberculosis. PLoS One, 2014, 9(2), e87909.
[http://dx.doi.org/10.1371/journal.pone.0087909] [PMID: 24505329]
[50]
Zheng, P.; Somersan-Karakaya, S.; Lu, S.; Roberts, J.; Pingle, M.; Warrier, T.; Little, D.; Guo, X.; Brickner, S.J.; Nathan, C.F.; Gold, B.; Liu, G. Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2014, 57(9), 3755-3772.
[http://dx.doi.org/10.1021/jm4019228] [PMID: 24694175]
[51]
Yempalla, K.R.; Munagala, G.; Singh, S.; Magotra, A.; Kumar, S.; Rajput, V.S.; Bharate, S.S.; Tikoo, M.; Singh, G.D.; Khan, I.A.; Vishwakarma, R.A.; Singh, P.P. Nitrofuranyl methyl piperazines as new anti-tb agents: identification, validation, medicinal chemistry, and pk studies. ACS Med. Chem. Lett., 2015, 6(10), 1041-1046.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00141] [PMID: 26487909]
[52]
Krasavin, M.; Parchinsky, V.; Kantin, G.; Manicheva, O.; Dogonadze, M.; Vinogradova, T.; Karge, B.; Brönstrup, M. New nitrofurans amenable by isocyanide multicomponent chemistry are active against multidrug-resistant and poly-resistant Mycobacterium tuberculosis. Bioorg. Med. Chem., 2017, 25(6), 1867-1874.
[http://dx.doi.org/10.1016/j.bmc.2017.02.003] [PMID: 28214232]
[53]
Ran, K.; Gao, C.; Deng, H.; Lei, Q.; You, X.; Wang, N.; Shi, Y.; Liu, Z.; Wei, W.; Peng, C.; Xiong, L.; Xiao, K.; Yu, L. Identification of novel 2-aminothiazole conjugated nitrofuran as antitubercular and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(15), 3669-3674.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.088] [PMID: 27289321]
[54]
William, O.F.; Lemke, T.L. Principles of Medicinal Chemistry; Waverly Pvt. Ltd: Colombo, 1995.
[55]
Burger, A. Burger’s Medicinal Chemistry and drug discovery, 5th ed; John Wiley Publications: Hoboken, 1995.
[56]
Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(3), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.062] [PMID: 20045640]
[57]
Chiaradia, L.D.; Mascarello, A.; Purificação, M.; Vernal, J.; Cordeiro, M.N.S.; Zenteno, M.E.; Villarino, A.; Nunes, R.J.; Yunes, R.A.; Terenzi, H. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg. Med. Chem. Lett., 2008, 18(23), 6227-6230.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.105] [PMID: 18930396]
[58]
García, A.; Bocanegra-García, V.; Palma-Nicolás, J.P.; Rivera, G. Recent advances in antitubercular natural products. Eur. J. Med. Chem., 2012, 49, 1-23.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.029] [PMID: 22280816]
[59]
Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem., 2017, 137, 126-138.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.026] [PMID: 28582669]
[60]
Pallepati, K.; Kancharlapalli, V.R.; Shaik, A.B. Antitubercular evaluation of isoxazolyl chalcones. RJPBC, 2017, 8, 730-735.
[61]
Krasavin, M.; Lukin, A.; Vedekhina, T.; Manicheva, O.; Dogonadze, M.; Vinogradova, T.; Zabolotnykh, N.; Rogacheva, E.; Kraeva, L.; Yablonsky, P. Conjugation of a 5-nitrofuran-2-oyl moiety to aminoalkylimidazoles produces non-toxic nitrofurans that are efficacious in vitro and in vivo against multidrug-resistant Mycobacterium tuberculosis. Eur. J. Med. Chem., 2018, 157, 1115-1126.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.068] [PMID: 30179748]
[62]
Gao, F.; Yang, H.; Lu, T.; Chen, Z.; Ma, L.; Xu, Z.; Schaffer, P.; Lu, G. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur. J. Med. Chem., 2018, 159, 277-281.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.049] [PMID: 30296686]
[63]
Gao, F.; Ye, L.; Wang, Y.; Kong, F.; Zhao, S.; Xiao, J.; Huang, G. Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. Eur. J. Med. Chem., 2019., 183111678.
[http://dx.doi.org/10.1016/j.ejmech.2019.111678] [PMID: 31525660]
[64]
Aggarwal, A.; Parai, M.K.; Shetty, N.; Wallis, D.; Woolhiser, L.; Hastings, C.; Dutta, N.K.; Galaviz, S.; Dhakal, R.C.; Shrestha, R.; Wakabayashi, S.; Walpole, C.; Matthews, D.; Floyd, D.; Scullion, P.; Riley, J.; Epemolu, O.; Norval, S.; Snavely, T.; Robertson, G.T.; Rubin, E.J.; Ioerger, T.R.; Sirgel, F.A.; van der Merwe, R.; van Helden, P.D.; Keller, P.; Böttger, E.C.; Karakousis, P.C.; Lenaerts, A.J.; Sacchettini, J.C. vam der Merwe, R.; van Helden, P.D.; Keller, P.; Bøttger, E.C.; Karakousis, P.C.; Lenaerts, A.J.; Sacchettini, J.C. Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell, 2017, 170(2), 249-259.e25.
[http://dx.doi.org/10.1016/j.cell.2017.06.025] [PMID: 28669536]
[65]
Zhang, W.; Lun, S.; Wang, S.H.; Jiang, X.W.; Yang, F.; Tang, J.; Manson, A.L.; Earl, A.M.; Gunosewoyo, H.; Bishai, W.R.; Yu, L.F. Identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. J. Med. Chem., 2018, 61(3), 791-803.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01319] [PMID: 29328655]
[66]
Portevin, D.; De Sousa-D’Auria, C.; Houssin, C.; Grimaldi, C.; Chami, M.; Daffé, M.; Guilhot, C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 314-319.
[http://dx.doi.org/10.1073/pnas.0305439101] [PMID: 14695899]
[67]
Aboul-Fadl, T.; Bin-Jubair, F.A.; Aboul-Wafa, O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem., 2010, 45(10), 4578-4586.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.020] [PMID: 20696500]
[68]
Oblak, M.; Grdadolnik, S.G.; Kotnik, M.; Jerala, R.; Filipi, M.; Solmajer, T. In silico fragment-based discovery of indolin-2-one analogues as potent DNA gyrase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15, 5207-5210. [Xu, Z.; Zhang, S.; Gao, C.; Zhao, F.; Lv, Z. S.; Feng, L. S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28, 159-167.
[69]
Xu, Z.; Song, X.F.; Hu, Y.Q.; Qiang, M.; Lv, Z.S. Azide-alkyne cycloaddition towards 1H-1,2,3-triazole-tethered gatifloxacin and isatin conjugates: Design, synthesis and in vitro anti-mycobacterial evaluation. Eur. J. Med. Chem., 2017, 138, 66-71.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.057] [PMID: 28646656]
[70]
Xu, Z.; Zhang, S.; Song, X.; Qiang, M.; Lv, Z. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg. Med. Chem. Lett., 2017, 27(16), 3643-3646.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.023] [PMID: 28720502]
[71]
Shalini; Johansen, M.D.; Kremer, L.; Kumar, V. Variedly connected 1,8-naphthalimide-7-chloroquinoline conjugates: Synthesis, anti-mycobacterial and cytotoxic evaluation. Bioorg. Chem., 2019, 92, 103241.
[http://dx.doi.org/10.1016/j.bioorg.2019.103241] [PMID: 31518758]
[72]
Singh, P.; Jaiyeola, B.; Kerru, N.; Ebenezer, O.; Bissessur, A. A review of advancements in antitubercular molecular hybrids. Curr. Med. Chem., 2017, 24(37), 4180-4212.
[http://dx.doi.org/10.2174/0929867324666170712164400] [PMID: 28707584]
[73]
Cohen, J. Approval of novel TB drug celebrated-with restraint. Science, 2013, 339, 130.
[http://dx.doi.org/10.1126/science.339.6116.130] [PMID: 23307714]
[74]
European Medicines Agency, Sirturo. 2014. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/sirturo
[75]
Korycka-Machala, M.; Nowosielski, M.; Kuron, A.; Rykowski, S.; Olejniczak, A.; Hoffmann, M.; Dziadek, J. Naphthalimides selectively inhibit the activity of bacterial, replicative dna ligases and display bactericidal effects against Tubercle bacilli. Molecules, 2017, 22(1), 154.
[http://dx.doi.org/10.3390/molecules22010154] [PMID: 28106753]
[76]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Scialino, G.; Banfi, E.; Vio, L. Antifungal and antimycobacterial activity of 1-(3,5-diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives. Bioorg. Med. Chem., 2008, 16(8), 4516-4522.
[http://dx.doi.org/10.1016/j.bmc.2008.02.055] [PMID: 18321714]
[77]
Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Bakht, M.A.; Hassan, M.Z. Synthesis and antimycobacterial evaluation of 3a,4-dihydro-3H-indeno [1,2-c] pyrazole-2-carboxamide analogues. Eur. J. Med. Chem., 2011, 46(11), 5694-5697.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.035] [PMID: 21978838]
[78]
Gupta, R.A.; Kashedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogues: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22, 3863-3880.
[http://dx.doi.org/10.1007/s00044-012-0385-3]
[79]
Ahsan, M.J.; Saini, V. Design and synthesis of 3-(4-aminophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide/carbothioamide analogues as antitubercular agents. Beni-Suef J. Bas. App. Sci., 2015, 4, 41-46.
[http://dx.doi.org/10.1016/j.bjbas.2015.02.006]
[80]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[81]
Aftab, A.; Asif, H.; Shah, A.K.; Mohammed, M.; Anil, B. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20, 577-584.
[http://dx.doi.org/10.1016/j.jscs.2014.12.004]
[82]
Dixit, S.R.; Joshi, S.D.; Kulkarni, V.H.; Jalalpure, S.S.; Kumbar, V.M.; Mudaraddi, T.Y.; Nadagouda, M.N.; Aminabhavi, T.M. Pyrrolyl pyrazoline carbaldehydes as enoyl-ACP reductase ınhibitors: Design, synthesis and antitubercular activity. Open Med. Chem. J., 2017, 11, 92-108.
[http://dx.doi.org/10.2174/1874104501711010092] [PMID: 29151986]
[83]
Poce, G.; Consalvi, S.; Venditti, G.; Alfonso, S.; Desideri, N.; Fernandez-Menendez, R.; Bates, R.H.; Ballell, L.; Barros Aguirre, D.; Rullas, J.; De Logu, A.; Gardner, M.; Ioerger, T.R.; Rubin, E.J.; Biava, M. Novel pyrazole-containing compounds active against Mycobacterium tuberculosis. ACS Med. Chem. Lett., 2019, 10(10), 1423-1429.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00204] [PMID: 31620228]
[84]
Pallepati, K.; Kancharlapalli, V.R.; Shaik, A.B. Synthesis, characterization and antitubercular evaluation of some new isoxazole appended 1-carboxamido-4,5-dihydro-1H-pyrazoles. J. Res. Pharm., 2019, 23, 156-163.
[http://dx.doi.org/10.12991/jrp.2019.120]
[85]
Park, Y.; Pacitto, A.; Bayliss, T.; Cleghorn, L.A.T.; Wang, Z.; Hartman, T.; Arora, K.; Ioerger, T.R.; Sacchettini, J.; Rizzi, M.; Donini, S.; Blundell, T.L.; Ascher, D.B.; Rhee, K.; Breda, A.; Zhou, N.; Dartois, V.; Jonnala, S.R.; Via, L.E.; Mizrahi, V.; Epemolu, O.; Stojanovski, L.; Simeons, F.; Osuna-Cabello, M.; Ellis, L.; MacKenzie, C.J.; Smith, A.R.C.; Davis, S.H.; Murugesan, D.; Buchanan, K.I.; Turner, P.A.; Huggett, M.; Zuccotto, F.; Rebollo-Lopez, M.J.; Lafuente-Monasterio, M.J.; Sanz, O.; Diaz, G.S.; Lelièvre, J.; Ballell, L.; Selenski, C.; Axtman, M.; Ghidelli-Disse, S.; Pflaumer, H.; Bösche, M.; Drewes, G.; Freiberg, G.M.; Kurnick, M.D.; Srikumaran, M.; Kempf, D.J.; Green, S.R.; Ray, P.C.; Read, K.; Wyatt, P.; Barry, C.E., III; Boshoff, H.I. Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against Mycobacterium tuberculosis. ACS Infect. Dis., 2017, 3(1), 18-33.
[http://dx.doi.org/10.1021/acsinfecdis.6b00103] [PMID: 27704782]
[86]
Naidu, K.M.; Nagesh, H.N.; Singh, M.; Sriram, D.; Yogeeswari, P.; Gowri Chandra Sekhar, K.V. Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. Eur. J. Med. Chem., 2015, 92, 415-426.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.013] [PMID: 25590862]
[87]
Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem., 2014, 6(10), 1149-1165.
[http://dx.doi.org/10.4155/fmc.14.68] [PMID: 25078135]
[88]
Jain, P.; Saravanan, C.; Singh, S.K. Sulphonamides: Deserving class as MMP inhibitors? Eur. J. Med. Chem., 2013, 60, 89-100.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.016] [PMID: 23287054]
[89]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013] [PMID: 31096118]
[90]
Ding, Z.; Hou, P.; Liu, B. Gatifloxacin-1,2,3-triazole-isatin hybrids and their antimycobacterial activities. Arch. Pharm. (Weinheim), 2019, 352(10), e1900135.
[http://dx.doi.org/10.1002/ardp.201900135] [PMID: 31441087]
[91]
Vannelli, T.A.; Dykman, A.; Ortiz de Montellano, P.R. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J. Biol. Chem., 2002, 277(15), 12824-12829.
[http://dx.doi.org/10.1074/jbc.M110751200] [PMID: 11823459]
[92]
Pastor, A.; Machelart, A.; Li, X.; Willand, N.; Baulard, A.; Brodin, P.; Gref, R.; Desmaële, D. A novel codrug made of the combination of ethionamide and its potentiating booster: synthesis, self-assembly into nanoparticles and antimycobacterial evaluation. Org. Biomol. Chem., 2019, 17(20), 5129-5137.
[http://dx.doi.org/10.1039/C9OB00680J] [PMID: 31073555]
[93]
Villemagne, B.; Flipo, M.; Blondiaux, N.; Crauste, C.; Malaquin, S.; Leroux, F.; Piveteau, C.; Villeret, V.; Brodin, P.; Villoutreix, B.O.; Sperandio, O.; Soror, S.H.; Wohlkönig, A.; Wintjens, R.; Déprez, B.; Baulard, A.R.; Willand, N. Ligand efficiency driven design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging, and linking approaches. J. Med. Chem., 2014, 57(11), 4876-4888.
[http://dx.doi.org/10.1021/jm500422b] [PMID: 24818704]
[94]
Kaur, H.; Singh, L.; Chibale, K.; Singh, K. Structure elaboration of isoniazid: synthesis, in silico molecular docking and antimycobacterial activity of isoniazid-pyrimidine conjugates. Mol. Divers., 2019. (Online ahead of Print)
[http://dx.doi.org/10.1007/s11030-019-10004-1] [PMID: 31691051]
[95]
Liu, P.; Yang, Y.; Tang, Y.; Yang, T.; Sang, Z.; Liu, Z.; Zhang, T.; Luo, Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem., 2019, 163, 169-182.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.054] [PMID: 30508666]
[96]
Ke, S.; Shi, L.; Zhang, Z.; Yang, Z. Steroidal[17,16-d]pyrimidines derived from dehydroepiandrosterone: A convenient synthesis, antiproliferation activity, structure-activity relationships, and role of heterocyclic moiety. Sci. Rep., 2017, 7, 44439.
[http://dx.doi.org/10.1038/srep44439] [PMID: 28290501]
[97]
Singh, K.; Singh, K.; Wan, B.; Franzblau, S.; Chibale, K.; Balzarini, J. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem., 2011, 46(6), 2290-2294.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.010] [PMID: 21450375]
[98]
Krause, M.; Foks, H.; Ziembicka, D.; Augustynowicz-Kopeć, E.; Głogowska, A.; Korona-Głowniak, I.; Bojanowski, K.; Siluk, D.; Gobis, K. 4-Substituted picolinohydrazonamides as a new class of potential antitubercular agents. Eur. J. Med. Chem., 2020, 190, 112106.
[http://dx.doi.org/10.1016/j.ejmech.2020.112106] [PMID: 32061963]
[99]
Orlewska, C.; Foks, H.; Janowiec, M.; Zwolskakwiek, Z. Studies on pyrazine derivatives, XXIX: Synthesis of N1-thioamido substituted pyrazincarboxyamidrazones with expected tuberculostatic activity. Pharmazie, 1995, 50(8), 565-566.
[PMID: 31691051]
[100]
Orlewska, C.; Pancechowska-Ksepko, D.; Foks, H.; Augustynowicz-Kopec, E. Reactivity of N-dithioester substituted pyridin and pyrazincarboxamidrazones. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 734-744.
[http://dx.doi.org/10.1080/10426500500270065]
[101]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27, 477-505.
[102]
Dogan, H.; Dogan, S.D.; Gunduz, M.G.; Krishna, V.S.; Lherbet, C.; Sriram, D.; Sahin, O.; Saripinar, E. Discovery of hydrazine containing thiadiazoles as Mycobcterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. Eur. J. Med. Chem., 2020, 188, 112035.
[http://dx.doi.org/10.1016/j.ejmech.2020.112035] [PMID: 31951850]
[103]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Discovery of antimycobacterial spiro-piperidin-4-ones: An atom economic, stereoselective synthesis, and biological intervention. J. Med. Chem., 2008, 51(18), 5731-5735.
[http://dx.doi.org/10.1021/jm800545k] [PMID: 18714980]
[104]
Prasanna, P.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A regio- and stereoselective 1,3-dipolar cycloaddition for the synthesis of novel spiro-pyrrolothiazolyloxindoles and their antitubercular evaluation. Eur. J. Med. Chem., 2010, 45(12), 5653-5661.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.019] [PMID: 20932607]
[105]
Maheswari, S.U.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A facile 1,3-dipolar cycloaddition of azomethine ylides to 2-arylidene-1,3-indanediones: synthesis of dispiro-oxindolylpyrrolothiazoles and their antimycobacterial evaluation. Bioorg. Med. Chem. Lett., 2010, 20(24), 7278-7282.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.080] [PMID: 21071220]
[106]
Karthikeyan, S.V.; Bala, B.D.; Raja, V.P.; Perumal, S.; Yogeeswari, P.; Sriram, D. A highly atom economic, chemo-, regio- and stereoselective synthesis and evaluation of spiro-pyrrolothiazoles as antitubercular agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 350-353.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.107] [PMID: 19900810]
[107]
Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Ibrahim Alaqeel, S.; Siva Krishna, V.; Sriram, D. Anti-tubercular activity of novel class of spiropyrrolidine tethered indenoquinoxaline heterocyclic hybrids. Bioorg. Chem., 2020, 99, 103799.
[http://dx.doi.org/10.1016/j.bioorg.2020.103799] [PMID: 32247109]
[108]
Devi, P.B.; Samala, G.; Sridevi, J.P.; Saxena, S.; Alvala, M.; Salina, E.G.; Sriram, D.; Yogeeswari, P. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. ChemMedChem, 2014, 9(11), 2538-2547.
[http://dx.doi.org/10.1002/cmdc.201402171] [PMID: 25155986]
[109]
Trotsko, N.; Kosikowska, U.; Paneth, A.; Plech, T.; Malm, A.; Wujec, M. Synthesis and antibacterial activity of new thiazolidine-2,4-dione-based chlorophenylthiosemicarbazone hybrids. Molecules, 2018, 23(5), e1023.
[http://dx.doi.org/10.3390/molecules23051023] [PMID: 29701728]
[110]
Trotsko, N.; Golus, J.; Kazimierczak, P.; Paneth, A.; Przekora, A.; Ginalska, G.; Wujec, M. Design, synthesis and antimycobacterial activity of thiazolidine-2,4-dione-based thiosemicarbazone derivatives. Bioorg. Chem., 2020, 97, 103676.
[http://dx.doi.org/10.1016/j.bioorg.2020.103676] [PMID: 32097795]
[111]
Trotsko, N.; Golus, J.; Kazimierczak, P.; Paneth, A.; Przekora, A.; Ginalska, G.; Wujec, M. Synthesis and antimycobacterial activity of thiazolidine-2,4-dione based derivatives with halogenbenzohydrazones and pyridinecarbohydrazones substituents. Eur. J. Med. Chem., 2020, 189, 112045.
[http://dx.doi.org/10.1016/j.ejmech.2020.112045] [PMID: 31951961]
[112]
Šlachtová, V.; Šebela, M.; Torfs, E.; Oorts, L.; Cappoen, D.; Berka, K.; Bazgier, V.; Brulíková, L. Novel thiazolidinedione-hydroxamates as inhibitors of Mycobacterium tuberculosis virulence factor Zmp1. Eur. J. Med. Chem., 2020, 185, 111812.
[http://dx.doi.org/10.1016/j.ejmech.2019.111812] [PMID: 31703818]
[113]
Sanna, P.; Carta, A.; Nikookar, M.E.R. Synthesis and antitubercular activity of 3-aryl substituted-2-[1H(2H)benzotriazol-1(2)-yl]acrylonitriles. Eur. J. Med. Chem., 2000, 35(5), 535-543.
[http://dx.doi.org/10.1016/S0223-5234(00)00144-6] [PMID: 10889332]
[114]
Reshma, R.S.; Jeankumar, V.U.; Kapoor, N.; Saxena, S.; Bobesh, K.A.; Vachaspathy, A.R.; Kolattukudy, P.E.; Sriram, D. Mycobacterium tuberculosis lysine-ɛ-aminotransferase a potential target in dormancy: Benzothiazole based inhibitors. Bioorg. Med. Chem., 2017, 25(10), 2761-2771.
[http://dx.doi.org/10.1016/j.bmc.2017.03.053] [PMID: 28389113]
[115]
Sirim, M.M.; Krishna, V.S.; Sriram, D.; Unsal Tan, O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur. J. Med. Chem., 2020, 188, 112010.
[http://dx.doi.org/10.1016/j.ejmech.2019.112010] [PMID: 31893548]
[116]
Shah, S.R.; Katariya, K.D. 1,3-Oxazole-isoniazid hybrids: Synthesis, antitubercular activity, and their docking studies. J. Het. Chem., 2020, 57, 1682-1691.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy