Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Novel Furan Coupled Quinoline Diamide Hybrid Scaffolds as Potent Antitubercular Agents: Design, Synthesis and Molecular Modelling

Author(s): Anantacharya Rajpurohit, Nayak D. Satyanarayan*, Lokesh Pathak, Siva Ayyanar, Chidambaram R. Rishinaradamangalam and Praveen Shoorapani

Volume 16, Issue 4, 2020

Page: [507 - 516] Pages: 10

DOI: 10.2174/1573406415666190904124630

Price: $65

Abstract

Background: A novel series of 2-[(2-{[2-(furan-2-yl) quinolin-4-yl] carbonyl} hydrazinyl) carbonyl] benzoic acid, -4-oxobut-2-enoic acid and -4-oxobutanoic acids were synthesized and screened for in vitro antitubercular activity.

Objectives: In the present investigation, we describe the synthesis and biological screening of furan C-2 quinoline coupled diamides for antitubercular activity.

Methods: The mycobacterium tuberculai testing was carried out by MABA method and molecular docking studies were done by open-source molecular docking program, Autovina, using Pyrx 0.8 interface.

Results: The results revealed that the compounds inhibited the growth of H37Rv strain at concentrations as low as 1.6 to 12 µg/ml. Molecular binding of furan, quinoline and diamide (FQD) derivatives on five targets was good and these compounds fit very well within the binding domain of the target protein.

Conclusion: The synthesized FQD derivatives exhibited moderate to good inhibition activity especially compounds 5f, 5b and 8a exhibited very good inhibition activity due to the presence of three different scaffolds, such as INH, phenyl ketobutyric acid and fluoroquinolines. Hybridized molecules might have multiple modes of action / inhibit more than one tubercular target and could pave way for novel drug discovery in the field of tuberculosis.

Keywords: Antitubercular and MABA method, carbonyl benzoic acid, furan, fluoroquinolines, phenyl ketobutyric acid, quinoline- 4-carboxylic acid.

Graphical Abstract

[1]
Font, M.; Monge, A.; Ruiz, I.; Heras, B. Structure-activity relationships in quinoline Reissert derivatives with HIV-1 reverse transcriptase inhibitory activity. Drug Des. Discov., 1997, 14(4), 259-272.
[PMID: 9197978]
[2]
Nakamura, T.; Oka, M.; Aizawa, K.; Soda, H.; Fukuda, M.; Terashi, K.; Ikeda, K.; Mizuta, Y.; Noguchi, Y.; Kimura, Y.; Tsuruo, T.; Kohno, S. Direct interaction between a quinoline derivative, MS-209, and multidrug resistance protein (MRP) in human gastric cancer cells. Biochem. Biophys. Res. Commun., 1999, 255(3), 618-624.
[http://dx.doi.org/10.1006/bbrc.1999.0245] [PMID: 10049760]
[3]
Kaminsky, D.; Meltzer, R.I. Quinolone antibacterial agents. Oxolinic acid and related compounds. J. Med. Chem., 1968, 11(1), 160-163.
[http://dx.doi.org/10.1021/jm00307a041] [PMID: 5637164]
[4]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[http://dx.doi.org/10.1016/j.bmc.2006.01.016] [PMID: 16458522]
[5]
Warshakoon, N.C.; Sheville, J.; Bhatt, R.T.; Ji, W.; Mendez-Andino, J.L.; Meyers, K.M.; Kim, N.; Wos, J.A.; Mitchell, C.; Paris, J.L.; Pinney, B.B.; Reizes, O.; Hu, X.E. Design and synthesis of substituted quinolines as novel and selective melanin concentrating hormone antagonists as anti-obesity agents. Bioorg. Med. Chem. Lett., 2006, 16(19), 5207-5211.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.006] [PMID: 16870427]
[6]
Sloboda, A.E.; Powell, D.; Poletto, J.F.; Pickett, W.C.; Gibbons, J.J., Jr; Bell, D.H.; Oronsky, A.L.; Kerwar, S.S. Antiinflammatory and antiarthritic properties of a substituted quinoline carboxylic acid: CL 306,293. J. Rheumatol., 1991, 18(6), 855-860.
[PMID: 1895266]
[7]
Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118.
[http://dx.doi.org/10.1021/jm900003c] [PMID: 19271749]
[8]
Nasveld, P.; Kitchener, S. Treatment of acute vivax malaria with tafenoquine. Trans. R. Soc. Trop. Med. Hyg., 2005, 99(1), 2-5.
[http://dx.doi.org/10.1016/j.trstmh.2004.01.013] [PMID: 15550254]
[9]
Mahamoud, A.; Chevalier, J.; Davin-Regli, A.; Barbe, J.; Pagès, J.M. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets, 2006, 7(7), 843-847.
[http://dx.doi.org/10.2174/138945006777709557] [PMID: 16842215]
[10]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[11]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37(14), 2129-2137.
[http://dx.doi.org/10.1021/jm00040a003] [PMID: 8035419]
[12]
Wilson, W.D.; Zhao, M.; Patterson, S.E.; Wydra, R.L.; Janda, L.; Strekowski, L. The search for structure-specific nucleic acid-interactive drugs: Effects of compound structure on RNA versus DNA interaction strength? Med. Chem. Res., 1992, 2, 102-110.
[13]
Strekowski, L.; Mokrosz, J.L.; Honkan, V.A.; Czarny, A.; Cegla, M.T.; Wydra, R.L.; Patterson, S.E.; Schinazi, R.F. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents. J. Med. Chem., 1991, 34(5), 1739-1746.
[http://dx.doi.org/10.1021/jm00109a031] [PMID: 2033597]
[14]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.022] [PMID: 20537437]
[15]
Mdluli, K.; Spigelman, M. Novel targets for tuberculosis drug discovery. Curr. Opin. Pharmacol., 2006, 6(5), 459-467.
[http://dx.doi.org/10.1016/j.coph.2006.06.004] [PMID: 16904376]
[16]
Smith, C.V.; Huang, C.C.; Miczak, A.; Russell, D.G.; Sacchettini, J.C.; Höner zu Bentrup, K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(3), 1735-1743.
[http://dx.doi.org/10.1074/jbc.M209248200] [PMID: 12393860]
[17]
Mdluli, K.; Ma, Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets, 2007, 7(2), 159-168.
[http://dx.doi.org/10.2174/187152607781001763] [PMID: 17970226]
[18]
Noronha-Dutra, A.A.; Epperlein, M.M.; Woolf, N. Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett., 1993, 321(1), 59-62.
[http://dx.doi.org/10.1016/0014-5793(93)80621-Z] [PMID: 8385630]
[19]
Wengenack, N.L.; Jensen, M.P.; Rusnak, F.; Stern, M.K. Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem. Biophys. Res. Commun., 1999, 256(3), 485-487.
[http://dx.doi.org/10.1006/bbrc.1999.0358] [PMID: 10080924]
[20]
O’Brien, L.; Carmichael, J.; Lowrie, D.B.; Andrew, P.W. Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect. Immun., 1994, 62(11), 5187-5190.
[PMID: 7927804]
[21]
Kagan, J.; Arora, S.K.; Prakesh, I.; Ustunol, A. The Synthesis of 2,2′:5′,3”-Terthiophene. Heterocycles, 1983, 20, 1341-1345.
[http://dx.doi.org/10.3987/R-1983-07-1341]
[22]
Gribble, G.W.; Saulnier, M.G.; Sibi, M.P.; Obaze-Nutaitis, J.A. Synthesis and Diels-Alder reactions of 1,3-dimethyl-4-(phenylsulfonyl)-4H-furo[3,4-b]indole. A new annulation strategy for the construction of ellipticine and isoellipticine. J. Org. Chem., 1984, 49, 4518-4523.
[http://dx.doi.org/10.1021/jo00197a039]
[23]
Malmström, J.; Jonsson, M.; Cotgreave, I.A.; Hammarström, L.; Sjödin, M.; Engman, L. The antioxidant profile of 2,3-dihydrobenzo[b]furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues. J. Am. Chem. Soc., 2001, 123(15), 3434-3440.
[http://dx.doi.org/10.1021/ja0035811] [PMID: 11472114]
[24]
Matsuura, H.; Saxena, G.; Farmer, S.W.; Hancock, R.E.; Towers, G.H. Antibacterial and antifungal polyine compounds from Glehnia littoralis ssp. leiocarpa. Planta Med., 1996, 62(3), 256-259.
[http://dx.doi.org/10.1055/s-2006-957872] [PMID: 8693041]
[25]
Chan, G.F.Q.; Towers, G.H.N.; Mitchell, J.C. Ultraviolet-Mediated antibiotic activity of thiophene compounds of tagetes. Phytochemistry, 1975, 14, 229-2296.
[http://dx.doi.org/10.1016/S0031-9422(00)91121-X]
[26]
Hudson, J.B.; Graham, E.A.; Miki, N.; Towers, G.H.N.; Hudson, L.L.; Rossi, R.; Carpita, A.; Neri, D. Photoactive antiviral and cytotoxic activities of synthetic thiophenes and their acetylenic derivatives. Chemosphere, 1989, 19, 1329-1343.
[http://dx.doi.org/10.1016/0045-6535(89)90080-5]
[27]
Nobles, W.L.; Blanton, C.D., Jr Thiophene compounds of biological interest. J. Pharm. Sci., 1964, 53, 115-129.
[http://dx.doi.org/10.1002/jps.2600530202] [PMID: 14123947]
[28]
Anantacharya, R.; Manjulatha, K.; Satyanarayan, N.D.; Santoshkumar, S.; Kaviraj, M.Y. Antiproliferative, DNA cleavage, and ADMET study of substituted 2-(1-benzofuran-2-yl) quinoline-4-carboxylic acid and its esters. Cogent Chem., 2016, 2, 1158382
[http://dx.doi.org/10.1080/23312009.2016.1158382]
[29]
Santoshkumar, S.; Manjulatha, K.; Satyanarayan, N.D.; Anantacharya, R.; Harishkumar, S.; Harishkumar, H.N.; Yallappa, S.; Dhananjaya, B.L. Antiproliferative, ADME and potential in silico G6PDH inhibitory activity of novel 2-(1-Benzofuran-2-YL)-4-(5-Phenyl-4H-1, 2, 4-Triazol-3-YL) Quinoline derivatives. Int. J. Pharm. Pharm. Sci., 2016, 8, 313-319.
[http://dx.doi.org/10.22159/ijpps.2016v8i11.14791]
[30]
Santhosha, S.M.; Satyanarayan, N.D.; Mahadevan, K.M.; Yogesh, D.B.; Menaka, T. Synthesis, antiplasmodial and ADMET studies of 4- methylamino-2-phenylquinoline analogs. Int. J. Pharm. Pharm. Sci., 2016, 8, 173-179.
[31]
Shivananda, M.K.; Shet Prakash, M. Synthesis, characterization and antibacterial activity studies of some triazolothiadiazolyl quinolines. J. Chem. Pharm. Res., 2011, 3, 61-66.
[32]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[33]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[34]
Lourenco, M.C.S.; de Souza, M.V.N.; Pinheiro, A.C.; de Marcelle, L.F.; Goncalves, B.R.; Nogneira, T.C.M.; Peralta, M.A. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC, 2007, 15, 181-191.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy