Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of Silver Nanoparticles using Euphorbia wallichii Extract and Assessment of their Bio-functionalities

Author(s): Abdul-Rehman Phull*, Attarad Ali, Akhtar Ali, Sanaullah Abbasi, Muhammad Zia, Muhammad H. Khaskheli, Ihsan ul Haq and Mohammad A. Kamal*

Volume 16, Issue 4, 2020

Page: [495 - 506] Pages: 12

DOI: 10.2174/1573406415666191111143213

Price: $65

Abstract

Background: Silver nanoparticles synthesized by the bio-green method have been applied to various biomedical applications. These procedures are simple, eco-friendly and serve as an alternative to complex chemical methods for the preparation of nanomaterials.

Objective: In the present study, phytosynthesis of silver nanoparticles, to examine their antioxidant potential, toxic effects towards bacterial-, fungal-strains, brine shrimp nauplii and cancer cells was focused.

Methods: Methanolic extract of Euphorbia wallichii roots was used for the synthesis of silver nanoparticles. The synthesis was monitored and confirmed by UV-visible spectroscopy, Fourier Transform Infra-Red (FTIR) spectrometric analysis, Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray (EDX) and X-Ray Powder Diffraction (XRD).

Results: The synthesized particles were average 63±8 nm in size. Involvement of phenolic (46.7±2.4 µg GAE/mg) and flavonoid (11.7±1.2 µg QE/mg) compounds as capping agents was also measured. Nanoparticles showed antioxidant properties in terms of free radical scavenging potential (59.63±1.0 %), reducing power (44.52±1.34 µg AAE/mg) and total antioxidant capacity (60.48±2.2 µg AAE/mg). The nanoparticles showed potent cytotoxic effects against brine shrimp nauplii (LD50 66.83 µg/ml), proliferation and cell death of HeLa cells as determined by MTT (LD50 0.3923 µg/ml) and TUNEL assays, respectively. Antimicrobial results revealed that silver nanoparticles were found to be more potent against pathogenic fungal (maximum active against A. fumigatus, MIC 15 µg/disc) and bacterial strains (maximum active against S. aureus, MIC 3.33 μg/disc) than the E. wallichii extract alone.

Conclusion: These results support the advantages of using an eco-friendly and cost-effective method for synthesis of nanoparticles with antioxidant, cytotoxic and antimicrobial potential.

Keywords: Antimicrobial, antioxidant, cytotoxicity, Euphorbia wallichii, HeLa cells, silver nanoparticles.

Graphical Abstract

[1]
Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem., 2006, 8, 417-432.
[http://dx.doi.org/10.1039/b517131h]
[2]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[3]
Joerger, R.; Klaus, T.; Granqvist, C. Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv. Mater., 2000, 12, 407-409.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O]
[4]
Gu, H.; Ho, P.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3, 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[5]
Schabes-Retchkiman, P.; Canizal, G.; Herrera-Becerra, R.; Zorrilla, C.; Liu, H.; Ascencio, J. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt. Mater., 2006, 29, 95-99.
[http://dx.doi.org/10.1016/j.optmat.2006.03.014]
[6]
Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology, 2007, 18, 285604
[http://dx.doi.org/10.1088/0957-4484/18/28/285604]
[7]
Vivek, M.; Kumar, P.S.; Steffi, S.; Sudha, S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J. Med. Biotechnol., 2011, 3(3), 143-148.
[PMID: 23408653]
[8]
Kandile, N.G.; Zaky, H.T.; Mohamed, M.I.; Mohamed, H.M. Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles. Bull. Korean Chem. Soc., 2010, 31, 3530-3538.
[http://dx.doi.org/10.5012/bkcs.2010.31.12.3530]
[9]
Frattini, A.; Pellegri, N.; Nicastro, D.; de Sanctis, O. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys., 2005, 94, 148-152.
[http://dx.doi.org/10.1016/j.matchemphys.2005.04.023]
[10]
Ahmad, N.; Bhatnagar, S.; Ali, S.S.; Dutta, R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int. J. Nanomedicine, 2015, 10, 7019-7030.
[PMID: 26648715]
[11]
Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19, 1357-1361.
[http://dx.doi.org/10.1021/la020835i]
[12]
Vilchis-Nestor, A.R.; Sanchez-Mendieta, V.; Camacho-Lopez, M.A.; Gomez-Espinosa, R.M.; Camacho-Lopez, M.A.; Arenas-Alatorre, J.A. Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett., 2008, 62, 3103-3105.
[http://dx.doi.org/10.1016/j.matlet.2008.01.138]
[13]
Kasthuri, J.; Veerapandian, S.; Rajendiran, N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B Biointerfaces, 2009, 68(1), 55-60.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.021] [PMID: 18977643]
[14]
Gupta, R.; Xie, H. Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(3), 209-230.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009] [PMID: 30317972]
[15]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[16]
Havel, H.; Finch, G.; Strode, P.; Wolfgang, M.; Zale, S.; Bobe, I.; Youssoufian, H.; Peterson, M.; Liu, M. Nanomedicines: from bench to bedside and beyond. AAPS J., 2016, 18(6), 1373-1378.
[http://dx.doi.org/10.1208/s12248-016-9961-7] [PMID: 27480318]
[17]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. Pharm. Therapeut., 2017, 42, 742-755.
[18]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[19]
Aleksandrov, M.; Maksimova, V.; Koleva Gudeva, L. Review of the anticancer and cytotoxic activity of some species from genus euphorbia. ACS Agric. Conspec. Sci., 2019, 84(1), 1-5.
[20]
Cheng, J.; Han, W.; Wang, Z.; Shao, Y.; Wang, Y.; Zhang, Y.; Li, Z.; Xu, X.; Zhang, Y. Hepatocellular carcinoma growth is inhibited by Euphorbia helioscopia L. extract in nude mice xenografts. BioMed Res. Int., 2015, 2015, 601015
[http://dx.doi.org/10.1155/2015/601015] [PMID: 26090427]
[21]
Sharma, V. Pracheta, Anti-carcinogenic potential of Euphorbia neriifolia leaves and isolated flavonoid against N-nitrosodi-ethylamine-induced renal carcinogenesis in mice. Indian J. Biochem. Biophys., 2013, 50(6), 521-528.
[PMID: 24772977]
[22]
Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. The effect of Euphorbia szovitsii Fisch. & C.A.Mey extract on the viability and the proliferation of MDA-MB-231 cell line. Biosci. Rep., 2019, 39(1), 1-8.
[http://dx.doi.org/10.1042/BSR20181538] [PMID: 30459240]
[23]
Ul-Haq, I.; Ullah, N.; Bibi, G.; Kanwal, S.; Sheeraz Ahmad, M.; Mirza, B. Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iran. J. Pharm. Res., 2012, 11(1), 241-249.
[PMID: 24250446]
[24]
Verpoorte, R.; Kim, H.; Choi, Y. Plants as source for medicines: new perspectives.Bogers, R.J.; Craker, L.E.; Lange, D., Eds.. Med. Aromat. Plants ; , 2006, 17, pp. 261-273.
[25]
Garipelli, N.; Runja, C.; Potnuri, N.; Pigili, R.K. Anti-inflamatory and antioxidant activities of ethanolic extract of Euphorbia thymifolia Linn. whole plant. Int. J. Pharm. Pharm. Sci., 2012, 4(3), 516-519.
[26]
Ali, M.S.; Ahmed, S.; Saleem, M. Spirowallichiione: a rearranged multiflorane from Euphorbia wallichii Hook F. (Euphorbiaceae). Molecules, 2008, 13(2), 405-411.
[http://dx.doi.org/10.3390/molecules13020405] [PMID: 18305427]
[27]
Zahir, A.A.; Chauhan, I.S.; Bagavan, A.; Kamaraj, C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, M.; Rahuman, A.A.; Singh, N. Synthesis of nanoparticles using Euphorbia prostrata extract reveals a shift from apoptosis to G0/G1 arrest in leishmania donovani. J. Nanomed. Nanotechnol., 2014, 5, 1-12.
[28]
Devi, G.D.; Murugan, K.; Selvam, C.P. Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Biopesticides, 2014, 7, 54-66.
[29]
Ihsan-ul-Haq, Mirza, B.; Kondratyuk, T.P.; Park, E.J.; Burns, B.E.; Marler, L.E.; Pezzuto, J.M.. Preliminary evaluation for cancer chemopreventive and cytotoxic potential of naturally growing ethnobotanically selected plants of Pakistan. Pharm. Biol., 2013, 51(3), 316-328.
[http://dx.doi.org/10.3109/13880209.2012.728612] [PMID: 23137214]
[30]
Ali, I.; Naz, R.; Khan, W.N.; Gul, R.; Choudhary, M.I. Biological screening of different root extracts of Euphorbia wallichii. Pak. J. Bot., 2009, 41, 1737-1741.
[31]
Phull, A.R.; Abbas, Q.; Ali, A.; Raza, H. kim, S.J.; Zia, M.; ul-Haq, I. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J. Pharm. Sci., 2016, 2(1), 31-36.
[http://dx.doi.org/10.1016/j.fjps.2016.03.001]
[32]
Zargar, M.; Hamid, A.A.; Bakar, F.A.; Shamsudin, M.N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules, 2011, 16(8), 6667-6676.
[http://dx.doi.org/10.3390/molecules16086667] [PMID: 25134770]
[33]
Clarke, G.; Ting, K.N.; Wiart, C.; Fry, J. Wiart.; C.; Fry, J. High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2013, 2(1), 1-10.
[http://dx.doi.org/10.3390/antiox2010001] [PMID: 26787618]
[34]
Bibi, G.; Haq, I.; Ullah, N.; Muazzam, A.G.; Mannan, A.; Mirza, B. Phytochemical evaluation of naturally growing aster thomsonii plant species. J. Phrm. Harb. Form., 2012, 2, 33-39.
[35]
Banerjee, J.; Narendhirakannan, R. Phytochemical analyses, antibacterial, in vitro antioxidant and cytotoxic activities of ethanolic extract of Syzygium cumini (L.) seed extract. Int. J. Pharm. Res., 2011, 2, 1799-1806.
[36]
Phull, A.R.; Majid, M.; Haq, I.U.; Khan, M.R.; Kim, S.J. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey). Suringar. Int. J. Biol. Macromol., 2017, 97, 468-480.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.051] [PMID: 28104371]
[37]
Phull, A.R.; Eo, S.H.; Kim, S.J. Oleanolic acid (OA) regulates inflammation and cellular dedifferentiation of chondrocytes via MAPK signaling pathways. [noisy le grand] Cell. Mol. Biol., 2017, 63(3), 12-17.
[http://dx.doi.org/10.14715/cmb/2017.63.3.3] [PMID: 28466810]
[38]
Bibi, G.; Haq, I.; Ullah, N.; Mannan, A.; Mirza, B. Antitumor, cytotoxic and antioxidant potential of Aster thomsonii extracts. Afr. J. Pharm. Pharmacol., 2011, 5, 252-258.
[39]
Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I.U. Extraction optimization of medicinally important metabolites from Datura innoxia Mill: An in vitro biological and phytochemical investigation. BMC Complement. Altern. Med., 2015, 15(1), 376.
[http://dx.doi.org/10.1186/s12906-015-0891-1] [PMID: 26481652]
[40]
Noginov, M.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.; Ritzo, B.; Drachev, V.; Shalaev, V. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B, 2007, 86, 455-460.
[http://dx.doi.org/10.1007/s00340-006-2401-0]
[41]
Mallikarjuna, K.; Narasimha, G.; Dillip, G.; Praveen, B.; Shreedhar, B.; Lakshmi, C.S.; Reddy, B.; Raju, B.D.P. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig. J. Nanomater. Biostruct., 2011, 6, 181-186.
[42]
Younas, M. Organic spectroscopy and chromatography; 3rd; Ilmi Kitab Khana press: Lahore, Pak. , 2005, pp. 11-13.
[43]
Chen, C-X.; Mu, S-L. The electrochemical preparation of polyphenol with conductibility. Chin. J. Polym. Sci., 2002, 20, 309-316.
[44]
Mochochoko, T.; Oluwafemi, O.S.; Jumbam, D.N.; Songca, S.P. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr. Polym., 2013, 98(1), 290-294.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.038] [PMID: 23987347]
[45]
Ristig, S.; Kozlova, D.; Meyer-Zaika, W.; Epple, M. An easy synthesis of autofluorescent alloyed silver-gold nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 8787-8795.
[http://dx.doi.org/10.1039/C4TB01010H]
[46]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[47]
Sivaraman, S.K.; Elango, I.; Kumar, S.; Santhanam, V. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci., 2009, 97, 1055-1059.
[48]
Agasti, N.; Kaushik, N.K. One pot synthesis of crystalline silver nanoparticles, american. J. Nanomater., 2014, 2, 4-7.
[49]
Suvith, V.S.; Philip, D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 526-532.
[http://dx.doi.org/10.1016/j.saa.2013.09.016] [PMID: 24091344]
[50]
Philip, D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73(2), 374-381.
[http://dx.doi.org/10.1016/j.saa.2009.02.037] [PMID: 19324587]
[51]
Nie, Z.; Liu, K.J.; Zhong, C-J.; Wang, L-F.; Yang, Y.; Tian, Q.; Liu, Y. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Free Radic. Biol. Med., 2007, 43(9), 1243-1254.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.06.011] [PMID: 17893037]
[52]
Saikia, J.P.; Paul, S.; Konwar, B.K.; Samdarshi, S.K. Nickel oxide nanoparticles: a novel antioxidant. Colloids Surf. B Biointerfaces, 2010, 78(1), 146-148.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.016] [PMID: 20219331]
[53]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[54]
Ghareeb, M.A. Hussein, A.H.; AR, L. Antioxidant and cytotoxic activities of Tectona grandis Linn. Leaves. Int. J. Pharmacol., 2014, 5, 143-157.
[55]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[PMID: 26286636]
[56]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine, 2012, 7, 2767-2781.
[PMID: 22745541]
[57]
Ravindra, S.; Murali Mohan, Y.; Narayana Reddy, N.; Mohana Raju, K. Fabrication of antibacterial cotton fibers loaded with silver nanoparticles via “Green Approach”. Colloids Surf. A Physicochem. Eng. Asp., 2010, 367, 31-40.
[http://dx.doi.org/10.1016/j.colsurfa.2010.06.013]
[58]
Maity, D.; Pattanayak, S.; Mollick, M.M.R.; Rana, D.; Mondal, D.; Bhowmick, B.; Dash, S.K.; Chattopadhyay, S.; Das, B.; Roy, S.; Chakraborty, M. Green one step morphosynthesis of silver nano-particles and their antibacterial and anticancerous activities. New J. Chem., 2016, 40(3), 2749-2762.
[http://dx.doi.org/10.1039/C5NJ03409D]
[59]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem., 2013, 4(1), 29-36.
[http://dx.doi.org/10.1186/2228-5547-4-29]
[60]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[61]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[62]
Raman, N.; Muthuraj, V.; Ravichandran, S.; Kulandaisamy, A. Synthesis, characterisation and electrochemical behaviour of Cu (II), Co (II), Ni (II) and Zn (II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity. J. Chem. Sci., 2003, 115, 161-167.
[http://dx.doi.org/10.1007/BF02704255]
[63]
Sadeek, S.A.; El-Shwiniy, W.H.; Zordok, W.A.; El-Didamony, A.M. Synthesis, spectroscopic, thermal and biological activity investigation of new Y(III) and Pd(II) norfloxacin complexes. J. Argent. Chem. Soc., 2009, 97, 128-148.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy