Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Antitrypanosomal Profile of Novel Hydrazonoyl Derivatives

Author(s): Natália N. Santiago, Giulianna P. de Alcântara, Juliana S. da Costa, Samir A. Carvalho, Juliana M.C. Barbosa, Kelly Salomão, Solange L. de Castro, Henrique M.G. Pereira and Edson F. da Silva*

Volume 16, Issue 4, 2020

Page: [487 - 494] Pages: 8

DOI: 10.2174/1573406415666190712115237

Price: $65

Abstract

Background: Approximately, 5-7 million people are infected with T. cruzi in the world, and approximately 10,000 people per year die of complications linked to this disease.

Methods: This work describes the construction of a new family of hidrazonoyl substituted derivatives, structurally designed exploring the molecular hybridization between megazol and nitrofurazone.

Results and Discussion: The compounds were evaluated for their in vitro activity against bloodstream trypomastigotes of Trypanosoma cruzi, etiological agent of Chagas disease, and for their potential toxicity to mammalian cells.

Conclusion: Among these hydrazonoyl derivatives, we identified the derivative (4) that showed trypanocidal activity (IC50/24 h = 15.0 µM) similar to Bz, the standard drug, and low toxicity to mammalian cells, reaching an SI value of 18.7.

Keywords: Hydrazonoyl, megazol, nitrofurazone, Chagas' disease, Trypanosoma cruzi, chemotherapy.

Graphical Abstract

[1]
(a) Altclas, J.D.; Barcan, L.; Nagel, C.; Lattes, R.; Riarte, A. Organ transplantation and Chagas disease. JAMA, 2008, 299(10), 1134.
[http://dx.doi.org/10.1001/jama.299.10.1134-a] [PMID: 18334687]
(b) Dias, J.C.P.; Amato Neto, V. Prevention concerning the different alternative routes for transmission of Trypanosoma cruzi in Brazil. Rev. Soc. Bras. Med. Trop., 2011, 44(Suppl. 2), 68-72.
[http://dx.doi.org/10.1590/S0037-86822011000800011] [PMID: 21584360]
[2]
(a) Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop., 2010, 115(1-2), 14-21.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.003] [PMID: 19932071]
(b) Jackson, Y.; Varcher Herrera, M.; Gascon, J. Economic crisis and increased immigrant mobility: New challenges in managing Chagas disease in Europe. Bull. World Health Organ., 2014, 92(10), 771-772.
[http://dx.doi.org/10.2471/BLT.13.134072] [PMID: 25378732]
[3]
Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec., 2015, 90(6), 33-43.
[PMID: 25671846]
[4]
Salomão, K.; Menna-Barreto, R.F.; de Castro, S.L. Stairway to heaven or hell? Perspectives and limitations of chagas disease chemotherapy. Curr. Top. Med. Chem., 2016, 16(20), 2266-2289.
[http://dx.doi.org/10.2174/1568026616666160413125049] [PMID: 27072716]
[5]
Patterson, S.; Fairlamb, A.H. Current and future prospects of nitro-compounds as drugs for Trypanosomiasis and Leishmaniasis. Curr. Med. Chem., 2019, 26, 4454-4475.
[http://dx.doi.org/10.2174/0929867325666180426164352]
[6]
World Health Organization. 19th Model List of Essential Medicines.,. http://www.who.int/medicines/publications/essentialmedi-cines/en/2018.
[7]
(a) Bahia, M.T.; de Andrade, I.M.; Martins, T.A.; do Nascimento, Á.F. Diniz, Lde.F.; Caldas, I.S.; Talvani, A.; Trunz, B.B.; Torreele, E.; Ribeiro, I. Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl. Trop. Dis., 2012, 6(11), e1870
[http://dx.doi.org/10.1371/journal.pntd.0001870] [PMID: 23133682]
(b) Kaiser, M.; Bray, M.A.; Cal, M.; Bourdin Trunz, B.; Torreele, E.; Brun, R. Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob. Agents Chemother., 2011, 55(12), 5602-5608.
[http://dx.doi.org/10.1128/AAC.00246-11] [PMID: 21911566]
(c) Simões-Silva, M.R.; De Araújo, J.S.; Oliveira, G.M.; Demarque, K.C.; Peres, R.B.; D’Almeida-Melo, I.; Batista, D.G.J.; Da Silva, C.F.; Cardoso-Santos, C.; Da Silva, P.B.; Batista, M.M.; Bahia, M.T.; Soeiro, M.N.C. Drug repurposing strategy against Trypanosoma cruzi infection: In vitro and in vivo assessment of the activity of metronidazole in mono- and combined therapy. Biochem. Pharmacol., 2017, 145, 46-53.
[http://dx.doi.org/10.1016/j.bcp.2017.08.025] [PMID: 28870526]
(d) Barreira, F.; Blum, B. Update on DNDi clinical studies: BENDITA e FEXI 012., https://www.dndi.org/wp-content/uploads/2018/07/2018Newsletter_Chagas_ING.pdf
[8]
Filardi, L.S.; Brener, Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans. R. Soc. Trop. Med. Hyg., 1987, 81(5), 755-759.
[http://dx.doi.org/10.1016/0035-9203(87)90020-4] [PMID: 3130683]
[9]
(a) Chauvière, G.; Bouteille, B.; Enanga, B.; de Albuquerque, C.; Croft, S.L.; Dumas, M.; Périé, J. Synthesis and biological activity of nitro heterocycles analogous to Megazol, a Trypanocidal lead. J. Med. Chem., 2003, 46(3), 427-440.
[PMID: 12540242]
(b) Enanga, B.; Keita, M.; Chauvière, G.; Dumas, M.; Bouteille, B. Megazol combined with suramin: a chemotherapy regimen which reversed the CNS pathology in a model of human African trypanosomiasis in mice. Trop. Med. Int. Health, 1998, 3(9), 736-741.
[http://dx.doi.org/10.1046/j.1365-3156.1998.00291.x] [PMID: 9754669]
(c) Darsaud, A.; Chevrier, C.; Bourdon, L.; Dumas, M.; Buguet, A.; Bouteille, B. Megazol combined with suramin improves a new diagnosis index of the early meningo-encephalitic phase of experimental African trypanosomiasis. Trop. Med. Int. Health, 2004, 9(1), 83-91.
[http://dx.doi.org/10.1046/j.1365-3156.2003.01154.x] [PMID: 14728611]
[10]
(a) Maya, J.D.; Bollo, S.; Nuñez-Vergara, L.J.; Squella, J.A.; Repetto, Y.; Morello, A.; Périé, J.; Chauvière, G. Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochem. Pharmacol., 2003, 65(6), 999-1006.
[http://dx.doi.org/10.1016/S0006-2952(02)01663-5] [PMID: 12623132]
(b) Viodé, C.; Bettache, N.; Cenas, N.; Krauth-Siegel, R.L.; Chauvière, G.; Bakalara, N.; Périé, J. Enzymatic reduction studies of nitroheterocycles. Biochem. Pharmacol., 1999, 57(5), 549-557.
[http://dx.doi.org/10.1016/S0006-2952(98)00324-4] [PMID: 9952319]
[11]
(a) Nesslany, F.; Brugier, S.; Mouriès, M.A.; Le Curieux, F.; Marzin, D. In vitro and in vivo chromosomal aberrations induced by megazol. Mutat. Res., 2004, 560(2), 147-158.
[http://dx.doi.org/10.1016/j.mrgentox.2004.02.013] [PMID: 15157652]
(b) Poli, P.; Aline de Mello, M.; Buschini, A.; Mortara, R.A.; Northfleet de Albuquerque, C.; da Silva, S.; Rossi, C.; Zucchi, T.M.A.D. Cytotoxic and genotoxic effects of megazol, an anti-Chagas’ disease drug, assessed by different short-term tests. Biochem. Pharmacol., 2002, 64(11), 1617-1627.
[http://dx.doi.org/10.1016/S0006-2952(02)01390-4] [PMID: 12429351]
[12]
(a) Boechat, N.; Carvalho, A.S.; Fernandez-Ferreira, E.; Soares, R.O.; Souza, A.S.; Gibaldi, D.; Bozza, M.; Pinto, A.C. Novel nitroimidazoles with trypanocidal and cell growth inhibition activities. Cytobios, 2001, 105(409), 83-90.
[PMID: 11393774]
(b) Carvalho, S.A.; da Silva, E.F.; Santa-Rita, R.M.; de Castro, S.L.; Fraga, C.A.M. Synthesis and antitrypanosomal profile of new functionalized 1,3,4-thiadiazole-2-arylhydrazone derivatives, designed as non-mutagenic megazol analogues. Bioorg. Med. Chem. Lett., 2004, 14(24), 5967-5970.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.007] [PMID: 15546709]
(c) Carvalho, S.A.; Lopes, F.A.S.; Salomão, K.; Romeiro, N.C.; Wardell, S.M.V.S.; de Castro, S.L.; da Silva, E.F.; Fraga, C.A.M. Studies toward the structural optimization of new brazilizone-related trypanocidal 1,3,4-thiadiazole-2-arylhydrazone derivatives. Bioorg. Med. Chem., 2008, 16(1), 413-421.
[http://dx.doi.org/10.1016/j.bmc.2007.09.027] [PMID: 17904851]
(d) Carvalho, A.S.; Menna-Barreto, R.F.S.; Romeiro, N.C.; de Castro, S.L.; Boechat, N. Design, synthesis and activity against Trypanosoma cruzi of azaheterocyclic analogs of megazol. Med. Chem., 2007, 3(5), 460-465.
[http://dx.doi.org/10.2174/157340607781745519] [PMID: 17897071]
(e) Salomão, K.; de Souza, E.M.; Carvalho, S.A.; da Silva, E.F.; Fraga, C.A.M.; Barbosa, H.S.; de Castro, S.L. In vitro and in vivo activities of 1,3,4-thiadiazole-2-arylhydrazone derivatives of megazol against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2010, 54(5), 2023-2031.
[http://dx.doi.org/10.1128/AAC.01241-09] [PMID: 20231395]
[13]
(a) Brener, Z. Atividade terapêuutica do 5-nitro-2-furaldeido- semicarbazona (nitrofurazona) em esquemas de duração prolongada na infecção experimental do camundongo pelo Trypanosoma cruzi. Rev. Inst. Med. Trop. São Paulo, 1961, 3, 43-49.
(b) Andrade, Z.A.; Brenner, Z. Action of nitrofurazone (5-nitro-2-furaldehyde-semi-carbazone) on the intracellular forms of Trypanosoma cruzi in experimental Chagas’ disease. Rev. Inst. Med. Trop. São Paulo, 1969, 11, 222-228.
[PMID: 4980992]
[14]
(a) de Ferreira, H.O. Acute form of Chagas’ disease treated by nitrofurazone. Rev. Inst. Med. Trop. São Paulo, 1961, 3, 287-289.
[PMID: 13892538]
(b) Rassi, A.; Ferreira, H.O. Tentativas de tratamento específico da fase aguda da doença de Chagas com nitrofuranos em esquemas de duração prolongada. Rev. Soc. Bras. Med. Trop., 1971, 5, 235-262.
[http://dx.doi.org/10.1590/S0037-86821971000500001]
(c) Coura, J.R.; Ferreira, L.F.; Silva, J. Experiências com nitrofurazona na fase crônica da doença de Chagas. Hosp. (Lond.), 1962, 62, 957-964.
[PMID: 14023410]
(d) Cançado, J.R.; Marra, U.D.; Brener, Z. Clinical Therapeutic trial of 5-nitro-2-furaldehyde-semicarbazone (nitrofurazone) in the chronic form of Chagas disease. Rev. Inst. Med. Trop. São Paulo, 1964, 6, 12-16.
[PMID: 14146399]
[15]
Trossini, G.H.; Malvezzi, A. T-do Amaral, A.; Rangel-Yagui, C.O.; Izidoro, M.A.; Cezari, M.H.; Juliano, L.; Chin, C.M.; Menezes, C.M.; Ferreira, E.I. Cruzain inhibition by hydroxymethylnitrofurazone and nitrofurazone: investigation of a new target in Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 62-67.
[http://dx.doi.org/10.3109/14756360902941058] [PMID: 20030510]
[16]
Ferreira, L.G.; Andricopulo, A.D. Targeting cysteine proteases in trypanosomatid disease drug discovery. Pharmacol. Ther., 2017, 180, 49-61.
[http://dx.doi.org/10.1016/j.pharmthera.2017.06.004] [PMID: 28579388]
[17]
Bollo, S.; Núñez-Vergara, L.J.; Bontá, M.; Chauviere, G.; Squella, J.A. Cyclic voltammetric studies on nitro radical anion formation from megazol and some related nitroimidazole derivatives. J. Electroanal. Chem. (Lausanne Switz.), 2001, 511(1/2), 46-54.
[http://dx.doi.org/10.1016/S0022-0728(01)00557-5]
[18]
Pinto, A.V.; Pinto, C.N. Pinto, Mdo.C.; Rita, R.S.; Pezzella, C.A.; de Castro, S.L. Trypanocidal activity of synthetic heterocyclic derivatives of active quinones from Tabebuia sp. Arzneimittelforschung, 1997, 47(1), 74-79.
[PMID: 9037448]
[19]
Jardim, G.A.M.; Reis, W.J.; Ribeiro, M.F.; Ottoni, F.M.; Alves, R.J.; Silva, T.L.; Goulart, M.O.F.; Braga, A.L.; Menna-Barreto, R.F.S.; Salomão, K.; De Castro, S.L.; Silva Júnior, E.N. On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Advances, 2015, 5, 78047.
[http://dx.doi.org/10.1039/C5RA16213K]
[20]
(a) Albright, J.D.; Shepherd, R.G. 1,2-Disubstituted-5-nitroimidazoles. US Patent 3, 652,555,. 1972.
(b) da Silva, R.B.; Loback, V.B.; Salomão, K.; de Castro, S.L.; Wardell, J.L.; Wardell, S.M.S.V.; Costa, T.E.M.M.; Penido, C.; Henriques, Md.; Carvalho, S.A.; da Silva, E.F.; Fraga, C.A.M. Synthesis and trypanocidal activity of novel 2,4,5-triaryl-N-hydroxylimidazole derivatives. Molecules, 2013, 18(3), 3445-3457.
[http://dx.doi.org/10.3390/molecules18033445] [PMID: 23503118]
[21]
Macco, A.A.; Godefroi, E.F.; Drouen, J.J.M. 2-(2-Imidazolyl) acetophenones. Preparation and some reactions antonius A. J. Org. Chem., 1975, 40, 2.
[22]
(a) Edrees, M.M.; Farghaly, T.A.; El-Hag, F.A.; Abdalla, M.M. Antimicrobial, antitumor and 5α-reductase inhibitor activities of some hydrazonoyl substituted pyrimidinones. Eur. J. Med. Chem., 2010, 45(12), 5702-5707.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.026] [PMID: 20933305]
(b) Yoder, C.H.; Kennedy, S.; Snavely, F.A. Geometric isomerism in the phenylhydrazones of some. α-dicarbonyl compounds. J. Org. Chem., 1978, 43, 1077-1079.
[http://dx.doi.org/10.1021/jo00400a010]
[23]
Sparr, C.; Schweizer, W.B.; Senn, H.M.; Gilmour, R. The fluorine-iminium ion gauche effect: proof of principle and application to asymmetric organocatalysis. Angew. Chem. Int. Ed. Engl., 2009, 48(17), 3065-3068.
[http://dx.doi.org/10.1002/anie.200900405] [PMID: 19322862]
[24]
van Niel, M.B.; Collins, I.; Beer, M.S.; Broughton, H.B.; Cheng, S.K.; Goodacre, S.C.; Heald, A.; Locker, K.L.; MacLeod, A.M.; Morrison, D.; Moyes, C.R.; O’Connor, D.; Pike, A.; Rowley, M.; Russell, M.G.; Sohal, B.; Stanton, J.A.; Thomas, S.; Verrier, H.; Watt, A.P.; Castro, J.L. Fluorination of 3-(3-(piperidin-1-yl)propyl) indoles and 3-(3-(piperazin-1-yl)propyl)indoles gives selective human 5-HT1D receptor ligands with improved pharmacokinetic profiles. J. Med. Chem., 1999, 42(12), 2087-2104.
[http://dx.doi.org/10.1021/jm981133m] [PMID: 10377215]
[25]
Smith, D.A.; van de Waterbeemd, H.; Walker, D.K. Methods and Principles in Medicinal Chemistry, 31; Wiley-VCH: Weinheim, 2006.
[26]
Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007, 317(5846), 1881-1886.
[http://dx.doi.org/10.1126/science.1131943] [PMID: 17901324]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy