Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Structural Activity Relationship and Importance of Benzothiazole Derivatives in Medicinal Chemistry: A Comprehensive Review

Author(s): Mahesh Bhat* and Shiddappa Lagamappa Belagali

Volume 17, Issue 3, 2020

Page: [323 - 350] Pages: 28

DOI: 10.2174/1570193X16666190204111502

Price: $65

Abstract

Benzothiazole (1, 3-benzothiazole) is one of the heterocyclic compounds, which is a weak base having varied biological activities. The unique methine center present in the thiazole ring makes benzothiazole as the most important heterocyclic compound. It is a common and integral structure of many natural and synthetic bioactive molecules. Benzothiazole derivatives show a variety of activities, with less toxic effects and their derivatives showed enhanced activities, which has proven Benzothiazole scaffold as one of the important moieties in medicinal chemistry. Benzothiazole ring containing compounds possess various pharmacological activities such as anti-viral, anti-microbial, antiallergic, anti-diabetic, anti-tumor, anti-inflammatory, anthelmitic and anti-cancer, which makes benzothiazole a rapidly developing and interesting compound in the medicinal chemistry. This review briefly explains the importance, common methods of synthesis of the benzothiazole scaffold and also explains the popular benzothiazole molecules which have applications in various fields of chemistry. A review has been carried out based on various pharmacological activities containing benzothiazole moieties and rationalize the activities based on the structural variations. Literature on benzothiazole derivatives reveals that substitution on the C-2 carbon atom and C-6 are the reasons for a variety of biological activities.

Keywords: Anti-Alzheimer, anti-inflammatory, anticancer, antimicrobial, benzothiazole, heterocyclic compounds.

« Previous
Graphical Abstract

[1]
Priyanka, S.N.K.; Jha, K.K. Benzothiazole: The molecule of diverse biological activities. Int. J. Curr. Pharmaceut. Res., 2010, 2(2), 1-6.
[2]
Gunawardana, G.P.; Kohmoto, S.; Gunesakara, S.P.; McConnel, O.J.; Koehn, F.E. Dercitine, a new biologically active acridine alkaloid from a deep water marine sponge, Dercitus sp. J. Am. Chem. Soc., 1988, 110, 4856-4858.
[http://dx.doi.org/10.1021/ja00222a071]
[3]
Gunawardana, G.P.; Kohmoto, S.; Burres, N.S. New cytotoxic acridine alkaloids from two deep water marine sponges of the family Pachastrellidae. Tetrahedron Lett., 1989, 30, 4359-4362.
[http://dx.doi.org/10.1016/S0040-4039(00)99360-2]
[4]
Kini, S.; Swain, S.; Gandhi, A. Synthesis and evaluation of novel benzothiazole derivatives against human cervical cancer cell lines. Indian J. Pharm. Sci., 2007, 69(1), 46-50.
[http://dx.doi.org/10.4103/0250-474X.32107]
[5]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[6]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[7]
Dolle, R.E.; Nelson, K.H., Jr Comprehensive survey of combinatorial library synthesis: 1998. J. Comb. Chem., 1999, 1(4), 235-282.
[http://dx.doi.org/10.1021/cc9900192] [PMID: 10748736]
[8]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[9]
Hartley, D.; Kidd, H. The Agrochemical Handbook; The Royal Society of Chemistry: Nottingham, United Kingdom, 1987.
[10]
Wegler, R.; Eue, L. Chemie der Pflanzenschutz- und Schadlingsbekampfungsmittel.Herbizide; Springer-Verlag: Berlin, Germany, 1977, Vol. 5, .
[http://dx.doi.org/10.1007/978-3-642-66616-2]
[11]
Meding, B.; Torén, K.; Karlberg, A.T.; Hagberg, S.; Wass, K. Evaluation of skin symptoms among workers at a Swedish paper mill. Am. J. Ind. Med., 1993, 23(5), 721-728.
[http://dx.doi.org/10.1002/ajim.4700230506] [PMID: 8506850]
[12]
Peters, A.T.; Yang, S.S. Monoazo disperse dyes derived from nitro-2-aminobenzothiazoles. Dyes Pigments, 1995, 28, 151-164.
[http://dx.doi.org/10.1016/0143-7208(95)00012-5]
[13]
Fiehn, O.; Reemtsma, T.; Jekel, M. Extraction and analysis of various benzothiazoles from industrial wastewater. Anal. Chim. Acta, 1994, 295, 297-305.
[http://dx.doi.org/10.1016/0003-2670(94)80235-1]
[14]
Khokra, S.L.; Arora, K.; Mehta, H.; Aggarwal, A.; Yadav, M. Common method to synthesize benzothiazole derivatives and their medicinal significance: A review. Int. J. Pharm. Sci. Res., 2011, 2(6), 1356-1377.
[15]
Hu, W.P.; Chen, Y.K.; Liao, C.C.; Yu, H.S.; Tsai, Y.M.; Huang, S.M.; Tsai, F.Y.; Shen, H.C.; Chang, L.S.; Wang, J.J. Synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole derivatives as photosensitizing agents. Bioorg. Med. Chem., 2010, 18(16), 6197-6207.
[http://dx.doi.org/10.1016/j.bmc.2010.04.082] [PMID: 20637639]
[16]
Bujdáková, H.; Múcková, M. Antifungal activity of a new benzothiazole derivative against Candida in vitro and in vivo. Int. J. Antimicrob. Agents, 1994, 4(4), 303-308.
[http://dx.doi.org/10.1016/0924-8579(94)90030-2] [PMID: 18611621]
[17]
Sutoris, V.; Foltinova, P.; Blockinger, G. Benzothiazole compounds part 11 synthesis and anti microbial activity of 2 substituted and 2,6 substituted benzothiazoles. Chem. Zvesti, 1977, 31(1), 92-97.
[18]
Sreenivasa, M.V.; Nagappa, A.N.; Nargund, L.V.G. Synthesis of 8-fluoro-9-substituted (1,3)-benzothiazolo (5,1-b)-1,2,4-triazoles as antimicrobial agents. Indian J. Heterocycl. Chem., 1998, 8, 23-29.
[19]
Gopkumar, P.; Shivakumar, B.; Jayachandran, E.; Nagappa, A.N.; Nargund, L.V.G.; Gurupadaiah, B.M. Synthesis and biological activity of 6-fluro, 7-(substituted)-(2-N-P-anilinosulphonamido) benzothiazole. Indian J. Heterocycl. Chem., 2001, 11, 39-42.
[20]
Huang, W.; Yang, G.F. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. Bioorg. Med. Chem., 2006, 14(24), 8280-8285.
[http://dx.doi.org/10.1016/j.bmc.2006.09.016] [PMID: 17008103]
[21]
Bhusari, K.P.; Amnerkar, N.D.; Khedekar, P.B.; Kale, M.K.; Bhole, R.P. Synthesis and in vitro antimicrobial activity of some new 4-amino-N-(1, 3-benzothiazol-2-yl) benzenesulphonamide derivatives. Asian J. Res. Chem, 2008, 1, 53-58.
[22]
Argyropoulou, I.; Geronikaki, A.; Vicini, P.; Zani, F. Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. ARKIVOC, 2009, 6, 89-102.
[23]
Bondock, S.; Fadaly, W.; Metwally, M.A. Enaminonitrile in heterocyclic synthesis: synthesis and antimicrobial evaluation of some new pyrazole, isoxazole and pyrimidine derivatives incorporating a benzothiazole moiety. Eur. J. Med. Chem., 2009, 44(12), 4813-4818.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.024] [PMID: 19683840]
[24]
Soni, B.; Ranawat, M.S.; Sharma, R.; Bhandari, A.; Sharma, S. Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 2938-2942.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.019] [PMID: 20413186]
[25]
Sharma, P.; Kumar, M.; Mohan, V. Synthesis and antimicrobial activity of 2H-pyrimido[2,1-b]benzothiazol-2-ones. Res. Chem. Intermed., 2010, 36, 985-993.
[http://dx.doi.org/10.1007/s11164-010-0211-9]
[26]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[27]
Rao, A.J.; Rao, P.V.; Rao, V.K.; Mohan, C.; Raju, C.N.; Reddy, S.C. Microwave assisted one-pot synthesis of novel α-amino-phosphonates and their biological activity. Bull. Korean Chem. Soc., 2010, 31, 1863-1868.
[http://dx.doi.org/10.5012/bkcs.2010.31.7.1863]
[28]
Alang, G.; Kaur, R.; Singh, A.; Budhlakoti, P.; Singh, A.; Sanwal, R. Synthesis, characterization and antifungal activity of certain (E)-1-(1-(substitutedphenyl) ethylidene)-2-(6-methylbenzo[d]thiazol-2-yl) hydrazine analogues. Int. J. Pharm. Biol. Arch., 2010, 1(1), 56-61.
[29]
Singh, M.K.; Tilak, R.; Nath, G.; Awasthi, S.K.; Agarwal, A. Design, synthesis and antimicrobial activity of novel benzothiazole analogs. Eur. J. Med. Chem., 2013, 63, 635-644.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.027] [PMID: 23567952]
[30]
Bhat, M.; Belagali, S.L. Guanidinyl benzothiazole derivatives: Synthesis and structure activity relationship studies of a novel series of potential antimicrobial and antioxidants. Res. Chem. Intermed., 2016, 42(7), 6195-6208.
[http://dx.doi.org/10.1007/s11164-016-2454-6]
[31]
Bhat, M.; Belagali, S.L. HemanthKumar, N. K.; Mahadeva Kumar, S. Synthesis and characterization of novel benzothiazole amide derivatives and screening as possible antimitotic and antimicrobial agents. Res. Chem. Intermed., 2016, 43(1), 361-378.
[http://dx.doi.org/10.1007/s11164-016-2627-3]
[32]
Unger, C. New therapeutic approaches in cancer treatment. Drugs Future, 1997, 22, 1337-1345.
[33]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[34]
Menta, E.; Palumbo, M. Novel antineoplastic agents. Expert Opin. Ther. Pat., 1997, 7, 1401-1426.
[http://dx.doi.org/10.1517/13543776.7.12.1401]
[35]
Easmon, J.; Heinisch, G.; Hofman, J.; Langer, T.; Grunicke, H.H.; Fink, J.; Purstinger, G. Thiazolyl and benzothiazolyl hydrazones derived from α-(N)-acetylpyridines and diazines: synthesis, antiproliferative activity and CoMFA studies. Eur. J. Med. Chem., 1997, 32, 397-408.
[http://dx.doi.org/10.1016/S0223-5234(97)81677-7]
[36]
Shi, D.F.; Bradshaw, T.D.; Chua, M.S.; Westwell, A.D.; Stevens, M.F.G. Antitumour benzothiazoles. Part 15: The synthesis and physico-chemical properties of 2-(4-aminophenyl)benzothiazole sulfamate salt derivatives. Bioorg. Med. Chem. Lett., 2001, 11(8), 1093-1095.
[http://dx.doi.org/10.1016/S0960-894X(01)00142-1] [PMID: 11327598]
[37]
Shi, D.F.; Bradshaw, T.D.; Wrigley, S.; McCall, C.J.; Lelieveld, P.; Fichtner, I.; Stevens, M.F.G. Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J. Med. Chem., 1996, 39(17), 3375-3384.
[http://dx.doi.org/10.1021/jm9600959] [PMID: 8765521]
[38]
Bradshaw, T.D.; Westwell, A.D. The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr. Med. Chem., 2004, 11(8), 1009-1021.
[http://dx.doi.org/10.2174/0929867043455530] [PMID: 15078163]
[39]
Hutchinson, I.; Jennings, S.A.; Vishnuvajjala, B.R.; Westwell, A.D.; Stevens, M.F.G.J. Antitumor benzothiazoles. 16. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazole amino acid prodrugs. J. Med. Chem., 2002, 45(3), 744-747.
[http://dx.doi.org/10.1021/jm011025r] [PMID: 11806726]
[40]
Song, B.A.; Liu, X.H.; Yang, S.; Hu, D.Y.; Jin, L.H.; Zhang, H. Synthesis and anticancer activity of 2,3,4-trimethoxyacetopheno-xime ester containing benzothiazole moiety. Chin. J. Chem. Eng., 2005, 23, 1236-1240.
[http://dx.doi.org/10.1002/cjoc.200591236]
[41]
Stanton, H.L.K.; Gambari, R.; Chui, C.H. Synthesis and structure evaluation of a novel cantharimide and its cytotoxicity on SK-Hep-1 hepatoma cells. Bioorg. Med. Chem., 2008, 16, 3626-3631.
[42]
Havrylyuk, D.; Mosula, L.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(11), 5012-5021.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.008] [PMID: 20810193]
[43]
Kumbhare, R.M.; Dadmal, T.; Kosurkar, U.; Sridhar, V.; Rao, J.V.; Manika, P.B. Synthesis and cytotoxic evaluation of thiourea and N-bis-benzothiazole derivatives: a novel class of cytotoxic agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 453-455.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.106] [PMID: 22115593]
[44]
Lindgren, E.B.; de Brito, M.A.; Vasconcelos, T.R.; de Moraes, M.O.; Montenegro, R.C.; Yoneda, J.D.; Leal, K.Z. Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones. Eur. J. Med. Chem., 2014, 86, 12-16.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.039] [PMID: 25147145]
[45]
Moustafa, T.G.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Nanting, N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Chin. Chem. Lett., 2016, 27(3), 380-386.
[http://dx.doi.org/10.1016/j.cclet.2015.12.033]
[46]
Lad, N.P.; Manohar, Y.; Mascarenhas, M.; Pandit, Y.B.; Kulkarni, M.R.; Sharma, R.; Salkar, K.; Suthar, A.; Pandit, S.S. Methylsulfonyl benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1319-1324.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.032] [PMID: 28188067]
[47]
Bastian, I.; Colebunders, R. Treatment and prevention of multidrug-resistant tuberculosis. Drugs, 1999, 58(4), 633-661.
[http://dx.doi.org/10.2165/00003495-199958040-00005] [PMID: 10551435]
[48]
Katz, L. Antituberculous compounds. III. Benzothiazole and benzoxazole derivatives. J. Am. Chem. Soc., 1952, 75, 712-714.
[http://dx.doi.org/10.1021/ja01099a059]
[49]
Kocí, J.; Klimesová, V.; Waisser, K.; Kaustová, J.; Dahse, H.M.; Möllmann, U. Heterocyclic benzazole derivatives with antimycobacterial in vitro activity. Bioorg. Med. Chem. Lett., 2002, 12(22), 3275-3278.
[http://dx.doi.org/10.1016/S0960-894X(02)00697-2] [PMID: 12392731]
[50]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[51]
Abdel-Rahman, H.M.; Morsy, M.A. Novel benzothiazolyl urea and thiourea derivatives with potential cytotoxic and antimicrobial activities. J. Enzyme Inhib. Med. Chem., 2007, 22(1), 57-64.
[http://dx.doi.org/10.1080/14756360600991082] [PMID: 17373548]
[52]
Huang, Q.; Mao, J.; Wan, B.; Wang, Y.; Brun, R.; Franzblau, S.G.; Kozikowski, A.P. Searching for new cures for tuberculosis: design, synthesis, and biological evaluation of 2-methylbenzothiazoles. J. Med. Chem., 2009, 52(21), 6757-6767.
[http://dx.doi.org/10.1021/jm901112f] [PMID: 19817445]
[53]
Dinakaran, M.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Antitubercular activities of novel benzothiazolo naphthyridone carboxylic acid derivatives endowed with high activity toward multi-drug resistant tuberculosis. Biomed. Pharm., 2009, 63, 11-18.
[54]
Patel, N.B.; Khan, I.H.; Rajani, S.D. Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur. J. Med. Chem., 2010, 45(9), 4293-4299.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.031] [PMID: 20630629]
[55]
Wang, F.; Sen, S.; Zhang, Y.; Ahmad, I.; Zhu, X.; Wilson, I.A.; Smider, V.V.; Magliery, T.J.; Schultz, P.G.; Hassani, M.; Huszar, S.; Trefzer, C.; Ma, Z.; Kaneko, T.; Mdluli, K.E.; Franzblau, S.; Chatterjee, A.K.; Johnson, K.; Mikusova, K.; Besra, G.S.; Fütterer, K.; Jacobs, W.R.; Schultza, P.G. Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation. Proc. Natl. Acad. Sci. USA, 2013, 110(11), 4261-4266.
[http://dx.doi.org/10.1073/pnas.1301810110] [PMID: 23440204]
[56]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[57]
Landge, S.; Mullick, A.B.; Nagalapur, K.; Neres, J.; Subbulakshmi, V.; Murugan, K.; Ghosh, A.; Sadler, C.; Fellows, M.D.; Humnabadkar, V.; Mahadevaswamy, J.; Vachaspati, P.; Sharma, S.; Kaur, P.; Mallya, M.; Rudrapatna, S.; Awasthy, D.; Sambandamurthy, V.K.; Pojer, F.; Cole, S.T.; Balganesh, T.S.; Ugarkar, B.G.; Balasubramanian, V.; Bandodkar, B.S.; Panda, M.; Ramachandran, V. Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure-activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-D-ribose 2′-oxidase. Bioorg. Med. Chem., 2015, 23(24), 7694-7710.
[http://dx.doi.org/10.1016/j.bmc.2015.11.017] [PMID: 26643218]
[58]
Bhat, M.; Belagali, S.L. Synthesis, characterization and biological screening of pyrazole-conjugated benzothiazole analogs. Future Med. Chem., 2018, 10(1), 71-87.
[http://dx.doi.org/10.4155/fmc-2017-0138] [PMID: 29235357]
[59]
Rosenkranz, A.R.; Mendrick, D.L.; Cotran, R.S.; Mayadas, T.N.J. P-selectin deficiency exacerbates experimental glomerulonephritis: a protective role for endothelial P-selectin in inflammation. J. Clin. Invest., 1999, 103(5), 649-659.
[http://dx.doi.org/10.1172/JCI5183] [PMID: 10074481]
[60]
Budsberg, S. Current and future trends in the use of NSAIDs for the treatment of osteoarthritis. Waltham Focus, 1999, 9(2), 26-31.
[61]
Singh, S. P.; Vaid, R. K. Synthesis and anti-inflammatory activity of some 2-(4’-butyl-3’,5’-dimethylpyrazol-1’yl)-6-substituted benzothiazoles and 4-butyl-1-(6’-substituted-2’-benzothiazolyl)-3- methylpyrazol-5-ones. Indian J. Chem., 1986, 25 B, 288-291.
[62]
Sawhney, S.N.; Bhutani, S.; Dharamvir, V. Synthesis and antiinflammatory activity of some 3-amino- and 3-trifluoroacetyl-amino-4,5-dihydro-1H-pyrazoles. Indian J. Chem., 1989, 28(8), 667-672.
[63]
Hibi, S.; Okamoto, Y.; Tagami, K.; Numata, H.; Kobayashi, N.; Shinoda, M.; Kawahara, T.; Murakami, M.; Oketani, K.; Inoue, T. Novel dual inhibitors of 5-lipoxygenase and thromboxane A2 synthetase: synthesis and structure-activity relationships of 3-pyridylmethyl-substituted 2-amino-6-hydroxybenzothiazole derivatives. J. Med. Chem., 1994, 37(19), 3062-3070.
[http://dx.doi.org/10.1021/jm00045a011] [PMID: 7932529]
[64]
Papadopoulou, C.; Geronikaki, A.; Hadjipavlou-Litina, D. Synthesis and biological evaluation of new thiazolyl/benzothiazolyl-amides, derivatives of 4-phenyl-piperazine. Farmaco, 2005, 60(11-12), 969-973.
[http://dx.doi.org/10.1016/j.farmac.2005.06.014] [PMID: 16040029]
[65]
Kaur, H.; Kumar, S.; Singh, I.; Saxena, K.K.; Kumar, A. Synthesis, characterization and biological activity of various substituted benzothiazole derivatives. Dig. J. Nanomater. Biostruct., 2010, 5, 67-76.
[66]
Shafi, S.; Alam, M.M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 2012, 49, 324-333.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[67]
Santhoshi, A.; Mahendar, B.; Mattapally, S.; Sadhu, P.S.; Banerjee, S.K.; Jayathirtha Rao, V. Synthesis of thio-heterocyclic analogues from Baylis-Hillman bromides as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(8), 1952-1957.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.073] [PMID: 24661847]
[68]
Eman Abbas, M.H.; Amin, K.M.; El-Hamouly, W.S.; Dawood, D.H.; Abdalla, M.M. Synthesis, anti-inflammatory and antinociceptive activity of some novel benzothiazole derivatives. Res. Chem. Intermed., 2015, 41, 2537-2555.
[http://dx.doi.org/10.1007/s11164-013-1367-x]
[69]
Sies, H. Oxidative stress: oxidants and antioxidants. Exp. Physiol., 1997, 82(2), 291-295.
[http://dx.doi.org/10.1113/expphysiol.1997.sp004024] [PMID: 9129943]
[70]
Cressier, D.; Prouillac, C.; Hernandez, P.; Amourette, C.; Diserbo, M.; Lion, C.; Rima, G. Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles. Bioorg. Med. Chem., 2009, 17(14), 5275-5284.
[http://dx.doi.org/10.1016/j.bmc.2009.05.039] [PMID: 19502068]
[71]
Karali, N.; Güzel, O.; Ozsoy, N.; Ozbey, S.; Salman, A. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur. J. Med. Chem., 2010, 45(3), 1068-1077.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.001] [PMID: 20045221]
[72]
Hazra, K.; Nargund, L.V.G.; Rashmi, P.; Narendra Sharath Chandra, J.N.; Nandha, B. Synthesis and antioxidant activity of some novel Fluorobenzothiazolopyrazoline. Der Chem. Sin., 2011, 2(2), 149-157.
[73]
Laura Cabrera-Perez, C.; Padilla-Martinez, I.I.; Alejandro, C.; Mendieta-Wejebe, J.E.; Feliciano, T.C.; Rosales-Hernandez, M.C. Evaluation of a new benzothiazole derivative with antioxidant activity in the initial phase of acetaminophen toxicity. Arab. J. Chem., 2019, 12(8), 3871-3882.
[74]
Koppireddi, S.; Komsani, J.R.; Avula, S.; Pombala, S.; Vasamsetti, S.; Kotamraju, S.; Yadla, R. Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds. Eur. J. Med. Chem., 2013, 66, 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.005] [PMID: 23811092]
[75]
World Malaria Report; Geneva ; 2011.Available at: . https://www.who.int/malaria/world_malaria_report_2011/en/
[76]
Takasu, K.; Inoue, H.; Kim, H.S.; Suzuki, M.; Shishido, T.; Wataya, Y.; Ihara, M. Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity. J. Med. Chem., 2002, 45(5), 995-998.
[http://dx.doi.org/10.1021/jm0155704] [PMID: 11855978]
[77]
Pudhom, K.; Kasai, K.; Terauchi, H.; Inoue, H.; Kaiser, M.; Brun, R.; Ihara, M.; Takasu, K. Synthesis of three classes of rhodacyanine dyes and evaluation of their in vitro and in vivo antimalarial activity. Bioorg. Med. Chem., 2006, 14(24), 8550-8563.
[http://dx.doi.org/10.1016/j.bmc.2006.08.035] [PMID: 16971131]
[78]
Ongarora, D.S.B.; Gut, J.; Rosenthal, P.J.; Masimirembwa, C.M.; Chibale, K. Benzoheterocyclic amodiaquine analogues with potent antiplasmodial activity: synthesis and pharmacological evaluation. Bioorg. Med. Chem. Lett., 2012, 22(15), 5046-5050.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.010] [PMID: 22749280]
[79]
Bhat, M.; Belagali, S.L. Synthesis of azo-bridged benzothiazole-phenyl ester derivatives via steglich esterification. Int. J. Curr. Eng. Technol., 2014, 4(4), 2711-2715.
[80]
Sarkar, S.; Siddiqui, A.A.; Saha, S.J.; De, R.; Mazumder, S.; Banerjee, C.; Iqbal, M.S.; Nag, S.; Adhikari, S.; Bandyopadhyay, U. Antimalarial activity of small-molecule benzothiazole hydrazones. Antimicrob. Agents Chemother., 2016, 60(7), 4217-4228.
[http://dx.doi.org/10.1128/AAC.01575-15] [PMID: 27139466]
[81]
Hadanu, R.; Idris, S.; Wayan, S.I. QSAR analysis of benzothiazole derivatives of antimalarial compounds based on AM1 semi-empirical method. Indones. J. Chem., 2015, 15(1), 86-92.
[http://dx.doi.org/10.22146/ijc.21228]
[82]
Bhoi, M.N.; Borad, M.A.; Patel, H.D. Synthetic strategies for fused benzothiazoles: Past, present, and future. Synth. Commun., 2014, 44(17), 2427-2457.
[http://dx.doi.org/10.1080/00397911.2014.907426]
[83]
Shanthalakshmi, K.; Bhat, M.; Belagali, S.L. Synthesis of benzothiazole Schiff’s bases and screening for the anti-oxidant activity. J. Chem. Pharm. Res., 2016, 8(10), 240-243.
[84]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[85]
Van Zandt, M.C.; Jones, M.L.; Gunn, D.E.; Geraci, L.S.; Jones, J.H.; Sawicki, D.R.; Sredy, J.; Jacot, J.L.; Dicioccio, A.T.; Petrova, T.; Mitschler, A.; Podjarny, A.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem., 2005, 48(9), 3141-3152.
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[86]
Jeon, R.; Kim, Y.J.; Cheon, Y.; Ryu, J.H. Synthesis and biological activity of [[(heterocycloamino)alkoxy] benzyl]-2,4-thiazolidinediones as PPARgamma agonists. Arch. Pharm. Res., 2006, 29(5), 394-399.
[http://dx.doi.org/10.1007/BF02968589] [PMID: 16756084]
[87]
Moreno-Díaz, H.; Villalobos-Molina, R.; Ortiz-Andrade, R.; Díaz-Coutiño, D.; Medina-Franco, J.L.; Webster, S.P.; Binnie, M.; Estrada-Soto, S.; Ibarra-Barajas, M.; León-Rivera, I.; Navarrete-Vázquez, G. Antidiabetic activity of N-(6-substituted-1,3-benzothiazol-2-yl)benzenesulfonamides. Bioorg. Med. Chem. Lett., 2008, 18(9), 2871-2877.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.086] [PMID: 18424136]
[88]
Navarrete-Vazquez, G.; Paoli, P.; León-Rivera, I.; Villalobos-Molina, R.; Medina-Franco, J.L.; Ortiz-Andrade, R.; Estrada-Soto, S.; Camici, G.; Diaz-Coutiño, D.; Gallardo-Ortiz, I.; Martinez-Mayorga, K.; Moreno-Díaz, H. Synthesis, in vitro and computational studies of protein tyrosine phosphatase 1B inhibition of a small library of 2-arylsulfonylaminobenzothiazoles with antihyperglycemic activity. Bioorg. Med. Chem., 2009, 17(9), 3332-3341.
[http://dx.doi.org/10.1016/j.bmc.2009.03.042] [PMID: 19362487]
[89]
Patil, V.S.; Nandre, K.P.; Ghosh, S.; Rao, V.J.; Chopade, B.A.; Sridhar, B.; Bhosale, S.V.; Bhosale, S.V. Synthesis, crystal structure and antidiabetic activity of substituted (E)-3-(Benzo [d]thiazol-2-ylamino) phenylprop-2-en-1-one. Eur. J. Med. Chem., 2013, 59, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.020] [PMID: 23262035]
[90]
Zhu, X.Y.; Etukala, J.R.; Eyunni, S.V.K.; Setola, V.; Roth, B.L.; Ablordeppey, S.Y. Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): a search for new dual-acting agents as potential antidepressants. Eur. J. Med. Chem., 2012, 53, 124-132.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.042] [PMID: 22520153]
[91]
Wang, S.; Chen, Y.; Zhao, S.; Xu, X.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and biological evaluation of a series of benzoxazole/benzothiazole-containing 2,3-dihydrobenzo[b][1,4]dioxine derivatives as potential antidepressants. Bioorg. Med. Chem. Lett., 2014, 24(7), 1766-1770.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.031] [PMID: 24618300]
[92]
Flexner, C. HIV drug development: the next 25 years. Nat. Rev. Drug Discov., 2007, 6(12), 959-966.
[http://dx.doi.org/10.1038/nrd2336] [PMID: 17932493]
[93]
Nagarajan, S.R.; De Crescenzo, G.A.; Getman, D.P.; Lu, H.F.; Sikorski, J.A.; Walker, J.L.; McDonald, J.J.; Houseman, K.A.; Kocan, G.P.; Kishore, N.; Mehta, P.P.; Funkes-Shippy, C.L.; Blystone, L. Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem., 2003, 11(22), 4769-4777.
[http://dx.doi.org/10.1016/j.bmc.2003.07.001] [PMID: 14556792]
[94]
Delmas, F.; Avellaneda, A.; Di Giorgio, C.; Robin, M.; De Clercq, E.; Timon-David, P.; Galy, J.P. Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives. Eur. J. Med. Chem., 2004, 39(8), 685-690.
[http://dx.doi.org/10.1016/j.ejmech.2004.04.006] [PMID: 15276301]
[95]
Al-Soud, Y.A.; Al-Sa’doni, H.; Amajaour, H.A.S.; Al-Masoudi, N.A. Nitroimidazoles. V. Synthesis and anti-HIV evaluation of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Z. Naturforsch, 2006, 62b, 523-528.
[96]
Bhavsar, D.; Trivedi, J.; Parekh, S.; Savant, M.; Thakrar, S.; Bavishi, A.; Radadiya, A.; Vala, H.; Lunagariya, J.; Parmar, M.; Paresh, L.; Loddo, R.; Shah, A. Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide derivatives using MTT method. Bioorg. Med. Chem. Lett., 2011, 21(11), 3443-3446.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.105] [PMID: 21515046]
[97]
Pitta, E.; Geronikaki, A.; Surmava, S.; Eleftheriou, P.; Mehta, V.P.; Van der Eycken, E.V. Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol -2-yl)thiazolidin-4-ones. Divergence from the non-competitive inhibition mechanism. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 113-122.
[http://dx.doi.org/10.3109/14756366.2011.636362] [PMID: 22380777]
[98]
Pellock, J.M.; Bourgeols, B.F.; Dodson, W.E. Pediatric Epilepsy: Diagnosis and Therapy, third ed; Demos Publishers: New York, 2001, p. 117.
[99]
McNamara, J.O. Drugs effective in the therapy of the epilepsies. Goodman and Gilman’s The Pharmacological Basis of Therapeutics; ; Hardman, J.G.; Limbird, L.E., Eds.;. Mc Graw-Hill: New York, 2001, pp. 521-547.
[100]
Chopade, R.S.; Bahekar, R.H.; Khedekar, P.B.; Bhusari, K.P.; Rao, A.R. Synthesis and anticonvulsant activity of 3-(6-substituted-benzothiazol-2-yl)-6-phenyl-[1, 3]-xazinane-2-thiones. Arch. Pharm. (Weinheim), 2002, 335(8), 381-388.
[http://dx.doi.org/10.1002/1521-4184(200211)335:8<381:AID-ARDP381>3.0.CO;2-S] [PMID: 12397622]
[101]
Jimonet, P.; Barreau, M.; Blanchard, J.C.; Boireau, A.; Doble, A.; Laduron, P.; Lavayre, J.; Malgouris, C.; Piot, O.; Pratt, J. Synthesis, anticonvulsant and neuroprotective activities of RP 66055, a riluzole derivative. Bioorg. Med. Chem., 1994, 2(8), 793-798.
[http://dx.doi.org/10.1016/S0968-0896(00)82179-3] [PMID: 7894973]
[102]
Ucar, H.; Van derpoorten, K.; Cacciaguerra, S.; Spampinato, S.; Stables, J.P.; Depovere, P.; Isa, M.; Masereel, B.; Delarge, J.; Poupaert, J.H. Synthesis and anticonvulsant activity of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone derivatives. J. Med. Chem., 1998, 41, 1138-1145.
[103]
Siddiqui, N.; Rana, A.; Khan, S.A.; Bhat, M.A.; Haque, S.E. Synthesis of benzothiazole semicarbazones as novel anticonvulsants--the role of hydrophobic domain. Bioorg. Med. Chem. Lett., 2007, 17(15), 4178-4182.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.048] [PMID: 17572089]
[104]
Amnerkar, N.D.; Bhusari, K.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur. J. Med. Chem., 2010, 45(1), 149-159.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.037] [PMID: 19853976]
[105]
Hassan, M.Z.; Khan, S.A.; Amir, M. Design, synthesis and evaluation of N-(substituted benzothiazol-2-yl)amides as anticonvulsant and neuroprotective. Eur. J. Med. Chem., 2012, 58, 206-213.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.002] [PMID: 23124217]
[106]
Siddiqui, N.; Ahuja, P.; Malik, S.; Arya, S.K. Design of benzothiazole-1,3,4-thiadiazole conjugates: synthesis and anticonvulsant evaluation. Arch. Pharm. (Weinheim), 2013, 346(11), 819-831.
[http://dx.doi.org/10.1002/ardp.201300083] [PMID: 24081512]
[107]
Holden, M.; Kelly, C. Use of cholinesterase inhibitors in dementia. Adv. Psychiatr. Treat., 2002, 8, 89-96.
[http://dx.doi.org/10.1192/apt.8.2.89]
[108]
Alzheimer’s Disease International, World Alzheimer Report, ; 2011.Available at: . www.alz.co.uk/research/WorldAlzheimerReport2011. pdf
[109]
Ono, M.; Hayashi, S.; Kimura, H.; Kawashima, H.; Nakayama, M.; Saji, H. Push-pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem., 2009, 17(19), 7002-7007.
[http://dx.doi.org/10.1016/j.bmc.2009.08.032] [PMID: 19740669]
[110]
Neumaier, B.; Deisenhofer, S.; Sommer, C.; Solbach, C.; Reske, S.N.; Mottaghy, F. Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer’s disease. Appl. Radiat. Isot., 2010, 68(6), 1066-1072.
[http://dx.doi.org/10.1016/j.apradiso.2009.12.044] [PMID: 20089413]
[111]
Zheng, M.Q.; Yin, D.Z.; Qiao, J.P.; Zhang, L.; Wang, Y.X. Syntheses and evaluation of fluorinated benzothiazole anilines as potential tracers for β-amyloid plaques in Alzheimer’s disease. J. Fluor. Chem., 2008, 129, 210-216.
[http://dx.doi.org/10.1016/j.jfluchem.2007.11.005]
[112]
Huang, L.; Su, T.; Shan, W.; Luo, Z.; Sun, Y.; He, F.; Li, X. Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids. Bioorg. Med. Chem., 2012, 20(9), 3038-3048.
[http://dx.doi.org/10.1016/j.bmc.2012.02.059] [PMID: 22472046]
[113]
Keri, R.S.; Quintanova, C.; Marques, S.M.; Esteves, A.R.; Cardoso, S.M.; Santos, M.A. Design, synthesis and neuroprotective evaluation of novel tacrine-benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(15), 4559-4569.
[http://dx.doi.org/10.1016/j.bmc.2013.05.028] [PMID: 23768661]
[114]
Imramovský, A.; Pejchal, V.; Štěpánková, Š.; Vorčáková, K.; Jampílek, J.; Vančo, J.; Šimůnek, P.; Královec, K.; Brůčková, L.; Mandíková, J.; Trejtnar, F. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem., 2013, 21(7), 1735-1748.
[http://dx.doi.org/10.1016/j.bmc.2013.01.052] [PMID: 23462716]
[115]
Wang, M.; Gao, M.; Mock, B.H.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D.; Zheng, Q.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem., 2006, 14(24), 8599-8607.
[http://dx.doi.org/10.1016/j.bmc.2006.08.026] [PMID: 16962783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy