Review Article

LPS/TLR4乳腺癌通路:细胞信号传导的见解

卷 29, 期 13, 2022

发表于: 11 August, 2021

页: [2274 - 2289] 页: 16

弟呕挨: 10.2174/0929867328666210811145043

价格: $65

摘要

背景:癌细胞通常被免疫细胞识别为外来颗粒。越来越多的证据表明,Toll样受体(TLR)与致癌作用之间存在重要联系。这篇综述文章重点介绍TLR,特别是TLR4在乳腺癌中的作用。 方法:在PubMed,Scopus,Google Scholar中探索TLRs和癌症的研究数据并进行审查。虽然引用了一些先驱作品,但过去十年发表的论文大多被引用。 结果:TLR是被广泛研究的模式识别受体(PRR),TLR4是研究最多的TLR,与包括乳腺癌在内的几种类型的癌症的发生有关。TLR4活化通过其配体脂多糖(LPS)的结合发生,LPS是革兰氏阴性细菌外膜的一种成分。在LPS结合后,TLR4二聚并招募下游信号传导和/或适配器分子,导致与癌细胞增殖,存活,侵袭和转移相关的基因表达。虽然LPS / TLR4信号传导似乎是单一的信号转导途径,但TLR4激活导致多个不同的细胞内网络的激活,这些网络在免疫细胞和癌细胞中都具有巨大的细胞反应。TLR4在乳腺癌的生长,侵袭和转移中的作用在肿瘤学研究中引起了极大的关注。一些临床和临床前研究利用TLR4激动剂和拮抗剂作为癌症治疗的治疗选择,作为疫苗开发的单一疗法或佐剂。 结论:本文综述了LPS/TLR4信号在乳腺癌发展中的作用以及靶向LPS/TLR4轴在乳腺癌治疗中的未来前景。

关键词: 乳腺癌,Toll样受体4,脂多糖,信号通路,癌症治疗,细胞信号转导。

[1]
Society, A.C. Breast cancer facts & figures 2019–2020; Am. Cancer Soc, 2019, pp. 1-44.
[2]
Shi, S.; Xu, C.; Fang, X.; Zhang, Y.; Li, H.; Wen, W.; Yang, G. Expression profile of Toll-like receptors in human breast cancer. Mol. Med. Rep., 2020, 21(2), 786-794.
[PMID: 31789409]
[3]
Imani, S.; Wei, C.; Cheng, J.; Khan, M.A.; Fu, S.; Yang, L.; Tania, M.; Zhang, X.; Xiao, X.; Zhang, X.; Fu, J. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 2017, 8(13), 21362-21379.
[http://dx.doi.org/10.18632/oncotarget.15214] [PMID: 28423483]
[4]
Cheng, J.; Peng, J.; Fu, J.; Khan, M.A.; Tan, P.; Wei, C.; Deng, X.; Chen, H.; Fu, J. Identification of a novel germline BRCA2 variant in a Chinese breast cancer family. J. Cell. Mol. Med., 2020, 24(2), 1676-1683.
[http://dx.doi.org/10.1111/jcmm.14861] [PMID: 31782247]
[5]
Bhattacharya, D.; Yusuf, N. Expression of toll-like receptors on breast tumors: taking a toll on tumor microenvironment. Int. J. Breast Cancer, 2012, 2012
[http://dx.doi.org/10.1155/2012/716564]
[6]
Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943.
[PMID: 26693050]
[7]
Ahmed, A.; Redmond, H.P.; Wang, J.H. Links between Toll-like receptor 4 and breast cancer. OncoImmunology, 2013, 2(2), e22945.
[http://dx.doi.org/10.4161/onci.22945] [PMID: 23526132]
[8]
Li, J.; Yin, J.; Shen, W.; Gao, R.; Liu, Y.; Chen, Y.; Li, X.; Liu, C.; Xiang, R.; Luo, N. TLR4 promotes breast cancer metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation. Anat. Rec. (Hoboken), 2017, 300(7), 1219-1229.
[http://dx.doi.org/10.1002/ar.23590] [PMID: 28296189]
[9]
Mehmeti, M.; Allaoui, R.; Bergenfelz, C.; Saal, L.H.; Ethier, S.P.; Johansson, M.E.; Jirström, K.; Leandersson, K. Expression of functional toll like receptor 4 in estrogen receptor/progesterone receptor-negative breast cancer. Breast Cancer Res., 2015, 17(1), 130.
[http://dx.doi.org/10.1186/s13058-015-0640-x] [PMID: 26392082]
[10]
González-Reyes, S.; Marín, L.; González, L.; González, L.O.; del Casar, J.M.; Lamelas, M.L.; González-Quintana, J.M.; Vizoso, F.J. Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer, 2010, 10(1), 665.
[http://dx.doi.org/10.1186/1471-2407-10-665] [PMID: 21129170]
[11]
Yang, H.; Wang, B.; Wang, T.; Xu, L.; He, C.; Wen, H.; Yan, J.; Su, H.; Zhu, X. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One, 2014, 9(10), e109980.
[http://dx.doi.org/10.1371/journal.pone.0109980] [PMID: 25299052]
[12]
Okamoto, H.; Shoin, S.; Koshimura, S.; Shimizu, R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic Streptococci. Jpn. J. Microbiol., 1967, 11(4), 323-326.
[http://dx.doi.org/10.1111/j.1348-0421.1967.tb00350.x] [PMID: 4875331]
[13]
Kikkawa, F.; Kawai, M.; Oguchi, H.; Kojima, M.; Ishikawa, H.; Iwata, M.; Maeda, O.; Tomoda, Y.; Arii, Y.; Kuzuya, K. Randomised study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur. J. Cancer, 1993, 29A(11), 1542-1546.
[http://dx.doi.org/10.1016/0959-8049(93)90291-M] [PMID: 8217359]
[14]
Haricharan, S.; Brown, P. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth. Proc. Natl. Acad. Sci. USA, 2015, 112(25), E3216-E3225.
[http://dx.doi.org/10.1073/pnas.1420811112] [PMID: 26063617]
[15]
DeNardo, D.G.; Johansson, M.; Coussens, L.M. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev., 2008, 27(1), 11-18.
[http://dx.doi.org/10.1007/s10555-007-9100-0] [PMID: 18066650]
[16]
Bhatelia, K.; Singh, K.; Singh, R. TLRs: linking inflammation and breast cancer. Cell. Signal., 2014, 26(11), 2350-2357.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.035] [PMID: 25093807]
[17]
Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol., 2007, 81(1), 1-5.
[http://dx.doi.org/10.1189/jlb.0306164] [PMID: 17032697]
[18]
Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273.
[http://dx.doi.org/10.1128/CMR.00046-08] [PMID: 19366914]
[19]
Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev., 2012, 249(1), 158-175.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01146.x] [PMID: 22889221]
[20]
Aliprantis, A.O.; Yang, R-B.; Mark, M.R.; Suggett, S.; Devaux, B.; Radolf, J.D.; Klimpel, G.R.; Godowski, P.; Zychlinsky, A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 1999, 285(5428), 736-739.
[http://dx.doi.org/10.1126/science.285.5428.736] [PMID: 10426996]
[21]
Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857), 732-738.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[22]
Park, B.S.; Lee, J-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66-e66.
[http://dx.doi.org/10.1038/emm.2013.97] [PMID: 24310172]
[23]
Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 2001, 410(6832), 1099-1103.
[http://dx.doi.org/10.1038/35074106] [PMID: 11323673]
[24]
Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663), 1526-1529.
[http://dx.doi.org/10.1126/science.1093620] [PMID: 14976262]
[25]
Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; Akira, S. A toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813), 740-745.
[http://dx.doi.org/10.1038/35047123] [PMID: 11130078]
[26]
Tarkowski, A.; Bjersing, J.; Shestakov, A.; Bokarewa, M.I. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med., 2010, 14(6B), 1419-1431.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00899.x] [PMID: 19754671]
[27]
Zhang, Z.; La Placa, D.; Nguyen, T.; Kujawski, M.; Le, K.; Li, L.; Shively, J.E. CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunol., 2019, 20(1), 7.
[http://dx.doi.org/10.1186/s12865-019-0287-y] [PMID: 30674283]
[28]
Lu, H. TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front. Immunol., 2014, 5, 83.
[http://dx.doi.org/10.3389/fimmu.2014.00083] [PMID: 24624132]
[29]
Wang, J.Q.; Jeelall, Y.S.; Ferguson, L.L.; Horikawa, K. Toll-like receptors and cancer: MYD88 mutation and inflammation. Front. Immunol., 2014, 5, 367.
[http://dx.doi.org/10.3389/fimmu.2014.00367] [PMID: 25132836]
[30]
Yang, H.; Zhou, H.; Feng, P.; Zhou, X.; Wen, H.; Xie, X.; Shen, H.; Zhu, X. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J. Exp. Clin. Cancer Res., 2010, 29(1), 92.
[http://dx.doi.org/10.1186/1756-9966-29-92] [PMID: 20618976]
[31]
Merrell, M.A.; Ilvesaro, J.M.; Lehtonen, N.; Sorsa, T.; Gehrs, B.; Rosenthal, E.; Chen, D.; Shackley, B.; Harris, K.W.; Selander, K.S. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res., 2006, 4(7), 437-447.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0007] [PMID: 16849519]
[32]
Yu, S.; Kim, T.; Yoo, K.H.; Kang, K. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochem. Biophys. Res. Commun., 2017, 486(3), 752-758.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.114] [PMID: 28342866]
[33]
Wagner, H. The immunobiology of the TLR9 subfamily. Trends Immunol., 2004, 25(7), 381-386.
[http://dx.doi.org/10.1016/j.it.2004.04.011] [PMID: 15207506]
[34]
Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular subtypes and local-regional control of breast cancer. Surgical Oncology Clinics, 2018, 27(1), 95-120.
[http://dx.doi.org/10.1016/j.soc.2017.08.005] [PMID: 29132568]
[35]
Lu, Y-C.; Yeh, W-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[36]
Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol., 2014, 5, 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[37]
Jin, F.; Wu, Z.; Hu, X.; Zhang, J.; Gao, Z.; Han, X.; Qin, J.; Li, C.; Wang, Y. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol. Med., 2019, 16(1), 38-54.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0253] [PMID: 31119045]
[38]
Ke, M.; Wang, H.; Zhou, Y.; Li, J.; Liu, Y.; Zhang, M.; Dou, J.; Xi, T.; Shen, B.; Zhou, C. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget, 2016, 7(31), 49509-49526.
[http://dx.doi.org/10.18632/oncotarget.10375] [PMID: 27385218]
[39]
Ren, Y.; Zhou, X.; Qi, Y.; Li, G.; Mei, M.; Yao, Z. PTEN activation sensitizes breast cancer to PI3-kinase inhibitor through the β-catenin signaling pathway. Oncol. Rep., 2012, 28(3), 943-948.
[http://dx.doi.org/10.3892/or.2012.1856] [PMID: 22710837]
[40]
Lee, J.J.; Loh, K.; Yap, Y-S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med., 2015, 12(4), 342-354.
[PMID: 26779371]
[41]
Baselga, J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist, 2011, 16(Suppl. 1), 12-19.
[http://dx.doi.org/10.1634/theoncologist.2011-S1-12] [PMID: 21278436]
[42]
Meric-Bernstam, F.; Gonzalez-Angulo, A.M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol., 2009, 27(13), 2278-2287.
[http://dx.doi.org/10.1200/JCO.2008.20.0766] [PMID: 19332717]
[43]
De Benedetti, A.; Graff, J.R. eIF-4E expression and its role in malignancies and metastases. Oncogene, 2004, 23(18), 3189-3199.
[http://dx.doi.org/10.1038/sj.onc.1207545] [PMID: 15094768]
[44]
Soni, A.; Akcakanat, A.; Singh, G.; Luyimbazi, D.; Zheng, Y.; Kim, D.; Gonzalez-Angulo, A.; Meric-Bernstam, F. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol. Cancer Ther., 2008, 7(7), 1782-1788.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2357] [PMID: 18644990]
[45]
Culjkovic, B.; Topisirovic, I.; Skrabanek, L.; Ruiz-Gutierrez, M.; Borden, K.L. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3'UTR. J. Cell Biol., 2005, 169(2), 245-256.
[http://dx.doi.org/10.1083/jcb.200501019] [PMID: 15837800]
[46]
Jastrzebski, K.; Hannan, K.M.; Tchoubrieva, E.B.; Hannan, R.D.; Pearson, R.B. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors, 2007, 25(4), 209-226.
[http://dx.doi.org/10.1080/08977190701779101] [PMID: 18092230]
[47]
Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005, 24(50), 7455-7464.
[http://dx.doi.org/10.1038/sj.onc.1209085] [PMID: 16288292]
[48]
McKenna, M.; McGarrigle, S.; Pidgeon, G.P. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 185-197.
[http://dx.doi.org/10.1016/j.bbcan.2018.08.001] [PMID: 30318472]
[49]
Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073.
[http://dx.doi.org/10.2147/OTT.S161109] [PMID: 29695914]
[50]
Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med., 2007, 13(11), 460-469.
[http://dx.doi.org/10.1016/j.molmed.2007.09.002] [PMID: 18029230]
[51]
Gilmore, T.D. In. signal transduction in cancer; Springer, 2004, pp. 241-265.
[http://dx.doi.org/10.1007/0-306-48158-8_10]
[52]
Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature, 2009, 458(7239), 719-724.
[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079]
[53]
Sau, A.; Lau, R.; Cabrita, M.A.; Nolan, E.; Crooks, P.A.; Visvader, J.E.; Pratt, M.A. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell, 2016, 19(1), 52-65.
[http://dx.doi.org/10.1016/j.stem.2016.05.003] [PMID: 27292187]
[54]
Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem., 2015, 22(2), 264-289.
[http://dx.doi.org/10.2174/0929867321666141106124315] [PMID: 25386819]
[55]
Brantley, D.M.; Yull, F.E.; Muraoka, R.S.; Hicks, D.J.; Cook, C.M.; Kerr, L.D. Dynamic expression and activity of NF-kappaB during post-natal mammary gland morphogenesis. Mech. Dev., 2000, 97(1-2), 149-155.
[http://dx.doi.org/10.1016/S0925-4773(00)00405-6] [PMID: 11025216]
[56]
Brantley, D.M.; Chen, C-L.; Muraoka, R.S.; Bushdid, P.B.; Bradberry, J.L.; Kittrell, F.; Medina, D.; Matrisian, L.M.; Kerr, L.D.; Yull, F.E. Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol. Biol. Cell, 2001, 12(5), 1445-1455.
[http://dx.doi.org/10.1091/mbc.12.5.1445] [PMID: 11359934]
[57]
Cogswell, P.C.; Guttridge, D.C.; Funkhouser, W.K.; Baldwin, A.S.Jr. Selective activation of NF-κ B subunits in human breast cancer: potential roles for NF-κ B2/p52 and for Bcl-3. Oncogene, 2000, 19(9), 1123-1131.
[http://dx.doi.org/10.1038/sj.onc.1203412] [PMID: 10713699]
[58]
Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W.Jr. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639.
[http://dx.doi.org/10.1128/MCB.17.7.3629] [PMID: 9199297]
[59]
Sovak, M.A.; Bellas, R.E.; Kim, D.W.; Zanieski, G.J.; Rogers, A.E.; Traish, A.M.; Sonenshein, G.E. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest., 1997, 100(12), 2952-2960.
[http://dx.doi.org/10.1172/JCI119848] [PMID: 9399940]
[60]
Van Laere, S.J.; Van der Auwera, I.; Van den Eynden, G.G.; van Dam, P.; Van Marck, E.A.; Vermeulen, P.B.; Dirix, L.Y. NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br. J. Cancer, 2007, 97(5), 659-669.
[http://dx.doi.org/10.1038/sj.bjc.6603906] [PMID: 17700572]
[61]
Peddi, P.F.; Ellis, M.J.; Ma, C. Molecular basis of triple negative breast cancer and implications for therapy. Int. J. Breast Cancer, 2012, 2012
[http://dx.doi.org/10.1155/2012/217185]
[62]
Gordon, A.H.; O’Keefe, R.J.; Schwarz, E.M.; Rosier, R.N.; Puzas, J.E. Nuclear factor-kappaB-dependent mechanisms in breast cancer cells regulate tumor burden and osteolysis in bone. Cancer Res., 2005, 65(8), 3209-3217.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4017] [PMID: 15833852]
[63]
Liu, S.; Cong, Y.; Wang, D.; Sun, Y.; Deng, L.; Liu, Y.; Martin-Trevino, R.; Shang, L.; McDermott, S.P.; Landis, M.D.; Hong, S.; Adams, A.; D’Angelo, R.; Ginestier, C.; Charafe-Jauffret, E.; Clouthier, S.G.; Birnbaum, D.; Wong, S.T.; Zhan, M.; Chang, J.C.; Wicha, M.S. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2013, 2(1), 78-91.
[http://dx.doi.org/10.1016/j.stemcr.2013.11.009] [PMID: 24511467]
[64]
Wyatt, G.L.; Crump, L.S.; Young, C.M.; Wessells, V.M.; McQueen, C.M.; Wall, S.W.; Gustafson, T.L.; Fan, Y-Y.; Chapkin, R.S.; Porter, W.W. Cross-talk between SIM2s and NFκB regulates cyclooxygenase 2 expression in breast cancer. Breast Cancer Res., 2019, 21(1), 1-12.
[http://dx.doi.org/10.1186/s13058-019-1224-y] [PMID: 30611295]
[65]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[66]
Owen, K.L.; Brockwell, N.K.; Parker, B.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers (Basel), 2019, 11(12), 2002.
[http://dx.doi.org/10.3390/cancers11122002] [PMID: 31842362]
[67]
Segatto, I.; Baldassarre, G.; Belletti, B. STAT3 in breast cancer onset and progression: a matter of time and context. Int. J. Mol. Sci., 2018, 19(9), 2818.
[http://dx.doi.org/10.3390/ijms19092818] [PMID: 30231553]
[68]
Wang, C.H.; Wang, P.J.; Hsieh, Y.C.; Lo, S.; Lee, Y.C.; Chen, Y.C.; Tsai, C.H.; Chiu, W.C.; Chu-Sung Hu, S.; Lu, C.W.; Yang, Y.F.; Chiu, C.C.; Ou-Yang, F.; Wang, Y.M.; Hou, M.F.; Yuan, S.S. Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene, 2018, 37(5), 589-600.
[http://dx.doi.org/10.1038/onc.2017.357] [PMID: 28991224]
[69]
Jin, S.; Mutvei, A.P.; Chivukula, I.V.; Andersson, E.R.; Ramsköld, D.; Sandberg, R.; Lee, K.L.; Kronqvist, P.; Mamaeva, V.; Ostling, P.; Mpindi, J.P.; Kallioniemi, O.; Screpanti, I.; Poellinger, L.; Sahlgren, C.; Lendahl, U. Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene, 2013, 32(41), 4892-4902.
[http://dx.doi.org/10.1038/onc.2012.517] [PMID: 23178494]
[70]
Marotta, L.L.; Almendro, V.; Marusyk, A.; Shipitsin, M.; Schemme, J.; Walker, S.R.; Bloushtain-Qimron, N.; Kim, J.J.; Choudhury, S.A.; Maruyama, R.; Wu, Z.; Gönen, M.; Mulvey, L.A.; Bessarabova, M.O.; Huh, S.J.; Silver, S.J.; Kim, S.Y.; Park, S.Y.; Lee, H.E.; Anderson, K.S.; Richardson, A.L.; Nikolskaya, T.; Nikolsky, Y.; Liu, X.S.; Root, D.E.; Hahn, W.C.; Frank, D.A.; Polyak, K. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors. J. Clin. Invest., 2011, 121(7), 2723-2735.
[http://dx.doi.org/10.1172/JCI44745] [PMID: 21633165]
[71]
Laudisi, F.; Cherubini, F.; Monteleone, G.; Stolfi, C. STAT3 interactors as potential therapeutic targets for cancer treatment. Int. J. Mol. Sci., 2018, 19(6), 1787.
[http://dx.doi.org/10.3390/ijms19061787] [PMID: 29914167]
[72]
Sfanos, K.S. AACR, 2018.
[73]
Shear, M.; Turner, F.C.; Perrault, A.; Shovelton, T. Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J. Natl. Cancer Inst., 1943, 4(1), 81-97.
[74]
Beutler, B.; Greenwald, D.; Hulmes, J.D.; Chang, M.; Pan, Y-C.; Mathison, J.; Ulevitch, R.; Cerami, A. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature, 1985, 316(6028), 552-554.
[http://dx.doi.org/10.1038/316552a0] [PMID: 2993897]
[75]
Kaczanowska, S.; Joseph, A.M.; Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol., 2013, 93(6), 847-863.
[http://dx.doi.org/10.1189/jlb.1012501] [PMID: 23475577]
[76]
Apetoh, L.; Tesniere, A.; Ghiringhelli, F.; Kroemer, G.; Zitvogel, L. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res., 2008, 68(11), 4026-4030.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0427] [PMID: 18519658]
[77]
Theodoropoulos, G.E.; Saridakis, V.; Karantanos, T.; Michalopoulos, N.V.; Zagouri, F.; Kontogianni, P.; Lymperi, M.; Gazouli, M.; Zografos, G.C. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast, 2012, 21(4), 534-538.
[http://dx.doi.org/10.1016/j.breast.2012.04.001] [PMID: 22560646]
[78]
Coley, W.B. The treatment of malignant tumors by repeated inoculations of erysipelas: With a report of ten original cases. 1. Am. J. Med. Sci. (1827-1924), 1893, 105(6), 487.
[79]
Wiemann, B.; Starnes, C.O. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther., 1994, 64(3), 529-564.
[http://dx.doi.org/10.1016/0163-7258(94)90023-X] [PMID: 7724661]
[80]
Adams, S. Toll-like receptor agonists in cancer therapy. Immunotherapy, 2009, 1(6), 949-964.
[http://dx.doi.org/10.2217/imt.09.70] [PMID: 20563267]
[81]
Tsuji, S.; Matsumoto, M.; Takeuchi, O.; Akira, S.; Azuma, I.; Hayashi, A.; Toyoshima, K.; Seya, T. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of toll-like receptors. Infect. Immun., 2000, 68(12), 6883-6890.
[http://dx.doi.org/10.1128/IAI.68.12.6883-6890.2000] [PMID: 11083809]
[82]
De Jong, W.H.; De Boer, E.C.; Van der Meijden, A.P.; Vegt, P.; Steerenberg, P.A.; Debruyne, F.M.; Ruitenberg, E.J. Presence of interleukin-2 in urine of superficial bladder cancer patients after intravesical treatment with bacillus Calmette-Guérin. Cancer Immunol. Immunother., 1990, 31(3), 182-186.
[http://dx.doi.org/10.1007/BF01744734] [PMID: 2337907]
[83]
Smith, M.; García-Martínez, E.; Pitter, M.R.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Toll-like receptor agonists in cancer immunotherapy. OncoImmunology, 2018, 7(12), e1526250.
[http://dx.doi.org/10.1080/2162402X.2018.1526250] [PMID: 30524908]
[84]
Hug, B.A.; Matheny, C.J.; Burns, O.; Struemper, H.; Wang, X.; Washburn, M.L. Safety, Pharmacokinetics, and pharmacodynamics of the TLR4 agonist GSK1795091 in healthy individuals: results from a randomized, double-blind, placebo-controlled, ascending dose study. Clin. Ther., 2020, 42(8), 1519-1534.e33.
[http://dx.doi.org/10.1016/j.clinthera.2020.05.022] [PMID: 32739049]
[85]
Gao, H-X.; Bhattacharya, S.; Matheny, C.J.; Yanamandra, N.; Zhang, S-Y.; Emerich, H.; Li, Y.; Bojczuk, P.; Shi, H.; Wang, W. American society of clinical oncology, 2018.
[86]
Vermorken, J.B.; Claessen, A.M.; van Tinteren, H.; Gall, H.E.; Ezinga, R.; Meijer, S.; Scheper, R.J.; Meijer, C.J.; Bloemena, E.; Ransom, J.H.; Hanna, M.G., Jr; Pinedo, H.M. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet, 1999, 353(9150), 345-350.
[http://dx.doi.org/10.1016/S0140-6736(98)07186-4] [PMID: 9950438]
[87]
Sharma, P.; Bajorin, D.F.; Jungbluth, A.A.; Herr, H.; Old, L.J.; Gnjatic, S. Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF. J. Immunother., 2008, 31(9), 849-857.
[http://dx.doi.org/10.1097/CJI.0b013e3181891574] [PMID: 18833002]
[88]
Eton, O.; Kharkevitch, D.D.; Gianan, M.A.; Ross, M.I.; Itoh, K.; Pride, M.W.; Donawho, C.; Buzaid, A.C.; Mansfield, P.F.; Lee, J.E.; Legha, S.S.; Plager, C.; Papadopoulos, N.E.; Bedikian, A.Y.; Benjamin, R.S.; Balch, C.M. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma. Clin. Cancer Res., 1998, 4(3), 619-627.
[PMID: 9533529]
[89]
MacLean, G.D.; Reddish, M.; Koganty, R.R.; Wong, T.; Gandhi, S.; Smolenski, M.; Samuel, J.; Nabholtz, J.M.; Longenecker, B.M. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol. Immunother., 1993, 36(4), 215-222.
[http://dx.doi.org/10.1007/BF01740902] [PMID: 8439984]
[90]
Braunstein, M.J.; Kucharczyk, J.; Adams, S. Targeting toll-like receptors for cancer therapy. Target. Oncol., 2018, 13(5), 583-598.
[http://dx.doi.org/10.1007/s11523-018-0589-7] [PMID: 30229471]
[91]
Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Vincent, J-L.; Angus, D.C.; Aikawa, N.; Demeyer, I.; Sainati, S.; Amlot, N.; Cao, C.; Ii, M.; Matsuda, H.; Mouri, K.; Cohen, J. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med., 2010, 38(8), 1685-1694.
[http://dx.doi.org/10.1097/CCM.0b013e3181e7c5c9] [PMID: 20562702]
[92]
Ren, B.; Luo, S.; Tian, X.; Jiang, Z.; Zou, G.; Xu, F.; Yin, T.; Huang, Y.; Liu, J. Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling. Oncol. Rep., 2018, 40(2), 895-901.
[http://dx.doi.org/10.3892/or.2018.6485] [PMID: 29901164]
[93]
Park, S-J.; Lee, M-Y.; Son, B-S.; Youn, H-S. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci. Biotechnol. Biochem., 2009, 73(7), 1474-1478.
[http://dx.doi.org/10.1271/bbb.80738] [PMID: 19584560]
[94]
Panaro, M.A.; Carofiglio, V.; Acquafredda, A.; Cavallo, P.; Cianciulli, A. Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-κB activation in Caco-2 and SW480 human colon cancer cells. Br. J. Nutr., 2012, 108(9), 1623-1632.
[http://dx.doi.org/10.1017/S0007114511007227] [PMID: 22251620]
[95]
Afrose, S.S.; Junaid, M.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.A. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov. Today, 2020, 25(12), 2294-2306.
[http://dx.doi.org/10.1016/j.drudis.2020.07.019] [PMID: 32721537]
[96]
Akter, Z.; Ahmed, F.R.; Tania, M.; Khan, A. Targeting inflammatory mediators: An anticancer mechanism of thymoquinone action. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867326666191011143642] [PMID: 31604405]
[97]
Junaid, M.; Akter, Y.; Afrose, S.S.; Tania, M.; Khan, M.A. Biological role of AKT, and regulation of AKT signaling pathway by thymoquinone: perspectives in cancer therapeutics. Mini Rev. Med. Chem., 2020.
[http://dx.doi.org/10.2174/1389557520666201005143818] [PMID: 33019927]
[98]
Rajput, S.; Kumar, B.N.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci., 2013, 93(21), 783-790.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[99]
Gay, N.J.; Symmons, M.F.; Gangloff, M.; Bryant, C.E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol., 2014, 14(8), 546-558.
[http://dx.doi.org/10.1038/nri3713] [PMID: 25060580]
[100]
Xie, W.; Wang, Y.; Huang, Y.; Yang, H.; Wang, J.; Hu, Z. Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun., 2009, 379(4), 1027-1032.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.009] [PMID: 19141294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy