Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions

Author(s): Mohammad Malekan and Mohammad Ali Ebrahimzadeh*

Volume 22, Issue 11, 2022

Published on: 05 April, 2022

Page: [891 - 920] Pages: 30

DOI: 10.2174/1568026622666220308161710

Abstract

Breast cancer [BC] is one of the most common cancers among women, one of the leading causes of a considerable number of cancer-related death globally. Among all procedures leading to the formation of breast tumors, angiogenesis has an important role in cancer progression and outcomes. Therefore, various anti-angiogenic strategies have been developed so far to enhance treatment's efficacy in different types of BC. Vascular endothelial growth factors [VEGFs] and their receptors are regarded as the most well-known regulators of neovascularization. VEGF binding to vascular endothelial growth factor receptors [VEGFRs] provides cell proliferation and vascular tissue formation by the subsequent tyrosine kinase pathway. VEGF/VEGFR axis displays an attractive target for anti-angiogenesis and anti-cancer drug design. This review aims to describe the existing literature regarding VEGFR inhibitors, focusing on BC treatment reported in the last two decades.

Keywords: Breast cancer, Angiogenesis, VEGFR inhibitors, Targeted therapy, Clinical trials, Preclinical studies

Next »
Graphical Abstract

[1]
Borri, F.; Granaglia, A. Pathology of triple negative breast cancer. Semin. Cancer Biol., 2021, 72, 136-145.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.005] [PMID: 32544511]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health, 2020, 8(8), e1027-e1037.
[http://dx.doi.org/10.1016/S2214-109X(20)30215-1] [PMID: 32710860]
[4]
Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med. Press), 2019, 11, 151-164.
[http://dx.doi.org/10.2147/BCTT.S176070] [PMID: 31040712]
[5]
Aronson, K.J.; Miller, A.B.; Woolcott, C.G.; Sterns, E.E.; McCready, D.R.; Lickley, L.A.; Fish, E.B.; Hiraki, G.Y.; Holloway, C.; Ross, T.; Hanna, W.M.; SenGupta, S.K.; Weber, J.P. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiol. Biomarkers Prev., 2000, 9(1), 55-63.
[PMID: 10667464]
[6]
Jagannathan, N.R.; Sharma, U. Breast tissue metabolism by magnetic resonance spectroscopy. Metabolites, 2017, 7(2), 25.
[http://dx.doi.org/10.3390/metabo7020025] [PMID: 28590405]
[7]
Stark, G.B.; Grandel, S.; Spilker, G. Tissue suction of the male and female breast. Aesthetic Plast. Surg., 1992, 16(4), 317-324.
[http://dx.doi.org/10.1007/BF01570694] [PMID: 1414656]
[8]
Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther., 2010, 10(10), 955-960.
[http://dx.doi.org/10.4161/cbt.10.10.13879] [PMID: 21057215]
[9]
Eroles, P.; Bosch, A.; Pérez-Fidalgo, J.A.; Lluch, A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat. Rev., 2012, 38(6), 698-707.
[http://dx.doi.org/10.1016/j.ctrv.2011.11.005] [PMID: 22178455]
[10]
Folkman, J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action. Exp. Cell Res., 2006, 312(5), 594-607.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.015] [PMID: 16376330]
[11]
Castañeda-Gill, J.M.; Vishwanatha, J.K. Antiangiogenic mechanisms and factors in breast cancer treatment. J. Carcinog., 2016, 15(1), 1.
[http://dx.doi.org/10.4103/1477-3163.176223] [PMID: 27013929]
[12]
Matsumoto, T.; Mugishima, H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J. Atheroscler. Thromb., 2006, 13(3), 130-135.
[http://dx.doi.org/10.5551/jat.13.130] [PMID: 16835467]
[13]
Ceci, C.; Atzori, M.G.; Lacal, P.M.; Graziani, G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models. Int. J. Mol. Sci., 2020, 21(4), 1388.
[http://dx.doi.org/10.3390/ijms21041388] [PMID: 32085654]
[14]
Zhang, Y.; Chen, Y.; Zhang, D.; Wang, L.; Lu, T.; Jiao, Y. Discovery of novel potent VEGFR-2 inhibitors exerting significant antiproliferative activity against cancer cell lines. J. Med. Chem., 2018, 61(1), 140-157.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01091] [PMID: 29189002]
[15]
Dar, A.A.; Goff, L.W.; Majid, S.; Berlin, J.; El-Rifai, W. Aurora kinase inhibitors--rising stars in cancer therapeutics? Mol. Cancer Ther., 2010, 9(2), 268-278.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0765] [PMID: 20124450]
[16]
Zhong, H.; Bowen, J.P. Molecular design and clinical development of VEGFR kinase inhibitors. Curr. Top. Med. Chem., 2007, 7(14), 1379-1393.
[http://dx.doi.org/10.2174/156802607781696855] [PMID: 17692027]
[17]
Zhang, J.; Shan, Y.; Pan, X.; He, L. Recent advances in antiangiogenic agents with VEGFR as target. Mini Rev. Med. Chem., 2011, 11(11), 920-946.
[http://dx.doi.org/10.2174/138955711797068355] [PMID: 21762098]
[18]
Grimm, D.; Wehland, M.; Pietsch, J.; Infanger, M.; Bauer, J. Drugs interfering with apoptosis in breast cancer. Curr. Pharm. Des., 2011, 17(3), 272-283.
[http://dx.doi.org/10.2174/138161211795049723] [PMID: 21348828]
[19]
Grimm, D.; Bauer, J.; Schoenberger, J. Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr. Vasc. Pharmacol., 2009, 7(3), 347-357.
[http://dx.doi.org/10.2174/157016109788340640] [PMID: 19601859]
[20]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[http://dx.doi.org/10.1038/nrc2442] [PMID: 18650835]
[21]
Ferrara, N.; Houck, K.; Jakeman, L.; Leung, D.W. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev., 1992, 13(1), 18-32.
[http://dx.doi.org/10.1210/edrv-13-1-18] [PMID: 1372863]
[22]
Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer, 2008, 8(8), 579-591.
[http://dx.doi.org/10.1038/nrc2403] [PMID: 18596824]
[23]
Olsson, A-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[24]
Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364.
[http://dx.doi.org/10.1016/S0092-8674(00)80108-7] [PMID: 8756718]
[25]
Zhang, W.; Zhu, C.; Wu, Y.; Ye, D.; Wang, S.; Zou, D.; Zhang, X.; Kaplan, D.L.; Jiang, X. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur. Cell. Mater., 2014, 27(12), 1-11.
[http://dx.doi.org/10.22203/eCM.v027a01] [PMID: 24425156]
[26]
Rafii, S.; Lyden, D.; Benezra, R.; Hattori, K.; Heissig, B. Vascular and haematopoietic stem cells: Novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer, 2002, 2(11), 826-835.
[http://dx.doi.org/10.1038/nrc925] [PMID: 12415253]
[27]
Bruce, D.; Tan, P.H. Vascular endothelial growth factor receptors and the therapeutic targeting of angiogenesis in cancer: Where do we go from here? Cell Commun. Adhes., 2011, 18(5), 85-103.
[http://dx.doi.org/10.3109/15419061.2011.619673] [PMID: 22017472]
[28]
Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 1999, 13(1), 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[29]
Editor molecular biology of the VEGF and the VEGF receptor family.Clauss, M., Ed.; Semin Thromb Hemost; Copyright© 2000 by Thieme Medical Publishers, Inc.: 333 Seventh Avenue, New, 2000.
[30]
Mac Gabhann, F.; Popel, A.S. Dimerization of VEGF receptors and implications for signal transduction: A computational study. Biophys. Chem., 2007, 128(2-3), 125-139.
[http://dx.doi.org/10.1016/j.bpc.2007.03.010] [PMID: 17442480]
[31]
Bruce, D.; Tan, P.H. Blocking the interaction of vascular endothelial growth factor receptors with their ligands and their effector signaling as a novel therapeutic target for cancer: Time for a new look? Expert Opin. Investig. Drugs, 2011, 20(10), 1413-1434.
[http://dx.doi.org/10.1517/13543784.2011.611801] [PMID: 21864224]
[32]
Joukov, V.; Pajusola, K.; Kaipainen, A.; Chilov, D.; Lahtinen, I.; Kukk, E.; Saksela, O.; Kalkkinen, N.; Alitalo, K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J., 1996, 15(2), 290-298.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00359.x] [PMID: 8617204]
[33]
Achen, M.G.; Jeltsch, M.; Kukk, E.; Mäkinen, T.; Vitali, A.; Wilks, A.F.; Alitalo, K.; Stacker, S.A. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA, 1998, 95(2), 548-553.
[http://dx.doi.org/10.1073/pnas.95.2.548] [PMID: 9435229]
[34]
Shibuya, M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): A dual regulator for angiogenesis. Angiogenesis, 2006, 9(4), 225-230.
[http://dx.doi.org/10.1007/s10456-006-9055-8] [PMID: 17109193]
[35]
Markovic-Mueller, S.; Stuttfeld, E.; Asthana, M.; Weinert, T.; Bliven, S.; Goldie, K.N.; Kisko, K.; Capitani, G.; Ballmer-Hofer, K. Structure of the Full-length VEGFR-1 extracellular domain in complex with VEGF-A. Structure, 2017, 25(2), 341-352.
[http://dx.doi.org/10.1016/j.str.2016.12.012] [PMID: 28111021]
[36]
Fischer, C.; Mazzone, M.; Jonckx, B.; Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: Drug targets for anti-angiogenic therapy? Nat. Rev. Cancer, 2008, 8(12), 942-956.
[http://dx.doi.org/10.1038/nrc2524] [PMID: 19029957]
[37]
Waltenberger, J.; Claesson-Welsh, L.; Siegbahn, A.; Shibuya, M.; Heldin, C-H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem., 1994, 269(43), 26988-26995.
[http://dx.doi.org/10.1016/S0021-9258(18)47116-5] [PMID: 7929439]
[38]
Gille, H.; Kowalski, J.; Yu, L.; Chen, H.; Pisabarro, M.T.; Davis-Smyth, T.; Ferrara, N. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. EMBO J., 2000, 19(15), 4064-4073.
[http://dx.doi.org/10.1093/emboj/19.15.4064] [PMID: 10921887]
[39]
Huang, K.; Andersson, C.; Roomans, G.M.; Ito, N.; Claesson-Welsh, L. Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int. J. Biochem. Cell Biol., 2001, 33(4), 315-324.
[http://dx.doi.org/10.1016/S1357-2725(01)00019-X] [PMID: 11312102]
[40]
Autiero, M.; Waltenberger, J.; Communi, D.; Kranz, A.; Moons, L.; Lambrechts, D.; Kroll, J.; Plaisance, S.; De Mol, M.; Bono, F.; Kliche, S.; Fellbrich, G.; Ballmer-Hofer, K.; Maglione, D.; Mayr-Beyrle, U.; Dewerchin, M.; Dombrowski, S.; Stanimirovic, D.; Van Hummelen, P.; Dehio, C.; Hicklin, D.J.; Persico, G.; Herbert, J.M.; Communi, D.; Shibuya, M.; Collen, D.; Conway, E.M.; Carmeliet, P. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat. Med., 2003, 9(7), 936-943.
[http://dx.doi.org/10.1038/nm884] [PMID: 12796773]
[41]
Jackson, M.W.; Roberts, J.S.; Heckford, S.E.; Ricciardelli, C.; Stahl, J.; Choong, C.; Horsfall, D.J.; Tilley, W.D. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res., 2002, 62(3), 854-859.
[PMID: 11830543]
[42]
Frank, N.Y.; Schatton, T.; Kim, S.; Zhan, Q.; Wilson, B.J.; Ma, J.; Saab, K.R.; Osherov, V.; Widlund, H.R.; Gasser, M.; Waaga-Gasser, A.M.; Kupper, T.S.; Murphy, G.F.; Frank, M.H. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res., 2011, 71(4), 1474-1485.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1660] [PMID: 21212411]
[43]
Yang, A.D.; Camp, E.R.; Fan, F.; Shen, L.; Gray, M.J.; Liu, W.; Somcio, R.; Bauer, T.W.; Wu, Y.; Hicklin, D.J.; Ellis, L.M. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res., 2006, 66(1), 46-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3086] [PMID: 16397214]
[44]
Fan, F.; Wey, J.S.; McCarty, M.F.; Belcheva, A.; Liu, W.; Bauer, T.W.; Somcio, R.J.; Wu, Y.; Hooper, A.; Hicklin, D.J.; Ellis, L.M. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene, 2005, 24(16), 2647-2653.
[http://dx.doi.org/10.1038/sj.onc.1208246] [PMID: 15735759]
[45]
D’Haene, N.; Koopmansch, C.; Van Eycke, Y-R.; Hulet, F.; Allard, J.; Bouri, S.; Rorive, S.; Remmelink, M.; Decaestecker, C.; Maris, C.; Salmon, I. The prognostic value of the combination of low VEGFR-1 and High VEGFR-2 expression in endothelial cells of colorectal cancer. Int. J. Mol. Sci., 2018, 19(11), 3536.
[http://dx.doi.org/10.3390/ijms19113536] [PMID: 30423986]
[46]
Vincent, L.; Jin, D.K.; Karajannis, M.A.; Shido, K.; Hooper, A.T.; Rashbaum, W.K.; Pytowski, B.; Wu, Y.; Hicklin, D.J.; Zhu, Z.; Bohlen, P.; Niesvizky, R.; Rafii, S. Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-a/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells. Cancer Res., 2005, 65(8), 3185-3192.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3598] [PMID: 15833849]
[47]
Ghosh, S.; Sullivan, C.A.; Zerkowski, M.P.; Molinaro, A.M.; Rimm, D.L.; Camp, R.L.; Chung, G.G. High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum. Pathol., 2008, 39(12), 1835-1843.
[http://dx.doi.org/10.1016/j.humpath.2008.06.004] [PMID: 18715621]
[48]
Wu, Y.; Hooper, A.T.; Zhong, Z.; Witte, L.; Bohlen, P.; Rafii, S.; Hicklin, D.J. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int. J. Cancer, 2006, 119(7), 1519-1529.
[http://dx.doi.org/10.1002/ijc.21865] [PMID: 16671089]
[49]
Lampugnani, M.G.; Orsenigo, F.; Gagliani, M.C.; Tacchetti, C.; Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol., 2006, 174(4), 593-604.
[http://dx.doi.org/10.1083/jcb.200602080] [PMID: 16893970]
[50]
Takahashi, T.; Yamaguchi, S.; Chida, K.; Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J., 2001, 20(11), 2768-2778.
[http://dx.doi.org/10.1093/emboj/20.11.2768] [PMID: 11387210]
[51]
Holmqvist, K.; Cross, M.J.; Rolny, C.; Hägerkvist, R.; Rahimi, N.; Matsumoto, T.; Claesson-Welsh, L.; Welsh, M. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem., 2004, 279(21), 22267-22275.
[http://dx.doi.org/10.1074/jbc.M312729200] [PMID: 15026417]
[52]
Yan, J-D.; Liu, Y.; Zhang, Z-Y.; Liu, G-Y.; Xu, J-H.; Liu, L-Y.; Hu, Y.M. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol. Res. Pract., 2015, 211(7), 539-543.
[http://dx.doi.org/10.1016/j.prp.2015.04.003] [PMID: 25976977]
[53]
Doi, Y.; Yashiro, M.; Yamada, N.; Amano, R.; Noda, S.; Hirakawa, K. VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells. Ann. Surg. Oncol., 2012, 19(8), 2733-2743.
[http://dx.doi.org/10.1245/s10434-011-2181-6] [PMID: 22207048]
[54]
Gille, J.; Heidenreich, R.; Pinter, A.; Schmitz, J.; Boehme, B.; Hicklin, D.J.; Henschler, R.; Breier, G. Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int. J. Cancer, 2007, 120(9), 1899-1908.
[http://dx.doi.org/10.1002/ijc.22531] [PMID: 17230507]
[55]
Dias, S.; Hattori, K.; Zhu, Z.; Heissig, B.; Choy, M.; Lane, W.; Wu, Y.; Chadburn, A.; Hyjek, E.; Gill, M.; Hicklin, D.J.; Witte, L.; Moore, M.A.; Rafii, S. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest., 2000, 106(4), 511-521.
[http://dx.doi.org/10.1172/JCI8978] [PMID: 10953026]
[56]
Park, M.S.; Dong, S.M.; Kim, B-R.; Seo, S.H.; Kang, S.; Lee, E-J.; Lee, S.H.; Rho, S.B. Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget, 2014, 5(13), 4929-4934.
[http://dx.doi.org/10.18632/oncotarget.2063] [PMID: 24952635]
[57]
Tokuyama, W.; Mikami, T.; Masuzawa, M.; Okayasu, I. Autocrine and paracrine roles of VEGF/VEGFR-2 and VEGF-C/VEGFR-3 signaling in angiosarcomas of the scalp and face. Hum. Pathol., 2010, 41(3), 407-414.
[http://dx.doi.org/10.1016/j.humpath.2009.08.021] [PMID: 19913279]
[58]
Dixelius, J.; Makinen, T.; Wirzenius, M.; Karkkainen, M.J.; Wernstedt, C.; Alitalo, K.; Claesson-Welsh, L. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem., 2003, 278(42), 40973-40979.
[http://dx.doi.org/10.1074/jbc.M304499200] [PMID: 12881528]
[59]
Mäkinen, T.; Veikkola, T.; Mustjoki, S.; Karpanen, T.; Catimel, B.; Nice, E.C.; Wise, L.; Mercer, A.; Kowalski, H.; Kerjaschki, D.; Stacker, S.A.; Achen, M.G.; Alitalo, K. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J., 2001, 20(17), 4762-4773.
[http://dx.doi.org/10.1093/emboj/20.17.4762] [PMID: 11532940]
[60]
Donnem, T.; Al-Saad, S.; Al-Shibli, K.; Busund, L-T.; Bremnes, R.M. Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann. Oncol., 2010, 21(2), 223-231.
[http://dx.doi.org/10.1093/annonc/mdp296] [PMID: 19628565]
[61]
Valtola, R.; Salven, P.; Heikkilä, P.; Taipale, J.; Joensuu, H.; Rehn, M.; Pihlajaniemi, T.; Weich, H.; deWaal, R.; Alitalo, K. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol., 1999, 154(5), 1381-1390.
[http://dx.doi.org/10.1016/S0002-9440(10)65392-8] [PMID: 10329591]
[62]
Van Trappen, P.O.; Steele, D.; Lowe, D.G.; Baithun, S.; Beasley, N.; Thiele, W. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J. Pathol., 2003, 201(4), 544-554.
[63]
Jennbacken, K.; Vallbo, C.; Wang, W.; Damber, J.E. Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate, 2005, 65(2), 110-116.
[http://dx.doi.org/10.1002/pros.20276] [PMID: 15880525]
[64]
Zhu, G.; Huang, Q.; Zheng, W.; Huang, Y.; Hua, J.; Yang, S.; Zhuang, J.; Wang, J.; Chang, J.; Xu, J.; Ye, J. LPS upregulated VEGFR-3 expression promote migration and invasion in colorectal cancer via a mechanism of increased NF-κB binding to the promoter of VEGFR-3. Cell. Physiol. Biochem., 2016, 39(5), 1665-1678.
[http://dx.doi.org/10.1159/000447868] [PMID: 27639612]
[65]
Madu, C.O.; Wang, S.; Madu, C.O.; Lu, Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J. Cancer, 2020, 11(15), 4474-4494.
[http://dx.doi.org/10.7150/jca.44313] [PMID: 32489466]
[66]
Gimbrone, M.A., Jr; Gullino, P.M. Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res., 1976, 36(7 PT 2), 2611-2620.
[PMID: 1277168]
[67]
Arora, R.; Joshi, K.; Nijhawan, R.; Radotra, B.D.; Sharma, S.C. Angiogenesis as an independent prognostic indicator in node-negative breast cancer. Anal. Quant. Cytol. Histol., 2002, 24(4), 228-233.
[PMID: 12199324]
[68]
Zhou, D.; Cheng, S-Q.; Ji, H-F.; Wang, J-S.; Xu, H-T.; Zhang, G-Q.; Pang, D. Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. J. Cancer Res. Clin. Oncol., 2010, 136(11), 1719-1727.
[http://dx.doi.org/10.1007/s00432-010-0830-y] [PMID: 20229034]
[69]
Saponaro, C.; Malfettone, A.; Ranieri, G.; Danza, K.; Simone, G.; Paradiso, A.; Mangia, A. VEGF, HIF-1α expression and MVD as an angiogenic network in familial breast cancer. PLoS One, 2013, 8(1), e53070.
[http://dx.doi.org/10.1371/journal.pone.0053070] [PMID: 23326384]
[70]
Tsutsui, S.; Kume, M.; Era, S. Prognostic value of microvessel density in invasive ductal carcinoma of the breast. Breast Cancer, 2003, 10(4), 312-319.
[http://dx.doi.org/10.1007/BF02967651] [PMID: 14634509]
[71]
Choi, W.W.; Lewis, M.M.; Lawson, D.; Yin-Goen, Q.; Birdsong, G.G.; Cotsonis, G.A.; Cohen, C.; Young, A.N. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: Correlation with clinicopathologic parameters and VEGF-family gene expression. Mod. Pathol., 2005, 18(1), 143-152.
[http://dx.doi.org/10.1038/modpathol.3800253] [PMID: 15297858]
[72]
Gasparini, G.; Barbareschi, M.; Boracchi, P.; Verderio, P.; Caffo, O.; Meli, S.; Dalla Palma, P.; Marubini, E.; Bevilacqua, P. Tumor angiogenesis predicts clinical outcome of node-positive breast cancer patients treated with adjuvant hormone therapy or chemotherapy. Cancer J. Sci. Am., 1995, 1(2), 131-141.
[PMID: 9166466]
[73]
Relf, M.; LeJeune, S.; Scott, P.A.; Fox, S.; Smith, K.; Leek, R.; Moghaddam, A.; Whitehouse, R.; Bicknell, R.; Harris, A.L. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res., 1997, 57(5), 963-969.
[PMID: 9041202]
[74]
Ribatti, D.; Nico, B.; Ruggieri, S.; Tamma, R.; Simone, G.; Mangia, A. Angiogenesis and antiangiogenesis in triple-negative breast cancer. Transl. Oncol., 2016, 9(5), 453-457.
[http://dx.doi.org/10.1016/j.tranon.2016.07.002] [PMID: 27751350]
[75]
Banerjee, S.; Dowsett, M.; Ashworth, A.; Martin, L-A. Mechanisms of disease: Angiogenesis and the management of breast cancer. Nat. Clin. Pract. Oncol., 2007, 4(9), 536-550.
[http://dx.doi.org/10.1038/ncponc0905] [PMID: 17728712]
[76]
De Paola, F.; Granato, A.M.; Scarpi, E.; Monti, F.; Medri, L.; Bianchi, S.; Amadori, D.; Volpi, A. Vascular endothelial growth factor and prognosis in patients with node-negative breast cancer. Int. J. Cancer, 2002, 98(2), 228-233.
[http://dx.doi.org/10.1002/ijc.10118] [PMID: 11857413]
[77]
Gasparini, G.; Toi, M.; Miceli, R.; Vermeulen, P.B.; Dittadi, R.; Biganzoli, E.; Morabito, A.; Fanelli, M.; Gatti, C.; Suzuki, H.; Tominaga, T.; Dirix, L.Y.; Gion, M. Clinical relevance of vascular endothelial growth factor and thymidine phosphorylase in patients with node-positive breast cancer treated with either adjuvant chemotherapy or hormone therapy. Cancer J. Sci. Am., 1999, 5(2), 101-111.
[PMID: 10198732]
[78]
Foekens, J.A.; Peters, H.A.; Grebenchtchikov, N.; Look, M.P.; Meijer-van Gelder, M.E.; Geurts-Moespot, A.; van der Kwast, T.H.; Sweep, C.G.; Klijn, J.G. High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res., 2001, 61(14), 5407-5414.
[PMID: 11454684]
[79]
Schmidt, M.; Voelker, H-U.; Kapp, M.; Dietl, J.; Kammerer, U. Expression of VEGFR-1 (Flt-1) in breast cancer is associated with VEGF expression and with node-negative tumour stage. Anticancer Res., 2008, 28(3A), 1719-1724.
[PMID: 18630531]
[80]
Srabovic, N; Mujagic, Z; Mujanovic-Mustedanagic, J; Softic, A; Muminovic, Z Rifatbegovic, A Vascular endothelial growth factor receptor-1 expression in breast cancer and its correlation to vascular endothelial growth factor a. Int J Breast Cancer, 2013, 2013
[http://dx.doi.org/10.1155/2013/746749]
[81]
Ning, Q.; Liu, C.; Hou, L.; Meng, M.; Zhang, X.; Luo, M.; Shao, S.; Zuo, X.; Zhao, X. Vascular endothelial growth factor receptor-1 activation promotes migration and invasion of breast cancer cells through epithelial-mesenchymal transition. PLoS One, 2013, 8(6), e65217.
[http://dx.doi.org/10.1371/journal.pone.0065217] [PMID: 23776453]
[82]
Rydén, L.; Linderholm, B.; Nielsen, N.H.; Emdin, S.; Jönsson, P-E.; Landberg, G. Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res. Treat., 2003, 82(3), 147-154.
[http://dx.doi.org/10.1023/B:BREA.0000004357.92232.cb] [PMID: 14703061]
[83]
Raica, M.; Cimpean, A.M.; Ceausu, R.; Ribatti, D. Lymphatic microvessel density, VEGF-C, and VEGFR-3 expression in different molecular types of breast cancer. Anticancer Res., 2011, 31(5), 1757-1764.
[PMID: 21617236]
[84]
van Iterson, V.; Leidenius, M.; von Smitten, K.; Bono, P.; Heikkilä, P. VEGF-D in association with VEGFR-3 promotes nodal metastasis in human invasive lobular breast cancer. Am. J. Clin. Pathol., 2007, 128(5), 759-766.
[http://dx.doi.org/10.1309/7FXVRMXF58PVRJUH] [PMID: 17951197]
[85]
Levitzki, A.; Mishani, E. Tyrphostins and other tyrosine kinase inhibitors. Annu. Rev. Biochem., 2006, 75(1), 93-109.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142657] [PMID: 16756486]
[86]
Ivy, S.P.; Wick, J.Y.; Kaufman, B.M. An overview of small-molecule inhibitors of VEGFR signaling. Nat. Rev. Clin. Oncol., 2009, 6(10), 569-579.
[http://dx.doi.org/10.1038/nrclinonc.2009.130] [PMID: 19736552]
[87]
Yousefian, M.; Ghodsi, R. Structure-activity relationship studies of indolin-2-one derivatives as vascular endothelial growth factor receptor inhibitors and anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(12), e2000022.
[http://dx.doi.org/10.1002/ardp.202000022] [PMID: 32885522]
[88]
O’Farrell, A-M.; Abrams, T.J.; Yuen, H.A.; Ngai, T.J.; Louie, S.G.; Yee, K.W.; Wong, L.M.; Hong, W.; Lee, L.B.; Town, A.; Smolich, B.D.; Manning, W.C.; Murray, L.J.; Heinrich, M.C.; Cherrington, J.M. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood, 2003, 101(9), 3597-3605.
[http://dx.doi.org/10.1182/blood-2002-07-2307] [PMID: 12531805]
[89]
Safe, S.; Kasiappan, R. Natural products as mechanism-based anticancer agents: Sp transcription factors as targets. Phytother. Res., 2016, 30(11), 1723-1732.
[http://dx.doi.org/10.1002/ptr.5669] [PMID: 27384261]
[90]
Shimizu, M.; Shirakami, Y.; Sakai, H.; Yasuda, Y.; Kubota, M.; Adachi, S.; Tsurumi, H.; Hara, Y.; Moriwaki, H. (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem. Biol. Interact., 2010, 185(3), 247-252.
[http://dx.doi.org/10.1016/j.cbi.2010.03.036] [PMID: 20346928]
[91]
Garvin, S.; Ollinger, K.; Dabrosin, C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett., 2006, 231(1), 113-122.
[http://dx.doi.org/10.1016/j.canlet.2005.01.031] [PMID: 16356836]
[92]
Fan, S.; Xu, Y.; Li, X.; Tie, L.; Pan, Y.; Li, X. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: In silico, in vitro and in vivo studies. Biochim. Biophys. Acta, 2014, 1842(9), 1742-1754.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.019] [PMID: 24970744]
[93]
Lu, N.; Gao, Y.; Ling, Y.; Chen, Y.; Yang, Y.; Gu, H.Y.; Qi, Q.; Liu, W.; Wang, X.T.; You, Q.D.; Guo, Q.L. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sci., 2008, 82(17-18), 956-963.
[http://dx.doi.org/10.1016/j.lfs.2008.02.013] [PMID: 18378261]
[94]
He, M.F.; Huang, Y.H.; Wu, L.W.; Ge, W.; Shaw, P.C.; But, P.P. Triptolide functions as a potent angiogenesis inhibitor. Int. J. Cancer, 2010, 126(1), 266-278.
[http://dx.doi.org/10.1002/ijc.24694] [PMID: 19569053]
[95]
Hasanzadeh, D.; Mahdavi, M.; Dehghan, G.; Charoudeh, H.N. Farnesiferol C induces cell cycle arrest and apoptosis mediated by oxidative stress in MCF-7 cell line. Toxicol. Rep., 2017, 4, 420-426.
[http://dx.doi.org/10.1016/j.toxrep.2017.07.010] [PMID: 28959668]
[96]
Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[http://dx.doi.org/10.3892/ol.2017.6108] [PMID: 28693189]
[97]
Luo, T.; Wang, J.; Yin, Y.; Hua, H.; Jing, J.; Sun, X.; Li, M.; Zhang, Y.; Jiang, Y. (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res., 2010, 12(1), R8.
[http://dx.doi.org/10.1186/bcr2473] [PMID: 20078855]
[98]
Zan, L.; Chen, Q.; Zhang, L.; Li, X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered, 2019, 10(1), 374-382.
[http://dx.doi.org/10.1080/21655979.2019.1657327] [PMID: 31431131]
[99]
Al-Ani, B. Resveratrol inhibits proteinase-activated receptor-2-induced release of soluble vascular endothelial growth factor receptor-1 from human endothelial cells. EXCLI J., 2013, 12, 598-604.
[PMID: 26933402]
[100]
Tang, F.Y.; Su, Y.C.; Chen, N.C.; Hsieh, H.S.; Chen, K.S. Resveratrol inhibits migration and invasion of human breast-cancer cells. Mol. Nutr. Food Res., 2008, 52(6), 683-691.
[http://dx.doi.org/10.1002/mnfr.200700325] [PMID: 18398872]
[101]
Leon-Galicia, I.; Diaz-Chavez, J.; Albino-Sanchez, M.E.; Garcia-Villa, E.; Bermudez-Cruz, R.; Garcia-Mena, J.; Herrera, L.A.; García-Carrancá, A.; Gariglio, P. Resveratrol decreases Rad51 expression and sensitizes cisplatin-resistant MCF-7 breast cancer cells. Oncol. Rep., 2018, 39(6), 3025-3033.
[http://dx.doi.org/10.3892/or.2018.6336] [PMID: 29620223]
[102]
Zhu, W.; Qin, W.; Zhang, K.; Rottinghaus, G.E.; Chen, Y.C.; Kliethermes, B.; Sauter, E.R. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr. Cancer, 2012, 64(3), 393-400.
[http://dx.doi.org/10.1080/01635581.2012.654926] [PMID: 22332908]
[103]
Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740.
[http://dx.doi.org/10.1016/j.phymed.2018.11.001] [PMID: 31005718]
[104]
Li, M.; Lin, L.; Guo, T.; Wu, Y.; Lin, J.; Liu, Y.; Yang, K.; Hu, C. Curcumin administered in combination with Glu-GNPs induces radiosensitivity in transplanted tumor MDA-MB-231-luc cells in nude mice. BioMed Res. Int., 2021, 2021, 9262453.
[http://dx.doi.org/10.1155/2021/9262453] [PMID: 34825004]
[105]
Zhou, S.; Li, J.; Xu, H.; Zhang, S.; Chen, X.; Chen, W.; Yang, S.; Zhong, S.; Zhao, J.; Tang, J. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene, 2017, 622, 1-12.
[http://dx.doi.org/10.1016/j.gene.2017.04.026] [PMID: 28431975]
[106]
Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.R.; Hovhannisyan, A.; Panossian, A. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine, 2020, 70, 153218.
[http://dx.doi.org/10.1016/j.phymed.2020.153218] [PMID: 32335356]
[107]
Chung, H.; Jung, Y.M.; Shin, D.H.; Lee, J.Y.; Oh, M.Y.; Kim, H.J.; Jang, K.S.; Jeon, S.J.; Son, K.H.; Kong, G. Anticancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int. J. Cancer, 2008, 122(4), 816-822.
[http://dx.doi.org/10.1002/ijc.23182] [PMID: 17957784]
[108]
Huang, K.F.; Zhang, G.D.; Huang, Y.Q.; Diao, Y. Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int. Immunopharmacol., 2012, 12(2), 334-341.
[http://dx.doi.org/10.1016/j.intimp.2011.12.004] [PMID: 22182776]
[109]
Tang, Y.; Wang, J.; Cheng, J.; Wang, L. Antiestrogenic activity of triptolide in human breast cancer cells MCF-7 and immature female mouse. Drug Dev. Res., 2017, 78(3-4), 164-169.
[http://dx.doi.org/10.1002/ddr.21387] [PMID: 28608490]
[110]
Varghese, E.; Samuel, S.M.; Varghese, S.; Cheema, S.; Mamtani, R.; Büsselberg, D. Triptolide decreases cell proliferation and induces cell death in triple negative MDA-MB-231 breast cancer cells. Biomolecules, 2018, 8(4), E163.
[http://dx.doi.org/10.3390/biom8040163] [PMID: 30563138]
[111]
Shi, J.; Li, J.; Li, J.; Li, R.; Wu, X.; Gao, F.; Zou, L.; Mak, W.W.S.; Fu, C.; Zhang, J.; Leung, G.P. Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor. Phytomedicine, 2021, 81, 153408.
[http://dx.doi.org/10.1016/j.phymed.2020.153408] [PMID: 33234363]
[112]
Rahimi, N. Vascular endothelial growth factor receptors: Molecular mechanisms of activation and therapeutic potentials. Exp. Eye Res., 2006, 83(5), 1005-1016.
[http://dx.doi.org/10.1016/j.exer.2006.03.019] [PMID: 16713597]
[113]
Harris, P.A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R.M.; Davis-Ward, R.G.; Epperly, A.H.; Hinkle, K.W.; Hunter, R.N., III; Johnson, J.H.; Knick, V.B.; Laudeman, C.P.; Luttrell, D.K.; Mook, R.A.; Nolte, R.T.; Rudolph, S.K.; Szewczyk, J.R.; Truesdale, A.T.; Veal, J.M.; Wang, L.; Stafford, J.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem., 2008, 51(15), 4632-4640.
[http://dx.doi.org/10.1021/jm800566m] [PMID: 18620382]
[114]
Hosaka, S.; Horiuchi, K.; Yoda, M.; Nakayama, R.; Tohmonda, T.; Susa, M.; Nakamura, M.; Chiba, K.; Toyama, Y.; Morioka, H. A novel multi-kinase inhibitor pazopanib suppresses growth of synovial sarcoma cells through inhibition of the PI3K-AKT pathway. J. Orthop. Res., 2012, 30(9), 1493-1498.
[http://dx.doi.org/10.1002/jor.22091] [PMID: 22359392]
[115]
Kernt, M.; Thiele, S.; Neubauer, A.S.; Koenig, S.; Hirneiss, C.; Haritoglou, C.; Ulbig, M.W.; Kampik, A. Inhibitory activity of ranibizumab, sorafenib, and pazopanib on light-induced overexpression of platelet-derived growth factor and vascular endothelial growth factor A and the vascular endothelial growth factor A receptors 1 and 2 and neuropilin 1 and 2. Retina, 2012, 32(8), 1652-1663.
[http://dx.doi.org/10.1097/IAE.0b013e318240a558] [PMID: 22466477]
[116]
Taylor, S.K.; Chia, S.; Dent, S.; Clemons, M.; Agulnik, M.; Grenci, P.; Wang, L.; Oza, A.M.; Ivy, P.; Pritchard, K.I.; Leighl, N.B. A phase II study of pazopanib in patients with recurrent or metastatic invasive breast carcinoma: A trial of the Princess Margaret Hospital phase II consortium. Oncologist, 2010, 15(8), 810-818.
[http://dx.doi.org/10.1634/theoncologist.2010-0081] [PMID: 20682606]
[117]
Johnston, S.R.; Gómez, H.; Stemmer, S.M.; Richie, M.; Durante, M.; Pandite, L.; Goodman, V.; Slamon, D. A randomized and open-label trial evaluating the addition of pazopanib to lapatinib as first-line therapy in patients with HER2-positive advanced breast cancer. Breast Cancer Res. Treat., 2013, 137(3), 755-766.
[http://dx.doi.org/10.1007/s10549-012-2399-4] [PMID: 23283526]
[118]
Cristofanilli, M.; Johnston, S.R.; Manikhas, A.; Gomez, H.L.; Gladkov, O.; Shao, Z.; Safina, S.; Blackwell, K.L.; Alvarez, R.H.; Rubin, S.D.; Ranganathan, S.; Redhu, S.; Trudeau, M.E. A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer. Breast Cancer Res. Treat., 2013, 137(2), 471-482.
[http://dx.doi.org/10.1007/s10549-012-2369-x] [PMID: 23239151]
[119]
Tan, A.R.; Johannes, H.; Rastogi, P.; Jacobs, S.A.; Robidoux, A.; Flynn, P.J.; Thirlwell, M.P.; Fehrenbacher, L.; Stella, P.J.; Goel, R.; Julian, T.B.; Provencher, L.; Bury, M.J.; Bhatt, K.; Geyer, C.E., Jr; Swain, S.M.; Mamounas, E.P.; Wolmark, N. Weekly paclitaxel and concurrent pazopanib following doxorubicin and cyclophosphamide as neoadjuvant therapy for HER-negative locally advanced breast cancer: NSABP Foundation FB-6, a phase II study. Breast Cancer Res. Treat., 2015, 149(1), 163-169.
[http://dx.doi.org/10.1007/s10549-014-3221-2] [PMID: 25542269]
[120]
Wedge, S.R.; Kendrew, J.; Hennequin, L.F.; Valentine, P.J.; Barry, S.T.; Brave, S.R.; Smith, N.R.; James, N.H.; Dukes, M.; Curwen, J.O.; Chester, R.; Jackson, J.A.; Boffey, S.J.; Kilburn, L.L.; Barnett, S.; Richmond, G.H.; Wadsworth, P.F.; Walker, M.; Bigley, A.L.; Taylor, S.T.; Cooper, L.; Beck, S.; Jürgensmeier, J.M.; Ogilvie, D.J. AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res., 2005, 65(10), 4389-4400.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4409] [PMID: 15899831]
[121]
Ivy, S.P.; Liu, J.F.; Lee, J-M.; Matulonis, U.A.; Kohn, E.C. Cediranib, a pan-VEGFR inhibitor, and olaparib, a PARP inhibitor, in combination therapy for high grade serous ovarian cancer. Expert Opin. Investig. Drugs, 2016, 25(5), 597-611.
[http://dx.doi.org/10.1517/13543784.2016.1156857] [PMID: 26899229]
[122]
Morton, C.L.; Maris, J.M.; Keir, S.T.; Gorlick, R.; Kolb, E.A.; Billups, C.A.; Wu, J.; Smith, M.A.; Houghton, P.J. Combination testing of cediranib (AZD2171) against childhood cancer models by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2012, 58(4), 566-571.
[http://dx.doi.org/10.1002/pbc.23159] [PMID: 21538824]
[123]
Liu, J.F.; Tolaney, S.M.; Birrer, M.; Fleming, G.F.; Buss, M.K.; Dahlberg, S.E.; Lee, H.; Whalen, C.; Tyburski, K.; Winer, E.; Ivy, P.; Matulonis, U.A. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur. J. Cancer, 2013, 49(14), 2972-2978.
[http://dx.doi.org/10.1016/j.ejca.2013.05.020] [PMID: 23810467]
[124]
Hong, D.S.; Garrido-Laguna, I.; Ekmekcioglu, S.; Falchook, G.S.; Naing, A.; Wheler, J.J.; Fu, S.; Moulder, S.L.; Piha-Paul, S.; Tsimberidou, A.M.; Wen, Y.; Culotta, K.S.; Anderes, K.; Davis, D.W.; Liu, W.; George, G.C.; Camacho, L.H.; Percy Ivy, S.; Kurzrock, R. Dual inhibition of the vascular endothelial growth factor pathway: A phase 1 trial evaluating bevacizumab and AZD2171 (cediranib) in patients with advanced solid tumors. Cancer, 2014, 120(14), 2164-2173.
[http://dx.doi.org/10.1002/cncr.28701] [PMID: 24752867]
[125]
Hyams, D.M.; Chan, A.; de Oliveira, C.; Snyder, R.; Vinholes, J.; Audeh, M.W.; Alencar, V.M.; Lombard, J.; Mookerjee, B.; Xu, J.; Brown, K.; Klein, P. Cediranib in combination with fulvestrant in hormone-sensitive metastatic breast cancer: A randomized phase II study. Invest. New Drugs, 2013, 31(5), 1345-1354.
[http://dx.doi.org/10.1007/s10637-013-9991-2] [PMID: 23801303]
[126]
Trudel, S.; Li, Z.H.; Wei, E.; Wiesmann, M.; Chang, H.; Chen, C.; Reece, D.; Heise, C.; Stewart, A.K. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood, 2005, 105(7), 2941-2948.
[http://dx.doi.org/10.1182/blood-2004-10-3913] [PMID: 15598814]
[127]
Lee, S.H.; Lopes de Menezes, D.; Vora, J.; Harris, A.; Ye, H.; Nordahl, L.; Garrett, E.; Samara, E.; Aukerman, S.L.; Gelb, A.B.; Heise, C. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin. Cancer Res., 2005, 11(10), 3633-3641.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2129] [PMID: 15897558]
[128]
Huynh, H.; Chow, P.K.H.; Tai, W.M.; Choo, S.P.; Chung, A.Y.F.; Ong, H.S.; Soo, K.C.; Ong, R.; Linnartz, R.; Shi, M.M. Dovitinib demonstrates antitumor and antimetastatic activities in xenograft models of hepatocellular carcinoma. J. Hepatol., 2012, 56(3), 595-601.
[http://dx.doi.org/10.1016/j.jhep.2011.09.017] [PMID: 22027573]
[129]
André, F.; Bachelot, T.; Campone, M.; Dalenc, F.; Perez-Garcia, J.M.; Hurvitz, S.A.; Turner, N.; Rugo, H.; Smith, J.W.; Deudon, S.; Shi, M.; Zhang, Y.; Kay, A.; Porta, D.G.; Yovine, A.; Baselga, J. Targeting FGFR with dovitinib (TKI258): Preclinical and clinical data in breast cancer. Clin. Cancer Res., 2013, 19(13), 3693-3702.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0190] [PMID: 23658459]
[130]
Musolino, A.; Campone, M.; Neven, P.; Denduluri, N.; Barrios, C.H.; Cortes, J.; Blackwell, K.; Soliman, H.; Kahan, Z.; Bonnefoi, H.; Squires, M.; Zhang, Y.; Deudon, S.; Shi, M.M.; André, F. Phase II, randomized, placebo-controlled study of dovitinib in combination with fulvestrant in postmenopausal patients with HR+, HER2- breast cancer that had progressed during or after prior endocrine therapy. Breast Cancer Res., 2017, 19(1), 18.
[http://dx.doi.org/10.1186/s13058-017-0807-8] [PMID: 28183331]
[131]
Roth, G.J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lehmann-Lintz, T.; Lotz, R.; Tontsch-Grunt, U.; Walter, R.; Hilberg, F. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem., 2009, 52(14), 4466-4480.
[http://dx.doi.org/10.1021/jm900431g] [PMID: 19522465]
[132]
Liu, C-Y.; Huang, T-T.; Chu, P-Y.; Huang, C-T.; Lee, C-H.; Wang, W-L. The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells. Exp. Mol. Med., 2017, 49(8), e366.
[133]
Hilberg, F.; Tontsch-Grunt, U.; Baum, A.; Le, A.T.; Doebele, R.C.; Lieb, S.; Gianni, D.; Voss, T.; Garin-Chesa, P.; Haslinger, C.; Kraut, N. Triple angiokinase inhibitor nintedanib directly inhibits tumor cell growth and induces tumor shrinkagevia blocking oncogenic receptor tyrosine kinases. J. Pharmacol. Exp. Ther., 2018, 364(3), 494-503.
[http://dx.doi.org/10.1124/jpet.117.244129] [PMID: 29263244]
[134]
Reguera-Nuñez, E.; Xu, P.; Chow, A.; Man, S.; Hilberg, F.; Kerbel, R.S. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 16.
[http://dx.doi.org/10.1186/s13046-018-0999-5] [PMID: 30635009]
[135]
Quintela-Fandino, M.; Urruticoechea, A.; Guerra, J.; Gil, M.; Gonzalez-Martin, A.; Marquez, R.; Hernandez-Agudo, E.; Rodriguez-Martin, C.; Gil-Martin, M.; Bratos, R.; Escudero, M.J.; Vlassak, S.; Hilberg, F.; Colomer, R. Phase I clinical trial of nintedanib plus paclitaxel in early HER-2-negative breast cancer (CNIO-BR-01-2010/GEICAM-2010-10 study). Br. J. Cancer, 2014, 111(6), 1060-1064.
[http://dx.doi.org/10.1038/bjc.2014.397] [PMID: 25058346]
[136]
Quintela-Fandino, M.; Apala, J.V.; Malon, D.; Mouron, S.; Hornedo, J.; Gonzalez-Cortijo, L.; Colomer, R.; Guerra, J. Nintedanib plus letrozole in early breast cancer: A phase 0/I pharmacodynamic, pharmacokinetic, and safety clinical trial of combined FGFR1 and aromatase inhibition. Breast Cancer Res., 2019, 21(1), 69.
[http://dx.doi.org/10.1186/s13058-019-1152-x] [PMID: 31126332]
[137]
Quintela-Fandino, M.; Lluch, A.; Manso, L.; Calvo, I.; Cortes, J.; García-Saenz, J.A.; Gil-Gil, M.; Martinez-Jánez, N.; Gonzalez-Martin, A.; Adrover, E.; de Andres, R.; Viñas, G.; Llombart-Cussac, A.; Alba, E.; Guerra, J.; Bermejo, B.; Zamora, E.; Moreno-Anton, F.; Pernas Simon, S.; Carrato, A.; Lopez-Alonso, A.; Escudero, M.J.; Campo, R.; Carrasco, E.; Palacios, J.; Mulero, F.; Colomer, R. 18F-fluoromisonidazole PET and activity of neoadjuvant nintedanib in early HER2-negative breast cancer: A window-of-opportunity randomized trial. Clin. Cancer Res., 2017, 23(6), 1432-1441.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0738] [PMID: 27587436]
[138]
Hu-Lowe, D.D.; Zou, H.Y.; Grazzini, M.L.; Hallin, M.E.; Wickman, G.R.; Amundson, K.; Chen, J.H.; Rewolinski, D.A.; Yamazaki, S.; Wu, E.Y.; McTigue, M.A.; Murray, B.W.; Kania, R.S.; O’Connor, P.; Shalinsky, D.R.; Bender, S.L. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin. Cancer Res., 2008, 14(22), 7272-7283.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0652] [PMID: 19010843]
[139]
Wilmes, L.J.; Pallavicini, M.G.; Fleming, L.M.; Gibbs, J.; Wang, D.; Li, K-L.; Partridge, S.C.; Henry, R.G.; Shalinsky, D.R.; Hu-Lowe, D.; Park, J.W.; McShane, T.M.; Lu, Y.; Brasch, R.C.; Hylton, N.M. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn. Reson. Imaging, 2007, 25(3), 319-327.
[http://dx.doi.org/10.1016/j.mri.2006.09.041] [PMID: 17371720]
[140]
Verbeek, H.H.; Alves, M.M.; de Groot, J-W.B.; Osinga, J.; Plukker, J.T.; Links, T.P.; Hofstra, R.M. The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells. J. Clin. Endocrinol. Metab., 2011, 96(6), E991-E995.
[http://dx.doi.org/10.1210/jc.2010-2381] [PMID: 21470995]
[141]
Rössler, J.; Monnet, Y.; Farace, F.; Opolon, P.; Daudigeos-Dubus, E.; Bourredjem, A.; Vassal, G.; Geoerger, B. The selective VEGFR1-3 inhibitor axitinib (AG-013736) shows antitumor activity in human neuroblastoma xenografts. Int. J. Cancer, 2011, 128(11), 2748-2758.
[http://dx.doi.org/10.1002/ijc.25611] [PMID: 20715103]
[142]
Ma, Y.H.; Wang, S.Y.; Ren, Y.P.; Li, J.; Guo, T.J.; Lu, W.; Zhou, T.Y. Antitumor effect of axitinib combined with dopamine and PK-PD modeling in the treatment of human breast cancer xenograft. Acta Pharmacol. Sin., 2019, 40(2), 243-256.
[http://dx.doi.org/10.1038/s41401-018-0006-x] [PMID: 29773888]
[143]
Rugo, H.S.; Stopeck, A.T.; Joy, A.A.; Chan, S.; Verma, S.; Lluch, A.; Liau, K.F.; Kim, S.; Bycott, P.; Rosbrook, B.; Bair, A.H.; Soulieres, D. Randomized, placebo-controlled, double-blind, phase II study of axitinib plus docetaxel versus docetaxel plus placebo in patients with metastatic breast cancer. J. Clin. Oncol., 2011, 29(18), 2459-2465.
[http://dx.doi.org/10.1200/JCO.2010.31.2975] [PMID: 21555686]
[144]
Polverino, A.; Coxon, A.; Starnes, C.; Diaz, Z.; DeMelfi, T.; Wang, L.; Bready, J.; Estrada, J.; Cattley, R.; Kaufman, S.; Chen, D.; Gan, Y.; Kumar, G.; Meyer, J.; Neervannan, S.; Alva, G.; Talvenheimo, J.; Montestruque, S.; Tasker, A.; Patel, V.; Radinsky, R.; Kendall, R. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res., 2006, 66(17), 8715-8721.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4665] [PMID: 16951187]
[145]
Coxon, A.; Ziegler, B.; Kaufman, S.; Xu, M.; Wang, H.; Weishuhn, D.; Schmidt, J.; Sweet, H.; Starnes, C.; Saffran, D.; Polverino, A. Antitumor activity of motesanib alone and in combination with cisplatin or docetaxel in multiple human non-small-cell lung cancer xenograft models. Mol. Cancer, 2012, 11(1), 70.
[http://dx.doi.org/10.1186/1476-4598-11-70] [PMID: 22992329]
[146]
Kaya, T.T.; Altun, A.; Turgut, N.H.; Ataseven, H.; Koyluoglu, G. Effects of a multikinase inhibitor motesanib (AMG 706) alone and combined with the selective DuP-697 COX-2 inhibitor on colorectal cancer cells. Asian Pac. J. Cancer Prev., 2016, 17(3), 1103-1110.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1103] [PMID: 27039732]
[147]
De Boer, R.H.; Kotasek, D.; White, S.; Koczwara, B.; Mainwaring, P.; Chan, A.; Melara, R.; Ye, Y.; Adewoye, A.H.; Sikorski, R.; Kaufman, P.A. Phase 1b dose-finding study of motesanib with docetaxel or paclitaxel in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2012, 135(1), 241-252.
[http://dx.doi.org/10.1007/s10549-012-2135-0] [PMID: 22872523]
[148]
Martin, M.; Roche, H.; Pinter, T.; Crown, J.; Kennedy, M.J.; Provencher, L.; Priou, F.; Eiermann, W.; Adrover, E.; Lang, I.; Ramos, M.; Latreille, J. Jagiełło-Gruszfeld, A.; Pienkowski, T.; Alba, E.; Snyder, R.; Almel, S.; Rolski, J.; Munoz, M.; Moroose, R.; Hurvitz, S.; Baños, A.; Adewoye, H.; Hei, Y.J.; Lindsay, M.A.; Rupin, M.; Cabaribere, D.; Lemmerick, Y.; Mackey, J.R. Motesanib, or open-label bevacizumab, in combination with paclitaxel, as first-line treatment for HER2-negative locally recurrent or metastatic breast cancer: A phase 2, randomised, double-blind, placebo-controlled study. Lancet Oncol., 2011, 12(4), 369-376.
[http://dx.doi.org/10.1016/S1470-2045(11)70037-7] [PMID: 21429799]
[149]
Nakamura, K.; Taguchi, E.; Miura, T.; Yamamoto, A.; Takahashi, K.; Bichat, F.; Guilbaud, N.; Hasegawa, K.; Kubo, K.; Fujiwara, Y.; Suzuki, R.; Kubo, K.; Shibuya, M.; Isae, T. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Res., 2006, 66(18), 9134-9142.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4290] [PMID: 16982756]
[150]
Taguchi, E.; Nakamura, K.; Miura, T.; Shibuya, M.; Isoe, T. Anti-tumor activity and tumor vessel normalization by the vascular endothelial growth factor receptor tyrosine kinase inhibitor KRN951 in a rat peritoneal disseminated tumor model. Cancer Sci., 2008, 99(3), 623-630.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00724.x] [PMID: 18201272]
[151]
Mayer, E.L.; Scheulen, M.E.; Beckman, J.; Richly, H.; Duarte, A.; Cotreau, M.M.; Strahs, A.L.; Agarwal, S.; Steelman, L.; Winer, E.P.; Dickler, M.N. A Phase I dose-escalation study of the VEGFR inhibitor tivozanib hydrochloride with weekly paclitaxel in metastatic breast cancer. Breast Cancer Res. Treat., 2013, 140(2), 331-339.
[http://dx.doi.org/10.1007/s10549-013-2632-9] [PMID: 23868188]
[152]
Mehta, M.; Griffith, J.; Panneerselvam, J.; Babu, A.; Mani, J.; Herman, T. Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int. J. Radiat. Biol., 2021, 97(8), 1109-1120.
[PMID: 32052681]
[153]
Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res., 2008, 14(17), 5459-5465.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5270] [PMID: 18765537]
[154]
Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer, 2011, 129(1), 245-255.
[http://dx.doi.org/10.1002/ijc.25864] [PMID: 21170960]
[155]
Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer, 2008, 122(3), 664-671.
[http://dx.doi.org/10.1002/ijc.23131] [PMID: 17943726]
[156]
Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; Heckel, A.; Rettig, W.J. BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res., 2008, 68(12), 4774-4782.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6307] [PMID: 18559524]
[157]
Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J.Y.; Chu, J.Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T.C.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem., 2003, 46(7), 1116-1119.
[http://dx.doi.org/10.1021/jm0204183] [PMID: 12646019]
[158]
Abrams, T.J.; Murray, L.J.; Pesenti, E.; Holway, V.W.; Colombo, T.; Lee, L.B.; Cherrington, J.M.; Pryer, N.K. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol. Cancer Ther., 2003, 2(10), 1011-1021.
[PMID: 14578466]
[159]
Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; Murray, L.J.; Carver, J.; Chan, E.; Moss, K.G.; Haznedar, J.O.; Sukbuntherng, J.; Blake, R.A.; Sun, L.; Tang, C.; Miller, T.; Shirazian, S.; McMahon, G.; Cherrington, J.M. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res., 2003, 9(1), 327-337.
[PMID: 12538485]
[160]
Yee, K.W.; Schittenhelm, M.; O’Farrell, A-M.; Town, A.R.; McGreevey, L.; Bainbridge, T.; Cherrington, J.M.; Heinrich, M.C. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood, 2004, 104(13), 4202-4209.
[http://dx.doi.org/10.1182/blood-2003-10-3381] [PMID: 15304385]
[161]
Ikezoe, T.; Nishioka, C.; Tasaka, T.; Yang, Y.; Komatsu, N.; Togitani, K.; Koeffler, H.P.; Taguchi, H. The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: Enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol. Cancer Ther., 2006, 5(10), 2522-2530.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0071] [PMID: 17041096]
[162]
Ghimirey, N.; Steele, C.; Czerniecki, B.J.; Koski, G.K.; Showalter, L.E. Sunitinib combined with Th1 cytokines potentiates apoptosis in human breast cancer cells and suppresses tumor growth in a murine model of HER-2pos breast cancer. Int. J. Breast Cancer, 2021, 2021, 8818393.
[http://dx.doi.org/10.1155/2021/8818393] [PMID: 33936816]
[163]
Mayer, E.L.; Dhakil, S.; Patel, T.; Sundaram, S.; Fabian, C.; Kozloff, M.; Qamar, R.; Volterra, F.; Parmar, H.; Samant, M.; Burstein, H.J. SABRE-B: An evaluation of paclitaxel and bevacizumab with or without sunitinib as first-line treatment of metastatic breast cancer. Ann. Oncol., 2010, 21(12), 2370-2376.
[http://dx.doi.org/10.1093/annonc/mdq260] [PMID: 20497961]
[164]
Wildiers, H.; Fontaine, C.; Vuylsteke, P.; Martens, M.; Canon, J.L.; Wynendaele, W.; Focan, C.; De Greve, J.; Squifflet, P.; Paridaens, R. Multicenter phase II randomized trial evaluating antiangiogenic therapy with sunitinib as consolidation after objective response to taxane chemotherapy in women with HER2-negative metastatic breast cancer. Breast Cancer Res. Treat., 2010, 123(2), 463-469.
[http://dx.doi.org/10.1007/s10549-010-1066-x] [PMID: 20652398]
[165]
Cardoso, F.; Canon, J-L.; Amadori, D.; Aldrighetti, D.; Machiels, J-P.; Bouko, Y.; Verkh, L.; Usari, T.; Kern, K.A.; Giorgetti, C.; Dirix, L. An exploratory study of sunitinib in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive metastatic breast cancer. Breast, 2012, 21(6), 716-723.
[http://dx.doi.org/10.1016/j.breast.2012.09.002] [PMID: 23022045]
[166]
Bergh, J.; Bondarenko, I.M.; Lichinitser, M.R.; Liljegren, A.; Greil, R.; Voytko, N.L.; Makhson, A.N.; Cortes, J.; Lortholary, A.; Bischoff, J.; Chan, A.; Delaloge, S.; Huang, X.; Kern, K.A.; Giorgetti, C. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: Results of a prospective, randomized phase III study. J. Clin. Oncol., 2012, 30(9), 921-929.
[http://dx.doi.org/10.1200/JCO.2011.35.7376] [PMID: 22331954]
[167]
Crown, J.P.; Diéras, V.; Staroslawska, E.; Yardley, D.A.; Bachelot, T.; Davidson, N.; Wildiers, H.; Fasching, P.A.; Capitain, O.; Ramos, M.; Greil, R.; Cognetti, F.; Fountzilas, G.; Blasinska-Morawiec, M.; Liedtke, C.; Kreienberg, R.; Miller, W.H., Jr; Tassell, V.; Huang, X.; Paolini, J.; Kern, K.A.; Romieu, G. Phase III trial of sunitinib in combination with capecitabine versus capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J. Clin. Oncol., 2013, 31(23), 2870-2878.
[http://dx.doi.org/10.1200/JCO.2012.43.3391] [PMID: 23857972]
[168]
Barrios, C.H.; Liu, M-C.; Lee, S.C.; Vanlemmens, L.; Ferrero, J-M.; Tabei, T.; Pivot, X.; Iwata, H.; Aogi, K.; Lugo-Quintana, R.; Harbeck, N.; Brickman, M.J.; Zhang, K.; Kern, K.A.; Martin, M. Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res. Treat., 2010, 121(1), 121-131.
[http://dx.doi.org/10.1007/s10549-010-0788-0] [PMID: 20339913]
[169]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[170]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1377] [PMID: 17178882]
[171]
Ricci, M.S.; Kim, S-H.; Ogi, K.; Plastaras, J.P.; Ling, J.; Wang, W.; Jin, Z.; Liu, Y.Y.; Dicker, D.T.; Chiao, P.J.; Flaherty, K.T.; Smith, C.D.; El-Deiry, W.S. Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell, 2007, 12(1), 66-80.
[http://dx.doi.org/10.1016/j.ccr.2007.05.006] [PMID: 17613437]
[172]
Zanotto-Filho, A.; Rajamanickam, S.; Loranc, E.; Masamsetti, V.P.; Gorthi, A.; Romero, J.C.; Tonapi, S.; Gonçalves, R.M.; Reddick, R.L.; Benavides, R.; Kuhn, J.; Chen, Y.; Bishop, A.J.R. Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells. Cancer Lett., 2018, 425, 101-115.
[http://dx.doi.org/10.1016/j.canlet.2018.03.037] [PMID: 29608984]
[173]
Sui, J.; Cui, Y.; Cai, H.; Bian, S.; Xu, Z.; Zhou, L.; Sun, Y.; Liang, J.; Fan, Y.; Zhang, X. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale, 2017, 9(8), 2755-2767.
[http://dx.doi.org/10.1039/C6NR09639E] [PMID: 28155940]
[174]
Isaacs, C.; Herbolsheimer, P.; Liu, M.C.; Wilkinson, M.; Ottaviano, Y.; Chung, G.G.; Warren, R.; Eng-Wong, J.; Cohen, P.; Smith, K.L.; Creswell, K.; Novielli, A.; Slack, R. Phase I/II study of sorafenib with anastrozole in patients with hormone receptor positive aromatase inhibitor resistant metastatic breast cancer. Breast Cancer Res. Treat., 2011, 125(1), 137-143.
[http://dx.doi.org/10.1007/s10549-010-1226-z] [PMID: 20976541]
[175]
Moreno-Aspitia, A.; Morton, R.F.; Hillman, D.W.; Lingle, W.L.; Rowland, K.M., Jr; Wiesenfeld, M.; Flynn, P.J.; Fitch, T.R.; Perez, E.A. Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North central cancer treatment group and mayo clinic trial N0336. J. Clin. Oncol., 2009, 27(1), 11-15.
[http://dx.doi.org/10.1200/JCO.2007.15.5242] [PMID: 19047293]
[176]
Mina, L.A.; Yu, M.; Johnson, C.; Burkhardt, C.; Miller, K.D.; Zon, R. A phase II study of combined VEGF inhibitor (bevacizumab+sorafenib) in patients with metastatic breast cancer: Hoosier oncology group study BRE06-109. Invest. New Drugs, 2013, 31(5), 1307-1310.
[http://dx.doi.org/10.1007/s10637-013-9976-1] [PMID: 23812905]
[177]
Mavratzas, A.; Baek, S.; Gerber, B.; Schmidt, M.; Moebus, V.; Foerster, F.; Grischke, E.M.; Fasching, P.; Strumberg, D.; Solomayer, E.; Klare, P.; Windemuth-Kieselbach, C.; Hartmann, S.; Schneeweiss, A.; Marmé, F. Sorafenib in combination with docetaxel as first-line therapy for HER2-negative metastatic breast cancer: Final results of the randomized, double-blind, placebo-controlled phase II MADONNA study. Breast, 2019, 45, 22-28.
[http://dx.doi.org/10.1016/j.breast.2019.02.002] [PMID: 30822621]
[178]
Baselga, J.; Zamagni, C.; Gómez, P.; Bermejo, B.; Nagai, S.E.; Melichar, B. RESILIENCE: Phase III randomized, double-blind trial comparing sorafenib with capecitabine versus placebo with capecitabine in locally advanced or metastatic HER2-negative breast cancer. Clin. Breast Cancer, 2017, 17(8), 585-594.
[http://dx.doi.org/10.1016/j.clbc.2017.05.006]
[179]
Wedge, S.R.; Ogilvie, D.J.; Dukes, M.; Kendrew, J.; Chester, R.; Jackson, J.A.; Boffey, S.J.; Valentine, P.J.; Curwen, J.O.; Musgrove, H.L.; Graham, G.A.; Hughes, G.D.; Thomas, A.P.; Stokes, E.S.; Curry, B.; Richmond, G.H.; Wadsworth, P.F.; Bigley, A.L.; Hennequin, L.F. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res., 2002, 62(16), 4645-4655.
[PMID: 12183421]
[180]
Ciardiello, F.; Caputo, R.; Damiano, V.; Caputo, R.; Troiani, T.; Vitagliano, D.; Carlomagno, F.; Veneziani, B.M.; Fontanini, G.; Bianco, A.R.; Tortora, G. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res., 2003, 9(4), 1546-1556.
[PMID: 12684431]
[181]
Contrasted effects of the multitarget TKi vandetanib on docetaxelsensitive and docetaxel-resistant prostate cancer cell lines.Guérin, O.; Etienne-Grimaldi, M-C.; Monteverde, M.; Sudaka, A.; Brunstein, M-C.; Formento, P., Eds.; Urologic oncology: Seminars and original investigations, Elsevier. 2013.
[182]
Sarkar, S.; Rajput, S.; Tripathi, A.K.; Mandal, M. Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells. Mol. Cancer, 2013, 12(1), 122.
[http://dx.doi.org/10.1186/1476-4598-12-122] [PMID: 24138843]
[183]
Mayer, E.L.; Isakoff, S.J.; Klement, G.; Downing, S.R.; Chen, W.Y.; Hannagan, K.; Gelman, R.; Winer, E.P.; Burstein, H.J. Combination antiangiogenic therapy in advanced breast cancer: A phase 1 trial of vandetanib, a VEGFR inhibitor, and metronomic chemotherapy, with correlative platelet proteomics. Breast Cancer Res. Treat., 2012, 136(1), 169-178.
[http://dx.doi.org/10.1007/s10549-012-2256-5] [PMID: 23001754]
[184]
Miller, K.D.; Trigo, J.M.; Wheeler, C.; Barge, A.; Rowbottom, J.; Sledge, G.; Baselga, J. A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin. Cancer Res., 2005, 11(9), 3369-3376.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1923] [PMID: 15867237]
[185]
Boér, K.; Láng, I.; Llombart-Cussac, A.; Andreasson, I.; Vivanco, G.L.; Sanders, N.; Pover, G.M.; Murray, E. Vandetanib with docetaxel as second-line treatment for advanced breast cancer: A double-blind, placebo-controlled, randomized Phase II study. Invest. New Drugs, 2012, 30(2), 681-687.
[http://dx.doi.org/10.1007/s10637-010-9538-8] [PMID: 20830502]
[186]
Clemons, M.J.; Cochrane, B.; Pond, G.R.; Califaretti, N.; Chia, S.K.; Dent, R.A.; Song, X.; Robidoux, A.; Parpia, S.; Warr, D.; Rayson, D.; Pritchard, K.I.; Levine, M.N. Randomised, phase II, placebo-controlled, trial of fulvestrant plus vandetanib in postmenopausal women with bone only or bone predominant, hormone-receptor-positive metastatic breast cancer (MBC): The OCOG ZAMBONEY study. Breast Cancer Res. Treat., 2014, 146(1), 153-162.
[http://dx.doi.org/10.1007/s10549-014-3015-6] [PMID: 24924416]
[187]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[188]
You, W-K.; Sennino, B.; Williamson, C.W.; Falcón, B.; Hashizume, H.; Yao, L-C.; Aftab, D.T.; McDonald, D.M. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res., 2011, 71(14), 4758-4768.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2527] [PMID: 21613405]
[189]
Torres, K.E.; Zhu, Q-S.; Bill, K.; Lopez, G.; Ghadimi, M.P.; Xie, X.; Young, E.D.; Liu, J.; Nguyen, T.; Bolshakov, S.; Belousov, R.; Wang, S.; Lahat, G.; Liu, J.; Hernandez, B.; Lazar, A.J.; Lev, D. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin. Cancer Res., 2011, 17(12), 3943-3955.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0193] [PMID: 21540237]
[190]
Tolaney, S.M.; Ziehr, D.R.; Guo, H.; Ng, M.R.; Barry, W.T.; Higgins, M.J.; Isakoff, S.J.; Brock, J.E.; Ivanova, E.V.; Paweletz, C.P.; Demeo, M.K.; Ramaiya, N.H.; Overmoyer, B.A.; Jain, R.K.; Winer, E.P.; Duda, D.G. Phase II and biomarker study of cabozantinib in metastatic triple-negative breast cancer patients. Oncologist, 2017, 22(1), 25-32.
[http://dx.doi.org/10.1634/theoncologist.2016-0229] [PMID: 27789775]
[191]
Tolaney, S.M.; Nechushtan, H.; Ron, I-G.; Schöffski, P.; Awada, A.; Yasenchak, C.A.; Laird, A.D.; O’Keeffe, B.; Shapiro, G.I.; Winer, E.P. Cabozantinib for metastatic breast carcinoma: Results of a phase II placebo-controlled randomized discontinuation study. Breast Cancer Res. Treat., 2016, 160(2), 305-312.
[http://dx.doi.org/10.1007/s10549-016-4001-y] [PMID: 27714541]
[192]
Shinagare, A.B.; Somarouthu, B.; Guo, H.; Tolaney, S.M.; Ramaiya, N.H. Occurrence and significance of morphologic changes in patients with metastatic triple negative breast cancer treated with Cabozantinib. Clin. Imaging, 2018, 48, 44-47.
[http://dx.doi.org/10.1016/j.clinimag.2017.09.014] [PMID: 29028513]
[193]
Leone, J.P.; Duda, D.G.; Hu, J.; Barry, W.T.; Trippa, L.; Gerstner, E.R.; Jain, R.K.; Tan, S.; Lawler, E.; Winer, E.P.; Lin, N.U.; Tolaney, S.M. A phase II study of cabozantinib alone or in combination with trastuzumab in breast cancer patients with brain metastases. Breast Cancer Res. Treat., 2020, 179(1), 113-123.
[http://dx.doi.org/10.1007/s10549-019-05445-z] [PMID: 31541381]
[194]
Tian, S.; Quan, H.; Xie, C.; Guo, H.; Lü, F.; Xu, Y.; Li, J.; Lou, L. YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci., 2011, 102(7), 1374-1380.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01939.x] [PMID: 21443688]
[195]
Mi, Y.J.; Liang, Y.J.; Huang, H.B.; Zhao, H.Y.; Wu, C-P.; Wang, F.; Tao, L.Y.; Zhang, C.Z.; Dai, C.L.; Tiwari, A.K.; Ma, X.X.; To, K.K.; Ambudkar, S.V.; Chen, Z.S.; Fu, L.W. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res., 2010, 70(20), 7981-7991.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0111] [PMID: 20876799]
[196]
Zhang, H.; Sun, J.; Ju, W.; Li, B.; Lou, Y.; Zhang, G.; Liang, G.; Luo, X. Apatinib suppresses breast cancer cells proliferation and invasion via angiomotin inhibition. Am. J. Transl. Res., 2019, 11(7), 4460-4469.
[PMID: 31396349]
[197]
Gao, Z.; Shi, M.; Wang, Y.; Chen, J.; Ou, Y. Apatinib enhanced anti-tumor activity of cisplatin on triple-negative breast cancer through inhibition of VEGFR-2. Pathol. Res. Pract., 2019, 215(7), 152422.
[http://dx.doi.org/10.1016/j.prp.2019.04.014] [PMID: 31079851]
[198]
Tong, X.Z.; Wang, F.; Liang, S.; Zhang, X.; He, J.H.; Chen, X-G.; Liang, Y.J.; Mi, Y.J.; To, K.K.; Fu, L.W. Apatinib (YN968D1) enhances the efficacy of conventional chemotherapeutical drugs in side population cells and ABCB1-overexpressing leukemia cells. Biochem. Pharmacol., 2012, 83(5), 586-597.
[http://dx.doi.org/10.1016/j.bcp.2011.12.007] [PMID: 22212563]
[199]
Zhu, A.; Yuan, P.; Hu, N.; Li, M.; Wang, W.; Wang, X.; Yue, J.; Wang, J.; Luo, Y.; Ma, F.; Zhang, P.; Li, Q.; Xu, B.; Cao, S.; Lippi, G.; Naito, Y.; Osman, M.A.; Marta, G.N.; Franceschini, G.; Orlandi, A. Phase II study of apatinib in combination with oral vinorelbine in heavily pretreated HER2-negative metastatic breast cancer and clinical implications of monitoring ctDNA. Cancer Biol. Med., 2021, 18(3), 875-887.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0418] [PMID: 34037346]
[200]
Hu, X.; Cao, J.; Hu, W.; Wu, C.; Pan, Y.; Cai, L.; Tong, Z.; Wang, S.; Li, J.; Wang, Z.; Wang, B.; Chen, X.; Yu, H. Multicenter phase II study of apatinib in non-triple-negative metastatic breast cancer. BMC Cancer, 2014, 14(1), 820.
[http://dx.doi.org/10.1186/1471-2407-14-820] [PMID: 25376790]
[201]
Fan, M.; Zhang, J.; Wang, Z.; Wang, B.; Zhang, Q.; Zheng, C.; Li, T.; Ni, C.; Wu, Z.; Shao, Z.; Hu, X. Phosphorylated VEGFR2 and hypertension: Potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy. Breast Cancer Res. Treat., 2014, 143(1), 141-151.
[http://dx.doi.org/10.1007/s10549-013-2793-6] [PMID: 24292957]
[202]
Ou, K.P.; Li, Q.; Luo, Y.; Lyu, J.J.; Zhou, H.; Yang, Y.; Cai, Y.J.; Wang, Z.J.; Wang, X.; Qi, L.Q.; Ma, F.; Xu, B.H. Efficacy and safety of neoadjuvant apatinib in combination with dose-dense paclitaxel and carboplatin in locally advanced triple negative breast cancer patients. Zhonghua Zhong Liu Za Zhi, 2020, 42(11), 966-971.
[PMID: 33256310]
[203]
Fong, T.A.T.; Shawver, L.K.; Sun, L.; Tang, C.; App, H.; Powell, T.J.; Kim, Y.H.; Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, K.P.; McMahon, G. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res., 1999, 59(1), 99-106.
[PMID: 9892193]
[204]
Vajkoczy, P.; Menger, M.D.; Vollmar, B.; Schilling, L.; Schmiedek, P.; Hirth, K.P.; Ullrich, A.; Fong, T.A. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia, 1999, 1(1), 31-41.
[http://dx.doi.org/10.1038/sj.neo.7900006] [PMID: 10935468]
[205]
Overmoyer, B.; Fu, P.; Hoppel, C.; Radivoyevitch, T.; Shenk, R.; Persons, M.; Silverman, P.; Robertson, K.; Ziats, N.P.; Wasman, J.K.; Abdul-Karim, F.W.; Jesberger, J.A.; Duerk, J.; Hartman, P.; Hanks, S.; Lewin, J.; Dowlati, A.; McCrae, K.; Ivy, P.; Remick, S.C. Inflammatory breast cancer as a model disease to study tumor angiogenesis: Results of a phase IB trial of combination SU5416 and doxorubicin. Clin. Cancer Res., 2007, 13(19), 5862-5868.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0688] [PMID: 17908980]
[206]
Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. Synthesis and biological evaluations of 3-substituted indolin-2-ones: A novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J. Med. Chem., 1998, 41(14), 2588-2603.
[http://dx.doi.org/10.1021/jm980123i] [PMID: 9651163]
[207]
Kataoka, Y.; Mukohara, T.; Tomioka, H.; Funakoshi, Y.; Kiyota, N.; Fujiwara, Y.; Yashiro, M.; Hirakawa, K.; Hirai, M.; Minami, H. Foretinib (GSK1363089), a multi-kinase inhibitor of MET and VEGFRs, inhibits growth of gastric cancer cell lines by blocking inter-receptor tyrosine kinase networks. Invest. New Drugs, 2012, 30(4), 1352-1360.
[http://dx.doi.org/10.1007/s10637-011-9699-0] [PMID: 21655918]
[208]
Qian, F.; Engst, S.; Yamaguchi, K.; Yu, P.; Won, K-A.; Mock, L.; Lou, T.; Tan, J.; Li, C.; Tam, D.; Lougheed, J.; Yakes, F.M.; Bentzien, F.; Xu, W.; Zaks, T.; Wooster, R.; Greshock, J.; Joly, A.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res., 2009, 69(20), 8009-8016.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4889] [PMID: 19808973]
[209]
Rayson, D.; Lupichuk, S.; Potvin, K.; Dent, S.; Shenkier, T.; Dhesy-Thind, S.; Ellard, S.L.; Prady, C.; Salim, M.; Farmer, P.; Allo, G.; Tsao, M.S.; Allan, A.; Ludkovski, O.; Bonomi, M.; Tu, D.; Hagerman, L.; Goodwin, R.; Eisenhauer, E.; Bradbury, P. Canadian cancer trials group IND197: A phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer. Breast Cancer Res. Treat., 2016, 157(1), 109-116.
[http://dx.doi.org/10.1007/s10549-016-3812-1] [PMID: 27116183]
[210]
Chia, S.K.; Ellard, S.L.; Mates, M.; Welch, S.; Mihalcioiu, C.; Miller, W.H., Jr; Gelmon, K.; Lohrisch, C.; Kumar, V.; Taylor, S.; Hagerman, L.; Goodwin, R.; Wang, T.; Sakashita, S.; Tsao, M.S.; Eisenhauer, E.; Bradbury, P. A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Breast Cancer Res., 2017, 19(1), 54.
[http://dx.doi.org/10.1186/s13058-017-0836-3] [PMID: 28464908]
[211]
Zhou, S.; Liao, H.; Liu, M.; Feng, G.; Fu, B.; Li, R.; Cheng, M.; Zhao, Y.; Gong, P. Discovery andw biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy)quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2014, 22(22), 6438-6452.
[http://dx.doi.org/10.1016/j.bmc.2014.09.037] [PMID: 25438768]
[212]
Bhide, R.S.; Cai, Z-W.; Zhang, Y-Z.; Qian, L.; Wei, D.; Barbosa, S.; Lombardo, L.J.; Borzilleri, R.M.; Zheng, X.; Wu, L.I.; Barrish, J.C.; Kim, S.H.; Leavitt, K.; Mathur, A.; Leith, L.; Chao, S.; Wautlet, B.; Mortillo, S.; Jeyaseelan, R., Sr; Kukral, D.; Hunt, J.T.; Kamath, A.; Fura, A.; Vyas, V.; Marathe, P.; D’Arienzo, C.; Derbin, G.; Fargnoli, J. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J. Med. Chem., 2006, 49(7), 2143-2146.
[http://dx.doi.org/10.1021/jm051106d] [PMID: 16570908]
[213]
Huynh, H.; Ngo, V.C.; Fargnoli, J.; Ayers, M.; Soo, K.C.; Koong, H.N.; Thng, C.H.; Ong, H.S.; Chung, A.; Chow, P.; Pollock, P.; Byron, S.; Tran, E. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res., 2008, 14(19), 6146-6153.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0509] [PMID: 18829493]
[214]
Patel, R.R.; Sengupta, S.; Kim, H.R.; Klein-Szanto, A.J.; Pyle, J.R.; Zhu, F.; Li, T.; Ross, E.A.; Oseni, S.; Fargnoli, J.; Jordan, V.C. Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: A potential clinical application of angiogenesis inhibitors. Eur. J. Cancer, 2010, 46(9), 1537-1553.
[http://dx.doi.org/10.1016/j.ejca.2010.02.018] [PMID: 20303261]
[215]
Schöffski, P.; Gordon, M.; Smith, D.C.; Kurzrock, R.; Daud, A.; Vogelzang, N.J.; Lee, Y.; Scheffold, C.; Shapiro, G.I. Phase II randomised discontinuation trial of cabozantinib in patients with advanced solid tumours. Eur. J. Cancer, 2017, 86, 296-304.
[http://dx.doi.org/10.1016/j.ejca.2017.09.011] [PMID: 29059635]
[216]
Wang, X.; Sinn, A.L.; Pollok, K.; Sandusky, G.; Zhang, S.; Chen, L.; Liang, J.; Crean, C.D.; Suvannasankha, A.; Abonour, R.; Sidor, C.; Bray, M.R.; Farag, S.S. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br. J. Haematol., 2010, 150(3), 313-325.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08248.x] [PMID: 20560971]
[217]
Fletcher, G.C.; Brokx, R.D.; Denny, T.A.; Hembrough, T.A.; Plum, S.M.; Fogler, W.E.; Sidor, C.F.; Bray, M.R. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther., 2011, 10(1), 126-137.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0574] [PMID: 21177375]
[218]
Ionkina, A.A.; Tentler, J.J.; Kim, J.; Capasso, A.; Pitts, T.M.; Ryall, K.A.; Howison, R.R.; Kabos, P.; Sartorius, C.A.; Tan, A.C.; Eckhardt, S.G.; Diamond, J.R. Efficacy and molecular mechanisms of differentiated response to the Aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical models of p53-mutated triple-negative breast cancer. Front. Oncol., 2017, 7, 94.
[http://dx.doi.org/10.3389/fonc.2017.00094] [PMID: 28555173]
[219]
Diamond, J.R.; Eckhardt, S.G.; Tan, A.C.; Newton, T.P.; Selby, H.M.; Brunkow, K.L.; Kachaeva, M.I.; Varella-Garcia, M.; Pitts, T.M.; Bray, M.R.; Fletcher, G.C.; Tentler, J.J. Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin. Cancer Res., 2013, 19(1), 291-303.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1611] [PMID: 23136197]
[220]
Diamond, J.R.; Eckhardt, S.G.; Pitts, T.M.; van Bokhoven, A.; Aisner, D.; Gustafson, D.L.; Capasso, A.; Sams, S.; Kabos, P.; Zolman, K.; Colvin, T.; Elias, A.D.; Storniolo, A.M.; Schneider, B.P.; Gao, D.; Tentler, J.J.; Borges, V.F.; Miller, K.D. A phase II clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or metastatic triple-negative breast cancer. Breast Cancer Res., 2018, 20(1), 82.
[http://dx.doi.org/10.1186/s13058-018-1014-y] [PMID: 30071865]
[221]
Shao, W.; Li, S.; Li, L.; Lin, K.; Liu, X.; Wang, H.; Wang, H.; Wang, D. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun. Protein Cell, 2019, 10(3), 161-177.
[http://dx.doi.org/10.1007/s13238-018-0533-8] [PMID: 29667003]
[222]
Ye, T.; Wei, X.; Yin, T.; Xia, Y.; Li, D.; Shao, B.; Song, X.; He, S.; Luo, M.; Gao, X.; He, Z.; Luo, C.; Xiong, Y.; Wang, N.; Zeng, J.; Zhao, L.; Shen, G.; Xie, Y.; Yu, L.; Wei, Y. Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis. Breast Cancer Res. Treat., 2014, 143(3), 435-446.
[http://dx.doi.org/10.1007/s10549-013-2829-y] [PMID: 24398778]
[223]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[224]
Huang, W-S.; Metcalf, C.A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R.M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; Romero, J.; Qi, J.; Chen, I.; Banda, G.; Lentini, S.P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J.T.; Broudy, M.I.; Russian, K.; Zhou, T.; Commodore, L.; Narasimhan, N.I.; Mohemmad, Q.K.; Iuliucci, J.; Rivera, V.M.; Dalgarno, D.C.; Sawyer, T.K.; Clackson, T.; Shakespeare, W.C. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenylbenzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J. Med. Chem., 2010, 53(12), 4701-4719.
[http://dx.doi.org/10.1021/jm100395q] [PMID: 20513156]
[225]
Hamby, J.M.; Connolly, C.J.; Schroeder, M.C.; Winters, R.T.; Showalter, H.D.; Panek, R.L.; Major, T.C.; Olsewski, B.; Ryan, M.J.; Dahring, T.; Lu, G.H.; Keiser, J.; Amar, A.; Shen, C.; Kraker, A.J.; Slintak, V.; Nelson, J.M.; Fry, D.W.; Bradford, L.; Hallak, H.; Doherty, A.M. Structure-activity relationships for a novel series of pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. J. Med. Chem., 1997, 40(15), 2296-2303.
[http://dx.doi.org/10.1021/jm970367n] [PMID: 9240345]
[226]
Cee, V.J.; Albrecht, B.K.; Geuns-Meyer, S.; Hughes, P.; Bellon, S.; Bready, J.; Caenepeel, S.; Chaffee, S.C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hodous, B.L.; Hoffman, D.; Johnson, R.E.; Kendall, R.; Kim, J.L.; Long, A.M.; McGowan, D.; Morrison, M.; Olivieri, P.R.; Patel, V.F.; Polverino, A.; Powers, D.; Rose, P.; Wang, L.; Zhao, H. Alkynylpyrimidine amide derivatives as potent, selective, and orally active inhibitors of Tie-2 kinase. J. Med. Chem., 2007, 50(4), 627-640.
[http://dx.doi.org/10.1021/jm061112p] [PMID: 17253679]
[227]
Mohammadi, M.; Froum, S.; Hamby, J.M.; Schroeder, M.C.; Panek, R.L.; Lu, G.H.; Eliseenkova, A.V.; Green, D.; Schlessinger, J.; Hubbard, S.R. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J., 1998, 17(20), 5896-5904.
[http://dx.doi.org/10.1093/emboj/17.20.5896] [PMID: 9774334]

© 2024 Bentham Science Publishers | Privacy Policy