Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of the Bone Marrow Microenvironment in Drug Resistance of Hematological Malignances

Author(s): Alireza Hosseini, Michael R. Hamblin, Hamed Mirzaei* and Hamid R. Mirzaei*

Volume 29, Issue 13, 2022

Published on: 07 January, 2022

Page: [2290 - 2305] Pages: 16

DOI: 10.2174/0929867328666210910124319

Price: $65

Abstract

The unique features of the tumor microenvironment (TME) govern the biological properties of many cancers, including hematological malignancies. TME factors can trigger an invasion and protect against drug cytotoxicity by inhibiting apoptosis and activating specific signaling pathways (e.g. NF-ΚB). TME remodeling is facilitated due to the high self-renewal ability of the bone marrow. Progressing tumor cells can alter some extracellular matrix (ECM) components which act as a barrier to drug penetration in the TME. The initial progression of the cell cycle is controlled by the MAPK pathway (Raf/MEK/ERK) and Hippo pathway, while the final phase is regulated by the PI3K/Akt /mTOR and WNT pathways. This review summarizes the main signaling pathways involved in drug resistance (DR) and some mechanisms by which DR can occur in the bone marrow. The relationship between autophagy, endoplasmic reticulum stress, and cellular signaling pathways in DR and apoptosis is covered in the TME.

Keywords: Drug resistance, hematological malignancies, tumor microenvironment, autophagy, endoplasmic reticulum stress, ECM.

[1]
Meads, M.B.; Hazlehurst, L.A.; Dalton, W.S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res., 2008, 14(9), 2519-2526.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2223] [PMID: 18451212]
[2]
Coldman, A.J.; Goldie, J.H. A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull. Math. Biol., 1986, 48(3-4), 279-292.
[http://dx.doi.org/10.1016/S0092-8240(86)90028-5] [PMID: 3828558]
[3]
Shen, M.; Kang, Y. Complex interplay between tumor microenvironment and cancer therapy. Front. Med., 2018, 12(4), 426-439.
[http://dx.doi.org/10.1007/s11684-018-0663-7] [PMID: 30097962]
[4]
Hirata, E.; Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med., 2017, 7(7)a026781
[http://dx.doi.org/10.1101/cshperspect.a026781] [PMID: 28213438]
[5]
Wu, J.S.; Sheng, S.R.; Liang, X.H.; Tang, Y.L. The role of tumor microenvironment in collective tumor cell invasion. Future Oncol., 2017, 13(11), 991-1002.
[http://dx.doi.org/10.2217/fon-2016-0501] [PMID: 28075171]
[6]
Meads, M.B.; Gatenby, R.A.; Dalton, W.S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer, 2009, 9(9), 665-674.
[http://dx.doi.org/10.1038/nrc2714] [PMID: 19693095]
[7]
Senthebane, D.A.; Rowe, A.; Thomford, N.E.; Shipanga, H.; Munro, D.; Mazeedi, M.A.M.A.; Almazyadi, H.A.M.; Kallmeyer, K.; Dandara, C.; Pepper, M.S.; Parker, M.I.; Dzobo, K. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci., 2017, 18(7), 1586.
[http://dx.doi.org/10.3390/ijms18071586] [PMID: 28754000]
[8]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[9]
Faurobert, E.; Bouin, A-P.; Albiges-Rizo, C. Microenvironment, tumor cell plasticity, and cancer. Curr. Opin. Oncol., 2015, 27(1), 64-70.
[http://dx.doi.org/10.1097/CCO.0000000000000154] [PMID: 25415136]
[10]
Votteler, M.; Kluger, P.J.; Walles, H.; Schenke-Layland, K. Stem cell microenvironments-unveiling the secret of how stem cell fate is defined. Macromol. Biosci., 2010, 10(11), 1302-1315.
[http://dx.doi.org/10.1002/mabi.201000102] [PMID: 20715131]
[11]
Spranger, S.; Gajewski, T.F. Tumor-intrinsic oncogene pathways mediating immune avoidance. OncoImmunology, 2015, 5(3)e1086862
[http://dx.doi.org/10.1080/2162402X.2015.1086862] [PMID: 27141343]
[12]
Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31.
[http://dx.doi.org/10.1038/s41568-018-0081-9] [PMID: 30532012]
[13]
Yang, L.; Li, A.; Lei, Q.; Zhang, Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J. Hematol. Oncol., 2019, 12(1), 125.
[http://dx.doi.org/10.1186/s13045-019-0804-8] [PMID: 31775797]
[14]
Nussinov, R.; Tsai, C-J.; Jang, H. A new view of pathway-driven drug resistance in tumor proliferation. Trends Pharmacol. Sci., 2017, 38(5), 427-437.
[http://dx.doi.org/10.1016/j.tips.2017.02.001] [PMID: 28245913]
[15]
Nussinov, R.; Tsai, C-J.; Jang, H.; Korcsmáros, T.; Csermely, P. Oncogenic KRAS signaling and YAP1/β-catenin: Similar cell cycle control in tumor initiation. Seminars in cell & developmental biology; Elsevier, 2016, pp. 79-85.
[16]
Nussinov, R.; Tsai, C-J.; Jang, H. Independent and core pathways in oncogenic KRAS signaling; Taylor & Francis, 2016.
[http://dx.doi.org/10.1080/14789450.2016.1209417]
[17]
Zhao, Y.; Yang, X. The Hippo pathway in chemotherapeutic drug resistance. Int. J. Cancer, 2015, 137(12), 2767-2773.
[http://dx.doi.org/10.1002/ijc.29293] [PMID: 25348697]
[18]
Kawahara, M.; Hori, T.; Chonabayashi, K.; Oka, T.; Sudol, M.; Uchiyama, T. Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood, 2008, 112(9), 3856-3866.
[http://dx.doi.org/10.1182/blood-2007-09-111773] [PMID: 18565851]
[19]
Lei, Q-Y.; Zhang, H.; Zhao, B.; Zha, Z-Y.; Bai, F.; Pei, X-H.; Zhao, S.; Xiong, Y.; Guan, K-L. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol., 2008, 28(7), 2426-2436.
[http://dx.doi.org/10.1128/MCB.01874-07] [PMID: 18227151]
[20]
Song, S.; Ajani, J.A.; Honjo, S.; Maru, D.M.; Chen, Q.; Scott, A.W.; Heallen, T.R.; Xiao, L.; Hofstetter, W.L.; Weston, B.; Lee, J.H.; Wadhwa, R.; Sudo, K.; Stroehlein, J.R.; Martin, J.F.; Hung, M.C.; Johnson, R.L. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res., 2014, 74(15), 4170-4182.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3569] [PMID: 24906622]
[21]
Thornton, T.M.; Rincon, M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int. J. Biol. Sci., 2009, 5(1), 44-51.
[http://dx.doi.org/10.7150/ijbs.5.44] [PMID: 19159010]
[22]
Gao, F.; Liu, W.J. Advance in the study on p38 MAPK mediated drug resistance in leukemia. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(6), 1064-1070.
[PMID: 27049258]
[23]
Colosetti, P.; Puissant, A.; Robert, G.; Luciano, F.; Jacquel, A.; Gounon, P.; Cassuto, J-P.; Auberger, P. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy, 2009, 5(8), 1092-1098.
[http://dx.doi.org/10.4161/auto.5.8.9889] [PMID: 19786835]
[24]
Zhao, C.; Li, H.; Lin, H-J.; Yang, S.; Lin, J.; Liang, G. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol. Sci., 2016, 37(1), 47-61.
[http://dx.doi.org/10.1016/j.tips.2015.10.001] [PMID: 26576830]
[25]
Garraway, L.A.; Jänne, P.A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov., 2012, 2(3), 214-226.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0012] [PMID: 22585993]
[26]
Cardama, G.A.; Alonso, D.F.; González, N.; Maggio, J.; Gomez, D.E.; Rolfo, C.; Menna, P.L. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics. Crit. Rev. Oncol. Hematol., 2018, 124, 29-36.
[http://dx.doi.org/10.1016/j.critrevonc.2018.01.012] [PMID: 29548483]
[27]
Hofbauer, S.W.; Krenn, P.W.; Ganghammer, S.; Asslaber, D.; Pichler, U.; Oberascher, K.; Henschler, R.; Wallner, M.; Kerschbaum, H.; Greil, R.; Hartmann, T.N. Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells. Blood, 2014, 123(14), 2181-2188.
[http://dx.doi.org/10.1182/blood-2013-08-523563] [PMID: 24501217]
[28]
Fu, D.; Li, Y.; Li, J.; Shi, X.; Yang, R.; Zhong, Y.; Wang, H.; Liao, A. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells. Mol. Cell. Biochem., 2017, 424(1-2), 185-193.
[http://dx.doi.org/10.1007/s11010-016-2854-3] [PMID: 27785703]
[29]
Rauch, N.; Rukhlenko, O.S.; Kolch, W.; Kholodenko, B.N. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr. Opin. Struct. Biol., 2016, 41, 151-158.
[http://dx.doi.org/10.1016/j.sbi.2016.07.019] [PMID: 27521656]
[30]
Kholodenko, B.N. Drug resistance resulting from kinase dimerization is rationalized by thermodynamic factors describing allosteric inhibitor effects. Cell Rep., 2015, 12(11), 1939-1949.
[http://dx.doi.org/10.1016/j.celrep.2015.08.014] [PMID: 26344764]
[31]
Rozengurt, E.; Soares, H.P.; Sinnet-Smith, J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol. Cancer Ther., 2014, 13(11), 2477-2488.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0330] [PMID: 25323681]
[32]
Han, F.; Li, C-F.; Cai, Z.; Zhang, X.; Jin, G.; Zhang, W-N.; Xu, C.; Wang, C-Y.; Morrow, J.; Zhang, S.; Xu, D.; Wang, G.; Lin, H.K. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat. Commun., 2018, 9(1), 4728.
[http://dx.doi.org/10.1038/s41467-018-07188-9] [PMID: 30413706]
[33]
Cohen-Solal, K.A.; Kaufman, H.L.; Lasfar, A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res., 2018, 31(2), 241-252.
[http://dx.doi.org/10.1111/pcmr.12666] [PMID: 29090514]
[34]
Hoang, B.; Benavides, A.; Shi, Y.; Yang, Y.; Frost, P.; Gera, J.; Lichtenstein, A. The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J. Biol. Chem., 2012, 287(26), 21796-21805.
[http://dx.doi.org/10.1074/jbc.M111.304626] [PMID: 22556409]
[35]
Turturro, F. Constitutive NF-κB activation underlines major mechanism of drug resistance in relapsed refractory diffuse large B cell lymphoma. BioMed Res. Int., 2015, 2015484537
[http://dx.doi.org/10.1155/2015/484537] [PMID: 25984532]
[36]
Hertlein, E.; Byrd, J.C. Signalling to drug resistance in CLL. Best Pract. Res. Clin. Haematol., 2010, 23(1), 121-131.
[http://dx.doi.org/10.1016/j.beha.2010.01.007] [PMID: 20620976]
[37]
Ivanov, V.; Coso, D.; Chetaille, B.; Esterni, B.; Olive, D.; Aurran-Schleinitz, T.; Schiano, J.M.; Stoppa, A-M.; Broussais-Guillaumot, F.; Blaise, D.; Bouabdallah, R. Efficacy and safety of lenalinomide combined with rituximab in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk. Lymphoma, 2014, 55(11), 2508-2513.
[http://dx.doi.org/10.3109/10428194.2014.889822] [PMID: 24506467]
[38]
Poli, V.; Camporeale, A. STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front. Oncol., 2015, 5, 121.
[http://dx.doi.org/10.3389/fonc.2015.00121] [PMID: 26106584]
[39]
Barré, B.; Vigneron, A.; Perkins, N.; Roninson, I.B.; Gamelin, E.; Coqueret, O. The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol. Med., 2007, 13(1), 4-11.
[http://dx.doi.org/10.1016/j.molmed.2006.11.001] [PMID: 17118707]
[40]
Wang, Z.; Li, Y.; Ahmad, A.; Azmi, A.S.; Banerjee, S.; Kong, D.; Sarkar, F.H. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim. Biophys. Acta, 2010, 1806(2), 258-267.
[PMID: 20600632]
[41]
Martz, C.A.; Ottina, K.A.; Singleton, K.R.; Jasper, J.S.; Wardell, S.E.; Peraza-Penton, A.; Anderson, G.R.; Winter, P.S.; Wang, T.; Alley, H.M.; Kwong, L.N.; Cooper, Z.A.; Tetzlaff, M.; Chen, P.L.; Rathmell, J.C.; Flaherty, K.T.; Wargo, J.A.; McDonnell, D.P.; Sabatini, D.M.; Wood, K.C. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci. Signal., 2014, 7(357), ra121-ra121.
[http://dx.doi.org/10.1126/scisignal.aaa1877] [PMID: 25538079]
[42]
Rhind, N.; Russell, P. Signaling pathways that regulate cell division. Cold Spring Harb. Perspect. Biol., 2012, 4(10), 4.
[http://dx.doi.org/10.1101/cshperspect.a005942] [PMID: 23028116]
[43]
Bagnyukova, T.V.; Serebriiskii, I.G.; Zhou, Y.; Hopper-Borge, E.A.; Golemis, E.A.; Astsaturov, I. Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer Biol. Ther., 2010, 10(9), 839-853.
[http://dx.doi.org/10.4161/cbt.10.9.13738] [PMID: 20935499]
[44]
Chen, Y-f.; Fu, L-w. Mechanisms of acquired resistance to tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2011, 1, 197-207.
[http://dx.doi.org/10.1016/j.apsb.2011.10.007]
[45]
Di Nicolantonio, F.; Mercer, S.J.; Knight, L.A.; Gabriel, F.G.; Whitehouse, P.A.; Sharma, S.; Fernando, A.; Glaysher, S.; Di Palma, S.; Johnson, P.; Somers, S.S.; Toh, S.; Higgins, B.; Lamont, A.; Gulliford, T.; Hurren, J.; Yiangou, C.; Cree, I.A. Cancer cell adaptation to chemotherapy. BMC Cancer, 2005, 5, 78.
[http://dx.doi.org/10.1186/1471-2407-5-78] [PMID: 16026610]
[46]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[47]
Bar-Natan, M.; Nelson, E.A.; Xiang, M.; Frank, D.A. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAK-STAT, 2012, 1(2), 55-64.
[http://dx.doi.org/10.4161/jkst.20006] [PMID: 24058751]
[48]
Park, J.H.; Shin, J.E.; Park, H.W. The role of hippo pathway in cancer stem cell biology. Mol. Cells, 2018, 41(2), 83-92.
[PMID: 29429151]
[49]
Rezaei, S.; Mahjoubin-Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Movahedpour, A.; Khan, H.; Moghoofei, M.; Shojaei, Z.; Hamblin, R. M.; Mirzaei, H. Autophagy-related microRNAs in chronic lung diseases and lung cancer. Crit. Rev. Oncol. Hematol., 2020, 153103063
[http://dx.doi.org/10.1016/j.critrevonc.2020.103063] [PMID: 32712519]
[50]
Pourhanifeh, M.H.; Vosough, M.; Mahjoubin-Tehran, M.; Hashemipour, M.; Nejati, M.; Abbasi-Kolli, M.; Sahebkar, A.; Mirzaei, H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol. Res., 2020, 161105133
[http://dx.doi.org/10.1016/j.phrs.2020.105133] [PMID: 32822869]
[51]
Das, C.K.; Mandal, M.; Kögel, D. Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev., 2018, 37(4), 749-766.
[http://dx.doi.org/10.1007/s10555-018-9727-z] [PMID: 29536228]
[52]
Hu, Y-L.; DeLay, M.; Jahangiri, A.; Molinaro, A.M.; Rose, S.D.; Carbonell, W.S.; Aghi, M.K. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res., 2012, 72(7), 1773-1783.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3831] [PMID: 22447568]
[53]
Bhalla, S.; Evens, A.M.; Prachand, S.; Schumacker, P.T.; Gordon, L.I. Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α) by histone deacetylase inhibitor in diffuse large B-cell lymphoma. PLoS One, 2013, 8(11)e81333
[http://dx.doi.org/10.1371/journal.pone.0081333] [PMID: 24312289]
[54]
Smith, A.G.; Macleod, K.F. Autophagy, cancer stem cells and drug resistance. J. Pathol., 2019, 247(5), 708-718.
[http://dx.doi.org/10.1002/path.5222] [PMID: 30570140]
[55]
Hasmim, M.; Janji, B.; Khaled, M.; Noman, M.Z.; Louache, F.; Bordereaux, D.; Abderamane, A.; Baud, V.; Mami-Chouaib, F.; Chouaib, S. Cutting edge: NANOG activates autophagy under hypoxic stress by binding to BNIP3L promoter. J. Immunol., 2017, 198(4), 1423-1428.
[http://dx.doi.org/10.4049/jimmunol.1600981] [PMID: 28093523]
[56]
Rothe, K.; Porter, V.; Jiang, X. Current outlook on autophagy in human leukemia: foe in cancer stem cells and drug resistance, friend in new therapeutic interventions. Int. J. Mol. Sci., 2019, 20(3), 461.
[http://dx.doi.org/10.3390/ijms20030461] [PMID: 30678185]
[57]
Li, Y-J.; Lei, Y-H.; Yao, N.; Wang, C-R.; Hu, N.; Ye, W-C.; Zhang, D-M.; Chen, Z-S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[58]
Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer, 2005, 5(9), 726-734.
[http://dx.doi.org/10.1038/nrc1692] [PMID: 16148885]
[59]
Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4, e838-e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[60]
Desantis, V.; Saltarella, I.; Lamanuzzi, A.; Mariggiò, M.A.; Racanelli, V.; Vacca, A.; Frassanito, M.A. Autophagy: a new mechanism of prosurvival and drug resistance in multiple myeloma. Transl. Oncol., 2018, 11(6), 1350-1357.
[http://dx.doi.org/10.1016/j.tranon.2018.08.014] [PMID: 30196237]
[61]
Cea, M.; Cagnetta, A.; Fulciniti, M.; Tai, Y-T.; Hideshima, T.; Chauhan, D.; Roccaro, A.; Sacco, A.; Calimeri, T.; Cottini, F.; Jakubikova, J.; Kong, S.Y.; Patrone, F.; Nencioni, A.; Gobbi, M.; Richardson, P.; Munshi, N.; Anderson, K.C. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood, 2012, 120(17), 3519-3529.
[http://dx.doi.org/10.1182/blood-2012-03-416776] [PMID: 22955917]
[62]
Auberger, P.; Puissant, A. Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood, 2017, 129(5), 547-552.
[http://dx.doi.org/10.1182/blood-2016-07-692707] [PMID: 27956388]
[63]
Li, Y.; Zeng, X.; Wang, S.; Fan, J.; Wang, Z.; Song, P.; Mei, X.; Ju, D. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase. Tumour Biol., 2016, 37(5), 6627-6635.
[http://dx.doi.org/10.1007/s13277-015-4253-x] [PMID: 26643895]
[64]
Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sánchez-Martín, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A.; Castillo, M.; Haydu, J.E.; Márquez, J.; Matés, J.M.; Kung, A.L.; Rayport, S.; Cordon-Cardo, C.; DeBerardinis, R.J.; Ferrando, A.A. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med., 2015, 21(10), 1182-1189.
[http://dx.doi.org/10.1038/nm.3955] [PMID: 26390244]
[65]
Duan, X.; Chen, B.; Cui, Y.; Zhou, L.; Wu, C.; Yang, Z.; Wen, Y.; Miao, X.; Li, Q.; Xiong, L. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis : an international journal on programmed cell death, 2018, 23, 587-606.
[66]
Lima, K.; Carlos, J.A.E.G.; Alves-Paiva, R.M.; Vicari, H.P.; Souza Santos, F.P.; Hamerschlak, N.; Costa-Lotufo, L.V.; Traina, F.; Machado-Neto, J.A. Reversine exhibits antineoplastic activity in JAK2V617F-positive myeloproliferative neoplasms. Sci. Rep., 2019, 9(1), 9895.
[http://dx.doi.org/10.1038/s41598-019-46163-2] [PMID: 31289316]
[67]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[68]
Nakanishi, T.; Song, Y.; He, C.; Wang, D.; Morita, K.; Tsukada, J.; Kanazawa, T.; Yoshida, Y. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia. PeerJ, 2016, 4e2026
[http://dx.doi.org/10.7717/peerj.2026] [PMID: 27190722]
[69]
Watson, A.S.; Riffelmacher, T.; Stranks, A.; Williams, O.; De Boer, J.; Cain, K.; MacFarlane, M.; McGouran, J.; Kessler, B.; Khandwala, S.; Chowdhury, O.; Puleston, D.; Phadwal, K.; Mortensen, M.; Ferguson, D.; Soilleux, E.; Woll, P.; Jacobsen, S.E.; Simon, A.K. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov., 2015, 1, 1-10.
[http://dx.doi.org/10.1038/cddiscovery.2015.8] [PMID: 26568842]
[70]
Wang, M.; Zhang, J.; Huang, Y.; Ji, S.; Shao, G.; Feng, S.; Chen, D.; Zhao, K.; Wang, Z.; Wu, A. Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells. Med. Sci. Monit., 2017, 23, 3904-3912.
[http://dx.doi.org/10.12659/MSM.902870] [PMID: 28802099]
[71]
No, J.H.; Kim, Y.B.; Song, Y.S. Targeting nrf2 signaling to combat chemoresistance. J. Cancer Prev., 2014, 19(2), 111-117.
[http://dx.doi.org/10.15430/JCP.2014.19.2.111] [PMID: 25337579]
[72]
Chevet, E.; Hetz, C.; Samali, A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov., 2015, 5(6), 586-597.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1490] [PMID: 25977222]
[73]
Bahar, E.; Kim, J-Y.; Yoon, H. Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers (Basel), 2019, 11(3), 338.
[http://dx.doi.org/10.3390/cancers11030338] [PMID: 30857233]
[74]
Ri, M. Endoplasmic-reticulum stress pathway-associated mechanisms of action of proteasome inhibitors in multiple myeloma. Int. J. Hematol., 2016, 104(3), 273-280.
[http://dx.doi.org/10.1007/s12185-016-2016-0] [PMID: 27169614]
[75]
Hu, P.; Han, Z.; Couvillon, A.D.; Exton, J.H. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem., 2004, 279(47), 49420-49429.
[http://dx.doi.org/10.1074/jbc.M407700200] [PMID: 15339911]
[76]
Ranganathan, A.C.; Adam, A.P.; Aguirre-Ghiso, J.A. Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle, 2006, 5(16), 1799-1807.
[http://dx.doi.org/10.4161/cc.5.16.3109] [PMID: 16929185]
[77]
Ma, Y.; Hendershot, L.M. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J. Biol. Chem., 2003, 278(37), 34864-34873.
[http://dx.doi.org/10.1074/jbc.M301107200] [PMID: 12840028]
[78]
Høyer-Hansen, M.; Jäättelä, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ., 2007, 14(9), 1576-1582.
[http://dx.doi.org/10.1038/sj.cdd.4402200] [PMID: 17612585]
[79]
Fu, Y-F.; Liu, X.; Gao, M.; Zhang, Y-N.; Liu, J. Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3K/Akt/mTOR signaling pathway. Oncotarget, 2017, 8(37), 61093-61106.
[http://dx.doi.org/10.18632/oncotarget.17862] [PMID: 28977849]
[80]
Yadav, R.K.; Chae, S-W.; Kim, H-R.; Chae, H.J. Endoplasmic reticulum stress and cancer. J. Cancer Prev., 2014, 19(2), 75-88.
[http://dx.doi.org/10.15430/JCP.2014.19.2.75] [PMID: 25337575]
[81]
Nikesitch, N.; Lee, J.M.; Ling, S.; Roberts, T.L. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin. Transl. Immunology, 2018, 7(1)e1007
[http://dx.doi.org/10.1002/cti2.1007] [PMID: 29484184]
[82]
Huang, S.; Xing, Y.; Liu, Y. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J. Biol. Chem., 2019, 294(49), 18726-18741.
[http://dx.doi.org/10.1074/jbc.REV119.007036] [PMID: 31666338]
[83]
Schleicher, S.M.; Moretti, L.; Varki, V.; Lu, B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches. Drug Resist. Updat., 2010, 13(3), 79-86.
[http://dx.doi.org/10.1016/j.drup.2010.04.002] [PMID: 20471904]
[84]
Li, Z.; Li, Z. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim. Biophys. Acta, 2012, 1826(1), 13-22.
[PMID: 22426159]
[85]
Nikesitch, N.; Tao, C.; Lai, K.; Killingsworth, M.; Bae, S.; Wang, M.; Harrison, S.; Roberts, T.L.; Ling, S.C. Predicting the response of multiple myeloma to the proteasome inhibitor Bortezomib by evaluation of the unfolded protein response. Blood Cancer J., 2016, 6, e432-e432.
[http://dx.doi.org/10.1038/bcj.2016.40] [PMID: 27284736]
[86]
Casals, E.; Gusta, M.F.; Cobaleda-Siles, M.; Garcia-Sanz, A.; Puntes, V.F. Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol., 2017, 8(1), 7.
[http://dx.doi.org/10.1186/s12645-017-0030-4] [PMID: 29104700]
[87]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[88]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[89]
Goler-Baron, V.; Assaraf, Y.G. Overcoming multidrug resistance via photodestruction of ABCG2-rich extracellular vesicles sequestering photosensitive chemotherapeutics. PLoS One, 2012, 7(4)e35487
[http://dx.doi.org/10.1371/journal.pone.0035487] [PMID: 22530032]
[90]
Kurohane, K.; Tominaga, A.; Sato, K.; North, J.R.; Namba, Y.; Oku, N. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett., 2001, 167(1), 49-56.
[http://dx.doi.org/10.1016/S0304-3835(01)00475-X] [PMID: 11323098]
[91]
Fingar, V.H.; Kik, P.K.; Haydon, P.S.; Cerrito, P.B.; Tseng, M.; Abang, E.; Wieman, T.J. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br. J. Cancer, 1999, 79(11-12), 1702-1708.
[http://dx.doi.org/10.1038/sj.bjc.6690271] [PMID: 10206280]
[92]
Chen, B.; Pogue, B.W.; Hoopes, P.J.; Hasan, T. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int. J. Radiat. Oncol. Biol. Phys., 2005, 61(4), 1216-1226.
[http://dx.doi.org/10.1016/j.ijrobp.2004.08.006] [PMID: 15752904]
[93]
Schmidt-Erfurth, U.; Hasan, T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv. Ophthalmol., 2000, 45(3), 195-214.
[http://dx.doi.org/10.1016/S0039-6257(00)00158-2] [PMID: 11094244]
[94]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[95]
Alison, M.R.; Lim, S.M.; Nicholson, L.J. Cancer stem cells: problems for therapy? J. Pathol., 2011, 223(2), 147-161.
[http://dx.doi.org/10.1002/path.2793] [PMID: 21125672]
[96]
Shlush, L.I.; Mitchell, A.; Heisler, L.; Abelson, S.; Ng, S.W.K.; Trotman-Grant, A.; Medeiros, J.J.F.; Rao-Bhatia, A.; Jaciw-Zurakowsky, I.; Marke, R.; McLeod, J.L.; Doedens, M.; Bader, G.; Voisin, V.; Xu, C.; McPherson, J.D.; Hudson, T.J.; Wang, J.C.Y.; Minden, M.D.; Dick, J.E. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 2017, 547(7661), 104-108.
[http://dx.doi.org/10.1038/nature22993] [PMID: 28658204]
[97]
Fang, D.; Kitamura, H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int. J. Urol., 2018, 25, 7-17.
[98]
Chen, J.; Li, Y.; Yu, T.S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 2012, 488(7412), 522-526.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[99]
Yang, Z.J.; Wechsler-Reya, R.J. Hit 'em where they live: targeting the cancer stem cell niche. Cancer Cell, 2007, 11(1), 3-5.
[http://dx.doi.org/10.1016/j.ccr.2006.12.007] [PMID: 17222787]
[100]
Pattabiraman, D.R.; Weinberg, R.A. Tackling the cancer stem cells - what challenges do they pose? Nat. Rev. Drug Discov., 2014, 13(7), 497-512.
[http://dx.doi.org/10.1038/nrd4253] [PMID: 24981363]
[101]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8(10), 755-768.
[http://dx.doi.org/10.1038/nrc2499] [PMID: 18784658]
[102]
Shlush, L.I.; Zandi, S.; Mitchell, A.; Chen, W.C.; Brandwein, J.M.; Gupta, V.; Kennedy, J.A.; Schimmer, A.D.; Schuh, A.C.; Yee, K.W.; McLeod, J.L.; Doedens, M.; Medeiros, J.J.; Marke, R.; Kim, H.J.; Lee, K.; McPherson, J.D.; Hudson, T.J.; Brown, A.M.; Yousif, F.; Trinh, Q.M.; Stein, L.D.; Minden, M.D.; Wang, J.C.; Dick, J.E. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 2014, 506(7488), 328-333.
[http://dx.doi.org/10.1038/nature13038] [PMID: 24522528]
[103]
Auffinger, B.; Tobias, A.L.; Han, Y.; Lee, G.; Guo, D.; Dey, M.; Lesniak, M.S.; Ahmed, A.U. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ., 2014, 21(7), 1119-1131.
[http://dx.doi.org/10.1038/cdd.2014.31] [PMID: 24608791]
[104]
Hamerlik, P.; Lathia, J.D.; Rasmussen, R.; Wu, Q.; Bartkova, J.; Lee, M.; Moudry, P.; Bartek, J., Jr; Fischer, W.; Lukas, J.; Rich, J.N.; Bartek, J. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med., 2012, 209(3), 507-520.
[http://dx.doi.org/10.1084/jem.20111424] [PMID: 22393126]
[105]
Shien, K.; Toyooka, S.; Yamamoto, H.; Soh, J.; Jida, M.; Thu, K.L.; Hashida, S.; Maki, Y.; Ichihara, E.; Asano, H.; Tsukuda, K.; Takigawa, N.; Kiura, K.; Gazdar, A.F.; Lam, W.L.; Miyoshi, S. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res., 2013, 73(10), 3051-3061.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4136] [PMID: 23542356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy