Review Article

骨髓微环境在血液恶性肿瘤耐药性中的作用

卷 29, 期 13, 2022

发表于: 07 January, 2022

页: [2290 - 2305] 页: 16

弟呕挨: 10.2174/0929867328666210910124319

价格: $65

摘要

肿瘤微环境(TME)的独特特征控制着许多癌症的生物学特性,包括血液恶性肿瘤。TME因子可以通过抑制细胞凋亡和激活特定的信号通路(例如NF-ΚB)来引发入侵并防止药物细胞毒性。由于骨髓的高自我更新能力,促进了TME重塑。进展中的肿瘤细胞可以改变一些细胞外基质(ECM)成分,这些成分在TME中充当药物渗透的屏障。细胞周期的初始进展由MAPK途径(Raf / MEK / ERK)和河马途径控制,而最后阶段由PI3K / Akt / mTOR和WNT途径调节。本综述总结了耐药性(DR)中涉及的主要信号通路以及DR在骨髓中发生的一些机制。TME涵盖了DR和细胞凋亡中的自噬,内质网应激和细胞信号通路之间的关系。

关键词: 耐药性,血液系统恶性肿瘤,肿瘤微环境,自噬,内质网应激,ECM。

[1]
Meads, M.B.; Hazlehurst, L.A.; Dalton, W.S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res., 2008, 14(9), 2519-2526.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2223] [PMID: 18451212]
[2]
Coldman, A.J.; Goldie, J.H. A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull. Math. Biol., 1986, 48(3-4), 279-292.
[http://dx.doi.org/10.1016/S0092-8240(86)90028-5] [PMID: 3828558]
[3]
Shen, M.; Kang, Y. Complex interplay between tumor microenvironment and cancer therapy. Front. Med., 2018, 12(4), 426-439.
[http://dx.doi.org/10.1007/s11684-018-0663-7] [PMID: 30097962]
[4]
Hirata, E.; Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med., 2017, 7(7)a026781
[http://dx.doi.org/10.1101/cshperspect.a026781] [PMID: 28213438]
[5]
Wu, J.S.; Sheng, S.R.; Liang, X.H.; Tang, Y.L. The role of tumor microenvironment in collective tumor cell invasion. Future Oncol., 2017, 13(11), 991-1002.
[http://dx.doi.org/10.2217/fon-2016-0501] [PMID: 28075171]
[6]
Meads, M.B.; Gatenby, R.A.; Dalton, W.S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer, 2009, 9(9), 665-674.
[http://dx.doi.org/10.1038/nrc2714] [PMID: 19693095]
[7]
Senthebane, D.A.; Rowe, A.; Thomford, N.E.; Shipanga, H.; Munro, D.; Mazeedi, M.A.M.A.; Almazyadi, H.A.M.; Kallmeyer, K.; Dandara, C.; Pepper, M.S.; Parker, M.I.; Dzobo, K. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci., 2017, 18(7), 1586.
[http://dx.doi.org/10.3390/ijms18071586] [PMID: 28754000]
[8]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[9]
Faurobert, E.; Bouin, A-P.; Albiges-Rizo, C. Microenvironment, tumor cell plasticity, and cancer. Curr. Opin. Oncol., 2015, 27(1), 64-70.
[http://dx.doi.org/10.1097/CCO.0000000000000154] [PMID: 25415136]
[10]
Votteler, M.; Kluger, P.J.; Walles, H.; Schenke-Layland, K. Stem cell microenvironments-unveiling the secret of how stem cell fate is defined. Macromol. Biosci., 2010, 10(11), 1302-1315.
[http://dx.doi.org/10.1002/mabi.201000102] [PMID: 20715131]
[11]
Spranger, S.; Gajewski, T.F. Tumor-intrinsic oncogene pathways mediating immune avoidance. OncoImmunology, 2015, 5(3)e1086862
[http://dx.doi.org/10.1080/2162402X.2015.1086862] [PMID: 27141343]
[12]
Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31.
[http://dx.doi.org/10.1038/s41568-018-0081-9] [PMID: 30532012]
[13]
Yang, L.; Li, A.; Lei, Q.; Zhang, Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J. Hematol. Oncol., 2019, 12(1), 125.
[http://dx.doi.org/10.1186/s13045-019-0804-8] [PMID: 31775797]
[14]
Nussinov, R.; Tsai, C-J.; Jang, H. A new view of pathway-driven drug resistance in tumor proliferation. Trends Pharmacol. Sci., 2017, 38(5), 427-437.
[http://dx.doi.org/10.1016/j.tips.2017.02.001] [PMID: 28245913]
[15]
Nussinov, R.; Tsai, C-J.; Jang, H.; Korcsmáros, T.; Csermely, P. Oncogenic KRAS signaling and YAP1/β-catenin: Similar cell cycle control in tumor initiation. Seminars in cell & developmental biology; Elsevier, 2016, pp. 79-85.
[16]
Nussinov, R.; Tsai, C-J.; Jang, H. Independent and core pathways in oncogenic KRAS signaling; Taylor & Francis, 2016.
[http://dx.doi.org/10.1080/14789450.2016.1209417]
[17]
Zhao, Y.; Yang, X. The Hippo pathway in chemotherapeutic drug resistance. Int. J. Cancer, 2015, 137(12), 2767-2773.
[http://dx.doi.org/10.1002/ijc.29293] [PMID: 25348697]
[18]
Kawahara, M.; Hori, T.; Chonabayashi, K.; Oka, T.; Sudol, M.; Uchiyama, T. Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood, 2008, 112(9), 3856-3866.
[http://dx.doi.org/10.1182/blood-2007-09-111773] [PMID: 18565851]
[19]
Lei, Q-Y.; Zhang, H.; Zhao, B.; Zha, Z-Y.; Bai, F.; Pei, X-H.; Zhao, S.; Xiong, Y.; Guan, K-L. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol., 2008, 28(7), 2426-2436.
[http://dx.doi.org/10.1128/MCB.01874-07] [PMID: 18227151]
[20]
Song, S.; Ajani, J.A.; Honjo, S.; Maru, D.M.; Chen, Q.; Scott, A.W.; Heallen, T.R.; Xiao, L.; Hofstetter, W.L.; Weston, B.; Lee, J.H.; Wadhwa, R.; Sudo, K.; Stroehlein, J.R.; Martin, J.F.; Hung, M.C.; Johnson, R.L. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res., 2014, 74(15), 4170-4182.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3569] [PMID: 24906622]
[21]
Thornton, T.M.; Rincon, M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int. J. Biol. Sci., 2009, 5(1), 44-51.
[http://dx.doi.org/10.7150/ijbs.5.44] [PMID: 19159010]
[22]
Gao, F.; Liu, W.J. Advance in the study on p38 MAPK mediated drug resistance in leukemia. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(6), 1064-1070.
[PMID: 27049258]
[23]
Colosetti, P.; Puissant, A.; Robert, G.; Luciano, F.; Jacquel, A.; Gounon, P.; Cassuto, J-P.; Auberger, P. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy, 2009, 5(8), 1092-1098.
[http://dx.doi.org/10.4161/auto.5.8.9889] [PMID: 19786835]
[24]
Zhao, C.; Li, H.; Lin, H-J.; Yang, S.; Lin, J.; Liang, G. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol. Sci., 2016, 37(1), 47-61.
[http://dx.doi.org/10.1016/j.tips.2015.10.001] [PMID: 26576830]
[25]
Garraway, L.A.; Jänne, P.A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov., 2012, 2(3), 214-226.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0012] [PMID: 22585993]
[26]
Cardama, G.A.; Alonso, D.F.; González, N.; Maggio, J.; Gomez, D.E.; Rolfo, C.; Menna, P.L. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics. Crit. Rev. Oncol. Hematol., 2018, 124, 29-36.
[http://dx.doi.org/10.1016/j.critrevonc.2018.01.012] [PMID: 29548483]
[27]
Hofbauer, S.W.; Krenn, P.W.; Ganghammer, S.; Asslaber, D.; Pichler, U.; Oberascher, K.; Henschler, R.; Wallner, M.; Kerschbaum, H.; Greil, R.; Hartmann, T.N. Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells. Blood, 2014, 123(14), 2181-2188.
[http://dx.doi.org/10.1182/blood-2013-08-523563] [PMID: 24501217]
[28]
Fu, D.; Li, Y.; Li, J.; Shi, X.; Yang, R.; Zhong, Y.; Wang, H.; Liao, A. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells. Mol. Cell. Biochem., 2017, 424(1-2), 185-193.
[http://dx.doi.org/10.1007/s11010-016-2854-3] [PMID: 27785703]
[29]
Rauch, N.; Rukhlenko, O.S.; Kolch, W.; Kholodenko, B.N. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr. Opin. Struct. Biol., 2016, 41, 151-158.
[http://dx.doi.org/10.1016/j.sbi.2016.07.019] [PMID: 27521656]
[30]
Kholodenko, B.N. Drug resistance resulting from kinase dimerization is rationalized by thermodynamic factors describing allosteric inhibitor effects. Cell Rep., 2015, 12(11), 1939-1949.
[http://dx.doi.org/10.1016/j.celrep.2015.08.014] [PMID: 26344764]
[31]
Rozengurt, E.; Soares, H.P.; Sinnet-Smith, J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol. Cancer Ther., 2014, 13(11), 2477-2488.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0330] [PMID: 25323681]
[32]
Han, F.; Li, C-F.; Cai, Z.; Zhang, X.; Jin, G.; Zhang, W-N.; Xu, C.; Wang, C-Y.; Morrow, J.; Zhang, S.; Xu, D.; Wang, G.; Lin, H.K. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat. Commun., 2018, 9(1), 4728.
[http://dx.doi.org/10.1038/s41467-018-07188-9] [PMID: 30413706]
[33]
Cohen-Solal, K.A.; Kaufman, H.L.; Lasfar, A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res., 2018, 31(2), 241-252.
[http://dx.doi.org/10.1111/pcmr.12666] [PMID: 29090514]
[34]
Hoang, B.; Benavides, A.; Shi, Y.; Yang, Y.; Frost, P.; Gera, J.; Lichtenstein, A. The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J. Biol. Chem., 2012, 287(26), 21796-21805.
[http://dx.doi.org/10.1074/jbc.M111.304626] [PMID: 22556409]
[35]
Turturro, F. Constitutive NF-κB activation underlines major mechanism of drug resistance in relapsed refractory diffuse large B cell lymphoma. BioMed Res. Int., 2015, 2015484537
[http://dx.doi.org/10.1155/2015/484537] [PMID: 25984532]
[36]
Hertlein, E.; Byrd, J.C. Signalling to drug resistance in CLL. Best Pract. Res. Clin. Haematol., 2010, 23(1), 121-131.
[http://dx.doi.org/10.1016/j.beha.2010.01.007] [PMID: 20620976]
[37]
Ivanov, V.; Coso, D.; Chetaille, B.; Esterni, B.; Olive, D.; Aurran-Schleinitz, T.; Schiano, J.M.; Stoppa, A-M.; Broussais-Guillaumot, F.; Blaise, D.; Bouabdallah, R. Efficacy and safety of lenalinomide combined with rituximab in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk. Lymphoma, 2014, 55(11), 2508-2513.
[http://dx.doi.org/10.3109/10428194.2014.889822] [PMID: 24506467]
[38]
Poli, V.; Camporeale, A. STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front. Oncol., 2015, 5, 121.
[http://dx.doi.org/10.3389/fonc.2015.00121] [PMID: 26106584]
[39]
Barré, B.; Vigneron, A.; Perkins, N.; Roninson, I.B.; Gamelin, E.; Coqueret, O. The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol. Med., 2007, 13(1), 4-11.
[http://dx.doi.org/10.1016/j.molmed.2006.11.001] [PMID: 17118707]
[40]
Wang, Z.; Li, Y.; Ahmad, A.; Azmi, A.S.; Banerjee, S.; Kong, D.; Sarkar, F.H. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim. Biophys. Acta, 2010, 1806(2), 258-267.
[PMID: 20600632]
[41]
Martz, C.A.; Ottina, K.A.; Singleton, K.R.; Jasper, J.S.; Wardell, S.E.; Peraza-Penton, A.; Anderson, G.R.; Winter, P.S.; Wang, T.; Alley, H.M.; Kwong, L.N.; Cooper, Z.A.; Tetzlaff, M.; Chen, P.L.; Rathmell, J.C.; Flaherty, K.T.; Wargo, J.A.; McDonnell, D.P.; Sabatini, D.M.; Wood, K.C. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci. Signal., 2014, 7(357), ra121-ra121.
[http://dx.doi.org/10.1126/scisignal.aaa1877] [PMID: 25538079]
[42]
Rhind, N.; Russell, P. Signaling pathways that regulate cell division. Cold Spring Harb. Perspect. Biol., 2012, 4(10), 4.
[http://dx.doi.org/10.1101/cshperspect.a005942] [PMID: 23028116]
[43]
Bagnyukova, T.V.; Serebriiskii, I.G.; Zhou, Y.; Hopper-Borge, E.A.; Golemis, E.A.; Astsaturov, I. Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer Biol. Ther., 2010, 10(9), 839-853.
[http://dx.doi.org/10.4161/cbt.10.9.13738] [PMID: 20935499]
[44]
Chen, Y-f.; Fu, L-w. Mechanisms of acquired resistance to tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2011, 1, 197-207.
[http://dx.doi.org/10.1016/j.apsb.2011.10.007]
[45]
Di Nicolantonio, F.; Mercer, S.J.; Knight, L.A.; Gabriel, F.G.; Whitehouse, P.A.; Sharma, S.; Fernando, A.; Glaysher, S.; Di Palma, S.; Johnson, P.; Somers, S.S.; Toh, S.; Higgins, B.; Lamont, A.; Gulliford, T.; Hurren, J.; Yiangou, C.; Cree, I.A. Cancer cell adaptation to chemotherapy. BMC Cancer, 2005, 5, 78.
[http://dx.doi.org/10.1186/1471-2407-5-78] [PMID: 16026610]
[46]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[47]
Bar-Natan, M.; Nelson, E.A.; Xiang, M.; Frank, D.A. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAK-STAT, 2012, 1(2), 55-64.
[http://dx.doi.org/10.4161/jkst.20006] [PMID: 24058751]
[48]
Park, J.H.; Shin, J.E.; Park, H.W. The role of hippo pathway in cancer stem cell biology. Mol. Cells, 2018, 41(2), 83-92.
[PMID: 29429151]
[49]
Rezaei, S.; Mahjoubin-Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Movahedpour, A.; Khan, H.; Moghoofei, M.; Shojaei, Z.; Hamblin, R. M.; Mirzaei, H. Autophagy-related microRNAs in chronic lung diseases and lung cancer. Crit. Rev. Oncol. Hematol., 2020, 153103063
[http://dx.doi.org/10.1016/j.critrevonc.2020.103063] [PMID: 32712519]
[50]
Pourhanifeh, M.H.; Vosough, M.; Mahjoubin-Tehran, M.; Hashemipour, M.; Nejati, M.; Abbasi-Kolli, M.; Sahebkar, A.; Mirzaei, H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol. Res., 2020, 161105133
[http://dx.doi.org/10.1016/j.phrs.2020.105133] [PMID: 32822869]
[51]
Das, C.K.; Mandal, M.; Kögel, D. Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev., 2018, 37(4), 749-766.
[http://dx.doi.org/10.1007/s10555-018-9727-z] [PMID: 29536228]
[52]
Hu, Y-L.; DeLay, M.; Jahangiri, A.; Molinaro, A.M.; Rose, S.D.; Carbonell, W.S.; Aghi, M.K. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res., 2012, 72(7), 1773-1783.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3831] [PMID: 22447568]
[53]
Bhalla, S.; Evens, A.M.; Prachand, S.; Schumacker, P.T.; Gordon, L.I. Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α) by histone deacetylase inhibitor in diffuse large B-cell lymphoma. PLoS One, 2013, 8(11)e81333
[http://dx.doi.org/10.1371/journal.pone.0081333] [PMID: 24312289]
[54]
Smith, A.G.; Macleod, K.F. Autophagy, cancer stem cells and drug resistance. J. Pathol., 2019, 247(5), 708-718.
[http://dx.doi.org/10.1002/path.5222] [PMID: 30570140]
[55]
Hasmim, M.; Janji, B.; Khaled, M.; Noman, M.Z.; Louache, F.; Bordereaux, D.; Abderamane, A.; Baud, V.; Mami-Chouaib, F.; Chouaib, S. Cutting edge: NANOG activates autophagy under hypoxic stress by binding to BNIP3L promoter. J. Immunol., 2017, 198(4), 1423-1428.
[http://dx.doi.org/10.4049/jimmunol.1600981] [PMID: 28093523]
[56]
Rothe, K.; Porter, V.; Jiang, X. Current outlook on autophagy in human leukemia: foe in cancer stem cells and drug resistance, friend in new therapeutic interventions. Int. J. Mol. Sci., 2019, 20(3), 461.
[http://dx.doi.org/10.3390/ijms20030461] [PMID: 30678185]
[57]
Li, Y-J.; Lei, Y-H.; Yao, N.; Wang, C-R.; Hu, N.; Ye, W-C.; Zhang, D-M.; Chen, Z-S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[58]
Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer, 2005, 5(9), 726-734.
[http://dx.doi.org/10.1038/nrc1692] [PMID: 16148885]
[59]
Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4, e838-e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[60]
Desantis, V.; Saltarella, I.; Lamanuzzi, A.; Mariggiò, M.A.; Racanelli, V.; Vacca, A.; Frassanito, M.A. Autophagy: a new mechanism of prosurvival and drug resistance in multiple myeloma. Transl. Oncol., 2018, 11(6), 1350-1357.
[http://dx.doi.org/10.1016/j.tranon.2018.08.014] [PMID: 30196237]
[61]
Cea, M.; Cagnetta, A.; Fulciniti, M.; Tai, Y-T.; Hideshima, T.; Chauhan, D.; Roccaro, A.; Sacco, A.; Calimeri, T.; Cottini, F.; Jakubikova, J.; Kong, S.Y.; Patrone, F.; Nencioni, A.; Gobbi, M.; Richardson, P.; Munshi, N.; Anderson, K.C. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood, 2012, 120(17), 3519-3529.
[http://dx.doi.org/10.1182/blood-2012-03-416776] [PMID: 22955917]
[62]
Auberger, P.; Puissant, A. Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood, 2017, 129(5), 547-552.
[http://dx.doi.org/10.1182/blood-2016-07-692707] [PMID: 27956388]
[63]
Li, Y.; Zeng, X.; Wang, S.; Fan, J.; Wang, Z.; Song, P.; Mei, X.; Ju, D. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase. Tumour Biol., 2016, 37(5), 6627-6635.
[http://dx.doi.org/10.1007/s13277-015-4253-x] [PMID: 26643895]
[64]
Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sánchez-Martín, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A.; Castillo, M.; Haydu, J.E.; Márquez, J.; Matés, J.M.; Kung, A.L.; Rayport, S.; Cordon-Cardo, C.; DeBerardinis, R.J.; Ferrando, A.A. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med., 2015, 21(10), 1182-1189.
[http://dx.doi.org/10.1038/nm.3955] [PMID: 26390244]
[65]
Duan, X.; Chen, B.; Cui, Y.; Zhou, L.; Wu, C.; Yang, Z.; Wen, Y.; Miao, X.; Li, Q.; Xiong, L. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis : an international journal on programmed cell death, 2018, 23, 587-606.
[66]
Lima, K.; Carlos, J.A.E.G.; Alves-Paiva, R.M.; Vicari, H.P.; Souza Santos, F.P.; Hamerschlak, N.; Costa-Lotufo, L.V.; Traina, F.; Machado-Neto, J.A. Reversine exhibits antineoplastic activity in JAK2V617F-positive myeloproliferative neoplasms. Sci. Rep., 2019, 9(1), 9895.
[http://dx.doi.org/10.1038/s41598-019-46163-2] [PMID: 31289316]
[67]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[68]
Nakanishi, T.; Song, Y.; He, C.; Wang, D.; Morita, K.; Tsukada, J.; Kanazawa, T.; Yoshida, Y. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia. PeerJ, 2016, 4e2026
[http://dx.doi.org/10.7717/peerj.2026] [PMID: 27190722]
[69]
Watson, A.S.; Riffelmacher, T.; Stranks, A.; Williams, O.; De Boer, J.; Cain, K.; MacFarlane, M.; McGouran, J.; Kessler, B.; Khandwala, S.; Chowdhury, O.; Puleston, D.; Phadwal, K.; Mortensen, M.; Ferguson, D.; Soilleux, E.; Woll, P.; Jacobsen, S.E.; Simon, A.K. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov., 2015, 1, 1-10.
[http://dx.doi.org/10.1038/cddiscovery.2015.8] [PMID: 26568842]
[70]
Wang, M.; Zhang, J.; Huang, Y.; Ji, S.; Shao, G.; Feng, S.; Chen, D.; Zhao, K.; Wang, Z.; Wu, A. Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells. Med. Sci. Monit., 2017, 23, 3904-3912.
[http://dx.doi.org/10.12659/MSM.902870] [PMID: 28802099]
[71]
No, J.H.; Kim, Y.B.; Song, Y.S. Targeting nrf2 signaling to combat chemoresistance. J. Cancer Prev., 2014, 19(2), 111-117.
[http://dx.doi.org/10.15430/JCP.2014.19.2.111] [PMID: 25337579]
[72]
Chevet, E.; Hetz, C.; Samali, A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov., 2015, 5(6), 586-597.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1490] [PMID: 25977222]
[73]
Bahar, E.; Kim, J-Y.; Yoon, H. Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers (Basel), 2019, 11(3), 338.
[http://dx.doi.org/10.3390/cancers11030338] [PMID: 30857233]
[74]
Ri, M. Endoplasmic-reticulum stress pathway-associated mechanisms of action of proteasome inhibitors in multiple myeloma. Int. J. Hematol., 2016, 104(3), 273-280.
[http://dx.doi.org/10.1007/s12185-016-2016-0] [PMID: 27169614]
[75]
Hu, P.; Han, Z.; Couvillon, A.D.; Exton, J.H. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem., 2004, 279(47), 49420-49429.
[http://dx.doi.org/10.1074/jbc.M407700200] [PMID: 15339911]
[76]
Ranganathan, A.C.; Adam, A.P.; Aguirre-Ghiso, J.A. Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle, 2006, 5(16), 1799-1807.
[http://dx.doi.org/10.4161/cc.5.16.3109] [PMID: 16929185]
[77]
Ma, Y.; Hendershot, L.M. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J. Biol. Chem., 2003, 278(37), 34864-34873.
[http://dx.doi.org/10.1074/jbc.M301107200] [PMID: 12840028]
[78]
Høyer-Hansen, M.; Jäättelä, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ., 2007, 14(9), 1576-1582.
[http://dx.doi.org/10.1038/sj.cdd.4402200] [PMID: 17612585]
[79]
Fu, Y-F.; Liu, X.; Gao, M.; Zhang, Y-N.; Liu, J. Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3K/Akt/mTOR signaling pathway. Oncotarget, 2017, 8(37), 61093-61106.
[http://dx.doi.org/10.18632/oncotarget.17862] [PMID: 28977849]
[80]
Yadav, R.K.; Chae, S-W.; Kim, H-R.; Chae, H.J. Endoplasmic reticulum stress and cancer. J. Cancer Prev., 2014, 19(2), 75-88.
[http://dx.doi.org/10.15430/JCP.2014.19.2.75] [PMID: 25337575]
[81]
Nikesitch, N.; Lee, J.M.; Ling, S.; Roberts, T.L. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin. Transl. Immunology, 2018, 7(1)e1007
[http://dx.doi.org/10.1002/cti2.1007] [PMID: 29484184]
[82]
Huang, S.; Xing, Y.; Liu, Y. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J. Biol. Chem., 2019, 294(49), 18726-18741.
[http://dx.doi.org/10.1074/jbc.REV119.007036] [PMID: 31666338]
[83]
Schleicher, S.M.; Moretti, L.; Varki, V.; Lu, B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches. Drug Resist. Updat., 2010, 13(3), 79-86.
[http://dx.doi.org/10.1016/j.drup.2010.04.002] [PMID: 20471904]
[84]
Li, Z.; Li, Z. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim. Biophys. Acta, 2012, 1826(1), 13-22.
[PMID: 22426159]
[85]
Nikesitch, N.; Tao, C.; Lai, K.; Killingsworth, M.; Bae, S.; Wang, M.; Harrison, S.; Roberts, T.L.; Ling, S.C. Predicting the response of multiple myeloma to the proteasome inhibitor Bortezomib by evaluation of the unfolded protein response. Blood Cancer J., 2016, 6, e432-e432.
[http://dx.doi.org/10.1038/bcj.2016.40] [PMID: 27284736]
[86]
Casals, E.; Gusta, M.F.; Cobaleda-Siles, M.; Garcia-Sanz, A.; Puntes, V.F. Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol., 2017, 8(1), 7.
[http://dx.doi.org/10.1186/s12645-017-0030-4] [PMID: 29104700]
[87]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[88]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[89]
Goler-Baron, V.; Assaraf, Y.G. Overcoming multidrug resistance via photodestruction of ABCG2-rich extracellular vesicles sequestering photosensitive chemotherapeutics. PLoS One, 2012, 7(4)e35487
[http://dx.doi.org/10.1371/journal.pone.0035487] [PMID: 22530032]
[90]
Kurohane, K.; Tominaga, A.; Sato, K.; North, J.R.; Namba, Y.; Oku, N. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett., 2001, 167(1), 49-56.
[http://dx.doi.org/10.1016/S0304-3835(01)00475-X] [PMID: 11323098]
[91]
Fingar, V.H.; Kik, P.K.; Haydon, P.S.; Cerrito, P.B.; Tseng, M.; Abang, E.; Wieman, T.J. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br. J. Cancer, 1999, 79(11-12), 1702-1708.
[http://dx.doi.org/10.1038/sj.bjc.6690271] [PMID: 10206280]
[92]
Chen, B.; Pogue, B.W.; Hoopes, P.J.; Hasan, T. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int. J. Radiat. Oncol. Biol. Phys., 2005, 61(4), 1216-1226.
[http://dx.doi.org/10.1016/j.ijrobp.2004.08.006] [PMID: 15752904]
[93]
Schmidt-Erfurth, U.; Hasan, T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv. Ophthalmol., 2000, 45(3), 195-214.
[http://dx.doi.org/10.1016/S0039-6257(00)00158-2] [PMID: 11094244]
[94]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[95]
Alison, M.R.; Lim, S.M.; Nicholson, L.J. Cancer stem cells: problems for therapy? J. Pathol., 2011, 223(2), 147-161.
[http://dx.doi.org/10.1002/path.2793] [PMID: 21125672]
[96]
Shlush, L.I.; Mitchell, A.; Heisler, L.; Abelson, S.; Ng, S.W.K.; Trotman-Grant, A.; Medeiros, J.J.F.; Rao-Bhatia, A.; Jaciw-Zurakowsky, I.; Marke, R.; McLeod, J.L.; Doedens, M.; Bader, G.; Voisin, V.; Xu, C.; McPherson, J.D.; Hudson, T.J.; Wang, J.C.Y.; Minden, M.D.; Dick, J.E. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 2017, 547(7661), 104-108.
[http://dx.doi.org/10.1038/nature22993] [PMID: 28658204]
[97]
Fang, D.; Kitamura, H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int. J. Urol., 2018, 25, 7-17.
[98]
Chen, J.; Li, Y.; Yu, T.S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 2012, 488(7412), 522-526.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[99]
Yang, Z.J.; Wechsler-Reya, R.J. Hit 'em where they live: targeting the cancer stem cell niche. Cancer Cell, 2007, 11(1), 3-5.
[http://dx.doi.org/10.1016/j.ccr.2006.12.007] [PMID: 17222787]
[100]
Pattabiraman, D.R.; Weinberg, R.A. Tackling the cancer stem cells - what challenges do they pose? Nat. Rev. Drug Discov., 2014, 13(7), 497-512.
[http://dx.doi.org/10.1038/nrd4253] [PMID: 24981363]
[101]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8(10), 755-768.
[http://dx.doi.org/10.1038/nrc2499] [PMID: 18784658]
[102]
Shlush, L.I.; Zandi, S.; Mitchell, A.; Chen, W.C.; Brandwein, J.M.; Gupta, V.; Kennedy, J.A.; Schimmer, A.D.; Schuh, A.C.; Yee, K.W.; McLeod, J.L.; Doedens, M.; Medeiros, J.J.; Marke, R.; Kim, H.J.; Lee, K.; McPherson, J.D.; Hudson, T.J.; Brown, A.M.; Yousif, F.; Trinh, Q.M.; Stein, L.D.; Minden, M.D.; Wang, J.C.; Dick, J.E. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 2014, 506(7488), 328-333.
[http://dx.doi.org/10.1038/nature13038] [PMID: 24522528]
[103]
Auffinger, B.; Tobias, A.L.; Han, Y.; Lee, G.; Guo, D.; Dey, M.; Lesniak, M.S.; Ahmed, A.U. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ., 2014, 21(7), 1119-1131.
[http://dx.doi.org/10.1038/cdd.2014.31] [PMID: 24608791]
[104]
Hamerlik, P.; Lathia, J.D.; Rasmussen, R.; Wu, Q.; Bartkova, J.; Lee, M.; Moudry, P.; Bartek, J., Jr; Fischer, W.; Lukas, J.; Rich, J.N.; Bartek, J. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med., 2012, 209(3), 507-520.
[http://dx.doi.org/10.1084/jem.20111424] [PMID: 22393126]
[105]
Shien, K.; Toyooka, S.; Yamamoto, H.; Soh, J.; Jida, M.; Thu, K.L.; Hashida, S.; Maki, Y.; Ichihara, E.; Asano, H.; Tsukuda, K.; Takigawa, N.; Kiura, K.; Gazdar, A.F.; Lam, W.L.; Miyoshi, S. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res., 2013, 73(10), 3051-3061.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4136] [PMID: 23542356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy