Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, Molecular Docking, and Anticancer Evaluation of Pyrazole Linked Pyrazoline Derivatives with Carbothioamide Tail as EGFR Kinase Inhibitors

Author(s): Farah Nawaz, Ozair Alam*, Ahmad Perwez, Moshahid A. Rizvi, Mohd. Javed Naim, Nadeem Siddiqui, Jannat ul Firdaus, Shakilur Rahman, Mukund Jha and Aadil A. Sheikh

Volume 21, Issue 1, 2021

Published on: 27 July, 2020

Page: [42 - 60] Pages: 19

DOI: 10.2174/1871520620666200727093613

Price: $65

Abstract

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy.

Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line).

Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis.

Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib.

Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.

Keywords: Anticancer, EGFR kinase, pyrazoline, apoptosis, molecular docking studies, carbothioamide.

Graphical Abstract

[1]
McGurie, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr., 2016, 7, 418-419.
[2]
Naim, M.J.; Alam, M.J.; Nawaz, F.; Naidu, V.G.M.; Aaghaz, S.; Sahu, M.; Siddiqui, N.; Alam, O. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg. Chem., 2017, 73, 24-36.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.007] [PMID: 28582649]
[3]
Al-Suwaidan, I.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; El-Sayed, M.A.A.; Alanazi, A.M.; El-Ashmawy, M.B.; Abdel-Aziz, A.A.M. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 679-687.
[http://dx.doi.org/10.3109/14756366.2014.960863] [PMID: 25472776]
[4]
Noolvi, M.N.; Patel, H.M. A comparative QSAR analysis and molecular docking studies of quinazoline derivatives as tyrosine kinase (EGFR) inhibitors: A rational approach to anticancer drug design. J. Saudi Chem. Soc., 2013, 17, 361-379.
[http://dx.doi.org/10.1016/j.jscs.2011.04.017]
[5]
Sweidan, K.; Sabbah, D.A.; Bardaweel, S.; Dush, K.A.; Sheikha, G.A.; Mubarak, M.S. Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3KI/EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(11), 2685-2690.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.011] [PMID: 27084677]
[6]
Li, S.; Sun, X.; Zhao, H.; Tang, Y.; Lan, M. Discovery of novel EGFR tyrosine kinase inhibitors by structure-based virtual screening. Bioorg. Med. Chem. Lett., 2012, 22(12), 4004-4009.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.092] [PMID: 22595177]
[7]
Abd El-Karim, S.S.; Anwar, M.M.; Mohamed, N.A.; Nasr, T.; Elseginy, S.A. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents. Bioorg. Med. Chem., 2015, 63, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.006]
[8]
El-Zahar, M.I.; El-Karim, S.S.A.; Anwar, M.M. Synthesis and cytotoxicity screening of some novel benzofuranoyl-pyrazole derivatives against liver and cervix carcinoma cell lines. S. Afr. J. Chem., 2009, 62, 189-199.
[9]
Mowafy, S.; Galanis, A.; Doctor, Z.M.; Paranal, R.M.; Lasheen, D.S.; Farag, N.A. JAnne, P.A.; Abouzid, K.A.M. Toward discovery of mutant EGFR inhibitors; Design, synthesis and in vitro biological evaluation of potent 4-arylamino-6-ureido and thioureido-quinazoline derivatives. Bioorg. Med. Chem., 2016, 24(16), 3501-3512.
[http://dx.doi.org/10.1016/j.bmc.2016.05.063] [PMID: 27288180]
[10]
Tao, X.X.; Duan, Y.T.; Chen, L.W.; Tang, D.J.; Yang, M.R.; Wang, P.F.; Xu, C.; Zhu, H.L. Design, synthesis and biological evaluation of pyrazolyl-nitroimidazole derivatives as potential EGFR/HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(2), 677-683.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.040] [PMID: 26652482]
[11]
Carmi, C.; Cavazzoni, A.; Zuliani, V.; Lodola, A.; Bordi, F.; Vincenzo Plazzi, P.; Alfieri, R.R.; Petronini, P.G.; Mor, M. 5-Benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity. Bioorg. Med. Chem. Lett., 2006, 16, 4021-4025.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.010] [PMID: 16713265]
[12]
Fukuda, T.; Umeki, T.; Tokushima, K.; Xiang, G.; Yoshida, Y.; Ishibashi, F.; Oku, Y.; Nishiya, N.; Uehara, Y.; Iwao, M. Design, synthesis, and evaluation of A-ring-modified lamellarin N analogues as noncovalent inhibitors of the EGFR T790M/L858R mutant. Bioorg. Med. Chem., 2017, 25(24), 6563-6580.
[http://dx.doi.org/10.1016/j.bmc.2017.10.030] [PMID: 29133033]
[13]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[14]
Qiu, K.M.; Wang, H.H.; Wang, L.M.; Luo, Y.; Yang, X.H.; Wang, X.M.; Zhu, H.L. Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem., 2012, 20(6), 2010-2018.
[http://dx.doi.org/10.1016/j.bmc.2012.01.051] [PMID: 22361272]
[15]
Marquez-Medina, D.; Popat, S. Afatinib: A second-generation EGF receptor and ErbB tyrosine kinase inhibitor for the A treatment of advanced non-small-cell lung cancer. Future Oncol., 2015, 11(18), 2525-2540.
[http://dx.doi.org/10.2217/fon.15.183] [PMID: 26314834]
[16]
Sequist, V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; Ananthakrishnan, R.; Quinn, S. J. Clin. Oncol., 2018, 28, 17-19.
[17]
Mitsudomi, T. Dacomitinib: Another option for EGFR-mutant lung cancer? Lancet Oncol., 2014, 15(13), 1408-1409.
[http://dx.doi.org/10.1016/S1470-2045(14)70487-5] [PMID: 25456351]
[18]
Wanga, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S.; Luo, Y.; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21, 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[19]
Yang, W.; Hu, Y.; Yang, Y.S.; Zhang, F.; Zhang, Y.B.; Wang, X.L.; Tang, J.F.; Zhong, W.Q.; Zhu, H.L. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2013, 21(5), 1050-1063.
[http://dx.doi.org/10.1016/j.bmc.2013.01.013] [PMID: 23391364]
[20]
Patel, H.M.; Pawara, R.; Ansari, A.; Noolvi, M.; Surana, S. Design and synthesis of quinazolinones as EGFR inhibitors to overcome EGFR resistance obstacle. Bioorg. Med. Chem., 2017, 25(10), 2713-2723.
[http://dx.doi.org/10.1016/j.bmc.2017.03.039] [PMID: 28366268]
[21]
Gao, H.; Yang, Z.; Yang, X.; Rao, Y. Synthesis and evaluation of osimertinib derivatives as potent EGFR inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4553-4559.
[http://dx.doi.org/10.1016/j.bmc.2017.06.004] [PMID: 28716641]
[22]
Chen, L.; Fu, W.; Feng, C.; Qu, R.; Tong, L.; Zheng, L.; Fang, B.; Qiu, Y.; Hu, J.; Cai, Y.; Feng, J.; Xie, H.; Ding, J.; Liu, Z.; Liang, G. Structure-based design and synthesis of 2,4-diaminopyrimidines as EGFR L858R/T790M selective inhibitors for NSCLC. Eur. J. Med. Chem., 2017, 140, 510-527.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.061] [PMID: 28987609]
[23]
Jang, J.; Beom, J.; To, C.; Bahcall, M.; Young, S.; Yong, S.; Mushajiang, M.; Lee, Y.; Pasi, A.J.; Geun, H.; Gray, N.S. Discovery of a potent dual ALK and EGFR T790M inhibitor. Eur. J. Med. Chem., 2017, 136, 497-510.
[24]
Abdelgawad, M.A.; Bakr, R.B.; Alkhoja, O.A.; Mohamed, W.R. Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg. Chem., 2016, 66, 88-96.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.011] [PMID: 27043178]
[25]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Abdelgawad, M.A.; Ahmed, R.R.; Bakr, R.B. Synthesis, docking study and antitumor evaluation of certain newly synthesized pyrazolo[3,4-d]pyrimidine derivatives. Org. Chem. Ind. J., 2014, 10, 157-167.
[26]
Song, Z.; Huang, S.; Yu, H.; Jiang, Y.; Wang, C.; Meng, Q.; Shu, X.; Sun, H.; Liu, K.; Li, Y.; Ma, X. Synthesis and biological evaluation of morpholine-substituted diphenylpyrimidine derivatives (Mor-DPPYs) as potent EGFR T790M inhibitors with improved activity toward the gefitinib-resistant non-small cell lung cancers (NSCLC). Eur. J. Med. Chem., 2017, 133, 329-339.
[27]
Zhang, H.; Wu, W.; Feng, C.; Liu, Z.; Bai, E.; Wang, X.; Lei, M.; Cheng, H.; Feng, H.; Shi, J.; Wang, J.; Zhang, Z.; Jin, T.; Chen, S.; Hu, S.; Zhu, Y. Design, synthesis, SAR discussion, in vitro and in vivo evaluation of novel selective EGFR modulator to inhibit L858R/T790M double mutants. Eur. J. Med. Chem., 2017, 135, 12-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.036] [PMID: 28426996]
[28]
Abdel-Aziz, H.A.; El-Zahabi, H.S.A.; Dawood, K.M. Microwave-assisted synthesis and in vitro anti-tumor activity of 1,3,4-triaryl-5-N-arylpyrazole-carboxamides. Eur. J. Med. Chem., 2010, 45(6), 2427-2432.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.026] [PMID: 20207452]
[29]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem., 2013, 70, 740-749.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.042] [PMID: 24231309]
[30]
Czarnomysya, R.; Suraznski, A.; Muszynskaa, A.; Gornowicza, A.; Bielawska, A.; Bielawski, K. A novel series of pyrazole-platinum(II) complexes as potential anti-cancer agents that induce cell cycle arrest and apoptosis in breast cancer cells. J. Enzyme Inhib. Med. Chem., 2018, 33, 1006-1023.
[http://dx.doi.org/10.1080/14756366.2018.1471687] [PMID: 29862867]
[31]
Karabacak, M.; Altintop, M.D.; Çiftçi, H.I.; Koga, R.; Otsuka, M.; Fujita, M. A-zdemir, A. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules, 2015, 20(10), 19066-19084.
[http://dx.doi.org/10.3390/molecules201019066] [PMID: 26492233]
[32]
Sudhakararao, G.; Kalaichelvan, V.K.; Rao, G.S. Intern. J. Pharmacological Res 5 2015.
[33]
Ali, M.A. ShaharYar, M.; Kumar, M.; Pandian, G.S. Synthesis and antitubercular activity of substituted novel pyrazoline derivatives. Nat. Prod. Res., 2007, 21, 575-579.
[http://dx.doi.org/10.1080/14786410701369367] [PMID: 17613813]
[34]
Hareesh, M.; Mahanti, S.; Sailu, B.; Subramanyam, D.; Reddy, S. Synthesis and antibacterial evaluation of some novel pyrazoline derivatives. Der Pharma Chem., 2012, 4, 1637-1643.
[35]
Ahn, J.H.; Kim, H.M.; Jung, S.H.; Kang, S.K.; Kim, K.R.; Rhee, S.D.; Yang, S.D.; Cheon, H.G.; Kim, S.S. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg. Med. Chem. Lett., 2004, 14(17), 4461-4465.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.046] [PMID: 15357972]
[36]
Khalilullah, H.; Khan, S.; Ahsan, M.J.; Ahmed, B. Synthesis and antihepatotoxic activity of 5-(2,3-dihydro-1,4-benzodioxane-6-yl)-3-substituted-phenyl-4,5-dihydro-1H-pyrazole derivatives. Bioorg. Med. Chem. Lett., 2011, 21(24), 7251-7254.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.056] [PMID: 22061643]
[37]
Azdemir, A.; Altintop, M.D.; Kaplancikli, Z.A.; Can, A. -.D.; Demir Azkay, A.; Turan-Zitouni, G. Synthesis and evaluation of new 1,5-diaryl-3-[4-(methyl-sulfonyl)phenyl]-4,5-dihydro-1H-pyrazole derivatives as potential antidepressant agents. Molecules, 2015, 20(2), 2668-2684.
[http://dx.doi.org/10.3390/molecules20022668] [PMID: 25658142]
[38]
Acharya, B.N.; Saraswat, D.; Tiwari, M.; Shrivastava, A.K.; Ghorpade, R.; Bapna, S.; Kaushik, M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem., 2010, 45(2), 430-438.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.023] [PMID: 19926176]
[39]
Ozdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Revial, G.; Demirci, F.; Iscan, G. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J. Enzyme Inhib. Med. Chem., 2010, 25(4), 565-571.
[http://dx.doi.org/10.3109/14756360903373368] [PMID: 20205628]
[40]
Amir, M.; Kumar, H.; Khan, S.A. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg. Med. Chem. Lett., 2008, 18(3), 918-922.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.043] [PMID: 18182288]
[41]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Lesyka, R. Heterocyclic. J. Chem., 00, 00 2013.
[42]
Abid, M.; Azam, A. 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines: Synthesis and in vitro antiamoebic activities. Eur. J. Med. Chem., 2005, 40(9), 935-942.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.015] [PMID: 15922492]
[43]
Kumar, A.; Varadaraj, B.G.; Singla, R.K. Bullet. Faculty Pharm., 2013, 51, 167-173.
[44]
Alam, M.J.; Alam, O.; Khan, S.A.; Naim, M.J.; Islamuddin, M.; Deora, G.S. Synthesis, anti-inflammatory, analgesic, COX1/2-inhibitory activity, and molecular docking studies of hybrid pyrazole analogues. Drug Des. Devel. Ther., 2016, 10, 3529-3543.
[http://dx.doi.org/10.2147/DDDT.S118297] [PMID: 27826185]
[45]
Fahmy, H.H.; Srour, A.M.; Ismail, M.A.; Khater, M.A.; Serrya, R.A.; El-Manawaty, M.A. Design and synthesis of some new tri-substituted pyrazole derivatives as anticancer agents. Res. Chem. Intermed., 2016, 42, 6881-6892.
[http://dx.doi.org/10.1007/s11164-016-2502-2]
[46]
Suwito, H. Jumina; Mustofa; Pudjiastuti, P.; Fanani, M.Z.; Kimata-Ariga, Y.; Katahira, R.; Kawakami, T.; Fujiwara, T.; Hase, T.; Sirat, H.M.; Tri Puspaningsih, N.N. Molecules, 2014, 19, 21473-21488.
[http://dx.doi.org/10.3390/molecules191221473] [PMID: 25532844]
[47]
Beyhan, N.; Kocyigit-Kaymakcioglu, B.; Gumru, S.; Aricioglu, F. Synthesis and anticonvulsant activity of some 2-pyrazolines derived from chalcones. Arab. J. Chem., 2017, 10, S2073-S2081.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.037]
[48]
SchrAdinger. Maestro version 11; SchrAdinger: New York, 2018.
[49]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M. EGFR tyrosine kinase targeted compounds: In vitro antitumor activity and molecular modeling studies of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives. EXCLI J., 2014, 13, 573-585.
[PMID: 26417284]
[50]
Aneja, B.; Arif, R.; Perwez, A.; Napoleon, J.V.; Hasan, P.; Rizvi, M.M.A.; Azam, A. Rahisuddin; Abid, M. ChemistrySelect, 2018, 3, 2638-2645.
[http://dx.doi.org/10.1002/slct.201702913]
[51]
Nair, S.V.; Ziaullah, H.P. Rupasinghe. PLoS One, 2014, 17(9)e107149
[http://dx.doi.org/10.1371/journal.pone.0107149.]
[52]
Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S-J. Investigation of the antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater., 2012, 4, 1-7.
[http://dx.doi.org/10.1166/sam.2012.1245]
[53]
Xu, Y.Y.; Cao, Y.; Ma, H.; Li, H.Q.; Ao, G.Z. Design, synthesis and molecular docking of Iα,β--unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity. Bioorg. Med. Chem., 2013, 21(2), 388-394.
[http://dx.doi.org/10.1016/j.bmc.2012.11.031] [PMID: 23245570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy