[1]
Unver, N.U.; Acikalin, M.F.; Oner, U.; Ciftci, E.; Ozalp, S.S.; Colak, E. Differential expression of P16 and P21 in benign and malignant uterine smooth muscle tumors. Arch. Gynecol. Obstet., 2011, 284(2), 483-490.
[2]
Navarro, A.; Yin, P.; Monsivais, D.; Lin, S.M.; Du, P.; Wei, J.J.; Bulun, S.E. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One, 2012, 7(3)e33284
[3]
Dimitrova, I.K.; Richer, J.K.; Rudolph, M.C.; Spoelstra, N.S.; Reno, E.M.; Medina, T.M.; Bradford, A.P. Gene expression profiling of multiple leiomyomata uteri and matched normal tissue from a single patient. Fertil. Steril., 2009, 91(6), 2650-2663.
[4]
Kim, Y-S.; Kim, T-H.; Lee, H-H.; Song, K.R.E. Pathobiology of myomatosis uteri: The underlying knowledge to support our clinical practice. Arch. Gynecol. Obstet., 2018, 297, 1339-1341.
[5]
Ura, B.; Scrimin, F.; Zanconati, F.; Arrigoni, G.; Monasta, L.; Romano, A.; Banco, R.; Zweyer, M.; Milani, D.; Ricci, G. Two-dimensional gel electrophoresis analysis of the leiomyoma interstitial fluid reveals altered protein expression with a possible involvement in pathogenesis. Oncol. Rep., 2015, 33(5), 2219-2226.
[6]
Yu, L.; Saile, K.; Swartz, C.D.; He, H.; Zheng, X.; Kissling, G.E.; Di, X.; Lucas, S.; Robboy, S.J.; Dixon, D. Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol. Med., 2008, 14(5-6), 264-275.
[7]
Segars, J.H.; Al-Hendy, A. Seminars in Reproductive Medicine; Thieme Medical Publishers: Germany, 2017.
[8]
Zaitseva, M.; Vollenhoven, B.J.; Rogers, P.A. Retinoic acid pathway genes show significantly altered expression in uterine fibroids when compared with normal myometrium. MHR: Basic Sci. Reprod. Med., 2007, 13(8), 577-585.
[9]
Wu, X.; Serna, V.A.; Thomas, J.; Qiang, W.; Blumenfeld, M.L.; Kurita, T. Subtype-specific tumor-associated fibroblasts contribute to the pathogenesis of uterine leiomyoma. Cancer Res., 2017, 77, 6891-6901.
[10]
Tal, R.; Segars, J.H. The role of angiogenic factors in fibroid pathogenesis: Potential implications for future therapy. Hum. Reprod. Update, 2014, 20(2), 194-216.
[11]
Ura, B.; Scrimin, F.; Arrigoni, G.; Franchin, C.; Monasta, L.; Ricci, G. A proteomic approach for the identification of up-regulated proteins involved in the metabolic process of the leiomyoma. Int. J. Mol. Sci., 2016, 17(4), 540.
[12]
Islam, M.S.; Ciavattini, A.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update, 2017, 24(1), 59-85.
[13]
Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics-anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer, 2017, 3(6), 391-406.
[14]
Sparic, R.; Mirkovic, L.; Malvasi, A.; Tinelli, A. Epidemiology of uterine myomas: A review. Int. J. Fertil. Steril., 2016, 9(4), 424-435.
[15]
Chung, Y-J.; Kang, S-Y.; Chun, H.J.; Rha, S.E.; Cho, H.H.; Kim, J.H.; Kim, M-R. Development of a model for the prediction of treatment response of uterine leiomyomas after uterine artery embolization. Int. J. Med. Sci., 2018, 15(14), 1771.
[16]
Engman, M.; Varghese, S.; Lagerstedt Robinson, K.; Malmgren, H.; Hammarsjo, A.; Bystrom, B.; Lalitkumar, P.G.; Gemzell-Danielsson, K. GSTM1 gene expression correlates to leiomyoma volume regression in response to mifepristone treatment. PLoS One, 2013, 8(12)e80114
[17]
Zhu, X-Q.; Zhu, C-D.; Lü, J-Q.; Dong, K. Identification of differential proteins in uterine leiomyoma by two-dimensional electrophoresis. Chin. J. Cancer Res., 2006, 18(3), 203-208.
[18]
Abeyrathne, P.D.; Lam, J.S. Conditions that allow for effective transfer of membrane proteins onto nitrocellulose membrane in western blots. Can. J. Microbiol., 2007, 53(4), 526-532.
[19]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[20]
Quinlivan, E.P.; Gregory, J.F., III DNA digestion to deoxyribonucleoside: A simplified one-step procedure. Anal. Biochem., 2008, 373(2), 383-385.
[21]
Chan, L.L.; Lo, S.C.; Hodgkiss, I.J. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics, 2002, 2(9), 1169-1186.
[22]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[23]
Yan, J.X.; Wait, R.; Berkelman, T.; Harry, R.A.; Westbrook, J.A.; Wheeler, C.H.; Dunn, M.J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 2000, 21(17), 3666-3672.
[24]
Khowal, S.; Mustufa, M.M.; Chaudhary, N.K.; Naqvi, S.H.; Parvez, S.; Jain, S.K.; Wajid, S. Assessment of the therapeutic potential of hesperidin and proteomic resolution of diabetes-mediated neuronal fluctuations expediting Alzheimer’s disease. RSC Advances, 2015, 5(58), 46965-46980.
[25]
Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath., 2013, 3(3), 71-85.
[26]
Koo, B.K.; Yoon, K.J.; Yoo, K.W.; Lim, H.S.; Song, R.; So, J.H.; Kim, C.H.; Kong, Y.Y. Mind bomb-2 is an E3 ligase for Notch ligand. J. Biol. Chem., 2005, 280(23), 22335-22342.
[27]
Fu, C.; Li, J.; Wang, E. Signaling network analysis of ubiquitin-mediated proteins suggests correlations between the 26S proteasome and tumor progression. Mol. BioSys., 2009, 5(12), 1809-1816.
[28]
Liu, J.; Shen, J-X.; Wen, X-F.; Guo, Y-X.; Zhang, G-J. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit. Rev. Oncol. Hematol., 2016, 104, 21-29.
[29]
Pier, B.D.; Bates, G.W. Potential causes of subfertility in patients with intramural fibroids. Fertil. Res. Pract., 2015, 1, 12.
[30]
Zhang, A.; He, X.; Zhang, L.; Yang, L.; Woodman, P.; Li, W. Biogenesis of Lysosome-Related Organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the Endosomal Sorting Complex Required For Transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments. J. Biol. Chem., 2014, 289(42), 29180-29194.
[31]
Wang, Z.; Wei, H.; Yu, Y.; Sun, J.; Yang, Y.; Xing, G.; Wu, S.; Zhou, Y.; Zhu, Y.; Zhang, C.; Zhou, T.; Zhao, X.; Sun, Q.; He, F. Characterization of Ceap-11 and Ceap-16, two novel splicing-variant-proteins, associated with centrosome, microtubule aggregation and cell proliferation. J. Mol. Biol., 2004, 343(1), 71-82.
[32]
Gdynia, G.; Lehmann-Koch, J.; Sieber, S.; Tagscherer, K.E.; Fassl, A.; Zentgraf, H.; Matsuzawa, S.; Reed, J.C.; Roth, W. BLOC1S2 interacts with the HIPPI protein and sensitizes NCH89 glioblastoma cells to apoptosis. Apoptosis, 2008, 13(3), 437-447.
[33]
Premzl, M.; Sangiorgio, L.; Strumbo, B.; Marshall Graves, J.A.; Simonic, T.; Gready, J.E. Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene, 2003, 314, 89-102.
[34]
Roucou, X.; Giannopoulos, P.N.; Zhang, Y.; Jodoin, J.; Goodyer, C.G.; LeBlanc, A. Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ., 2005, 12(7), 783-795.
[35]
Tang, Z.; Ma, J.; Zhang, W.; Gong, C.; He, J.; Wang, Y.; Yu, G.; Yuan, C.; Wang, X.; Sun, Y.; Ma, J.; Liu, F.; Zhao, Y. The role of prion protein expression in predicting gastric cancer prognosis. J. Cancer, 2016, 7(8), 984-990.
[36]
Pan, Y.; Zhao, L.; Liang, J.; Liu, J.; Shi, Y.; Liu, N.; Zhang, G.; Jin, H.; Gao, J.; Xie, H.; Wang, J.; Liu, Z.; Fan, D. Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J., 2006, 20(11), 1886-1888.
[37]
Sollazzo, V.; Galasso, M.; Volinia, S.; Carinci, F. Prion proteins (PRNP and PRND) are over-expressed in osteosarcoma. J. Orthop. Res., 2012, 30(6), 1004-1012.
[38]
Li, C.; Yu, S.; Nakamura, F.; Yin, S.; Xu, J.; Petrolla, A.A.; Singh, N.; Tartakoff, A.; Abbott, D.W.; Xin, W.; Sy, M.S. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J. Clin. Invest., 2009, 119(9), 2725-2736.
[39]
Kechavarzi, B.; Janga, S.C. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol., 2014, 15(1), R14.
[40]
Wendel, H.G.; Silva, R.L.; Malina, A.; Mills, J.R.; Zhu, H.; Ueda, T.; Watanabe-Fukunaga, R.; Fukunaga, R.; Teruya-Feldstein, J.; Pelletier, J.; Lowe, S.W. Dissecting eIF4E action in tumorigenesis. Genes Dev., 2007, 21(24), 3232-3237.
[41]
Lukong, K.E.; Larocque, D.; Tyner, A.L.; Richard, S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J. Biol. Chem., 2005, 280(46), 38639-38647.
[42]
Busa, R.; Paronetto, M.P.; Farini, D.; Pierantozzi, E.; Botti, F.; Angelini, D.F.; Attisani, F.; Vespasiani, G. Sette, C. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene, 2007, 26(30), 4372-4382.
[43]
Chenard, C.A.; Richard, S. New implications for the QUAKING RNA binding protein in human disease. J. Neurosci. Res., 2008, 86(2), 233-242.
[44]
Eychenne, T.; Novikova, E.; Barrault, M.B.; Alibert, O.; Boschiero, C.; Peixeiro, N.; Cornu, D.; Redeker, V.; Kuras, L.; Nicolas, P.; Werner, M.; Soutourina, J. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev., 2016, 30(18), 2119-2132.
[45]
Lin, X.; Rinaldo, L.; Fazly, A.F.; Xu, X. Depletion of med10 enhances Wnt and suppresses nodal signaling during zebrafish embryogenesis. Dev. Biol., 2007, 303(2), 536-548.
[46]
Luoh, S.W. Amplification and expression of genes from the 17q11 approximately q12 amplicon in breast cancer cells. Cancer Genet. Cytogenet., 2002, 136(1), 43-47.
[47]
Zimmerman, A.W.; Veerkamp, J.H. New insights into the structure and function of fatty acid-binding proteins. Cell. Mol. Life Sci., 2002, 59(7), 1096-1116.
[48]
Sharifi, K.; Ebrahimi, M.; Kagawa, Y.; Islam, A.; Tuerxun, T.; Yasumoto, Y.; Hara, T.; Yamamoto, Y.; Miyazaki, H.; Tokuda, N.; Yoshikawa, T.; Owada, Y. Differential expression and regulatory roles of FABP5 and FABP7 in oligodendrocyte lineage cells. Cell Tissue Res., 2013, 354(3), 683-695.
[49]
De Rosa, A.; Pellegatta, S.; Rossi, M.; Tunici, P.; Magnoni, L.; Speranza, M.C.; Malusa, F.; Miragliotta, V.; Mori, E.; Finocchiaro, G.; Bakker, A. A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLoS One, 2012, 7(12)e52113
[50]
Gromov, P.; Espinoza, J.A.; Talman, M.L.; Honma, N.; Kroman, N.; Timmermans Wielenga, V.; Moreira, J.M.; Gromova, I. FABP7 and HMGCS2 are novel protein markers for apocrine differentiation categorizing apocrine carcinoma of the breast. PLoS One, 2014, 9(11)e112024
[51]
Zhou, J.; Deng, Z.; Chen, Y.; Gao, Y.; Wu, D.; Zhu, G.; Li, L.; Song, W.; Wang, X.; Wu, K.; He, D. Overexpression of FABP7 promotes cell growth and predicts poor prognosis of clear cell renal cell carcinoma. Urol. Oncol., 2015, 33(3), e119-e117.
[52]
Slipicevic, A.; Jorgensen, K.; Skrede, M.; Rosnes, A.K.; Troen, G.; Davidson, B.; Florenes, V.A. The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells. BMC Cancer, 2008, 8, 276.
[53]
Lorain, S.; Quivy, J.P.; Monier-Gavelle, F.; Scamps, C.; Lecluse, Y.; Almouzni, G.; Lipinski, M. Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol. Cell. Biol., 1998, 18(9), 5546-5556.
[54]
Ahmed, K.; Issinger, O-G.; Szyszka, R. Protein Kinase CK2 Cellular Function in Normal and Disease States; Springer, 2015.
[55]
Ribatti, D.; Belloni, A.S.; Nico, B.; Salà, G.; Longo, V.; Mangieri, D.; Crivellato, E.; Nussdorfer, G.G. Tryptase-and leptin-positive
mast cells correlate with vascular density in uterine leiomyomas. Am. J. Obstet. Gynecol, 2007, 196(5), 470, e471-470.
[56]
Paik, S.S.; Oh, Y.H.; Jang, K.S.; Han, H.X.; Cho, S.H. Uterine leiomyoma with massive lymphoid infiltration: Case report and review of the literature. Pathol. Int., 2004, 54(5), 343-348.
[57]
Stoica, G.E.; Kuo, A.; Powers, C.; Bowden, E.T.; Sale, E.B.; Riegel, A.T.; Wellstein, A. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem., 2002, 277(39), 35990-35998.
[58]
Akter, K.A.; Mansour, M.A.; Hyodo, T.; Senga, T. FAM98A associates with DDX1-C14orf166-FAM98B in a novel complex involved in colorectal cancer progression. Int. J. Biochem. Cell Biol., 2017, 84, 1-13.
[59]
Rabjerg, M.; Guerra, B.; Oliván-Viguera, A.; Mikkelsen, M.L.N.; Köhler, R.; Issinger, O-G.; Marcussen, N. Nuclear localization of the CK2α-subunit correlates with poor prognosis in clear cell renal cell carcinoma. Oncotarget, 2017, 8(1), 1613.
[60]
Deng, C.X.; Brodie, S.G. Roles of BRCA1 and its interacting proteins. BioEssays, 2000, 22(8), 728-737.
[61]
Marrero, M.B.; Schieffer, B.; Li, B.; Sun, J.; Harp, J.B.; Ling, B.N. Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem., 1997, 272(39), 24684-24690.
[62]
Odabaei, G.; Chatterjee, D.; Jazirehi, A.R.; Goodglick, L.; Yeung, K.; Bonavida, B. Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv. Cancer Res., 2004, 91, 169-200.
[63]
Matsushita, K.; Tomonaga, T.; Shimada, H.; Shioya, A.; Higashi, M.; Matsubara, H.; Harigaya, K.; Nomura, F.; Libutti, D.; Levens, D.; Ochiai, T. An essential role of alternative splicing of c-myc suppressor FUSE-binding protein-interacting repressor in carcinogenesis. Cancer Res., 2006, 66(3), 1409-1417.
[64]
Yakabe, K.; Murakami, A.; Kajimura, T.; Nishimoto, Y.; Sueoka, K.; Sato, S.; Nawata, S.; Sugino, N. Functional significance of transgelin-2 in uterine cervical squamous cell carcinoma. J. Obstet. Gynaecol. Res., 2016, 42(5), 566-572.
[65]
Bos, R.; van der Groep, P.; Greijer, A.E.; Shvarts, A.; Meijer, S.; Pinedo, H.M.; Semenza, G.L.; van Diest, P.J.; van der Wall, E. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 2003, 97(6), 1573-1581.