Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Role of LncRNA TUG1 in Obesity-related Diseases

Author(s): Mengzhen Xue, Fangqi Xia, Yaqi Wang, Leiqi Zhu, Yuanyang Li, Dengke Jia, Yan Gao, Yue Shi, Changcheng Zhang, Yumin He, Chaoqi Liu, Ding Yuan* and Chengfu Yuan*

Volume 22, Issue 9, 2022

Published on: 08 March, 2022

Page: [1305 - 1313] Pages: 9

DOI: 10.2174/1389557522666220117120228

Price: $65

conference banner
Abstract

As the living standards of people are increasingly improved, obesity has become a hotspot in our daily life. Obesity has been found as a chronic and recurrent disease with serious adverse consequences. Over the past few years, several articles indicated that long non-coding RNA taurine increased gene 1 (lncRNA TUG1), a useful RNA, which was indicated to show a relationship to obesity- related disease occurrence and development. Exosomes are recognized as an emerging research field that includes substances actively involved in regulating the molecular mechanisms of disease. This review summarizes the current relevant TUG1 in different molecular pathways of obesityassociated diseases, the correlation between exosomes and TUG1, or obesity-associated diseases. The aim is to explore TUG1 as a novel target for obesity, which can deepen the knowledge regarding the epigenetic regulation pathway. Furthermore, it is expected to focus on diseases associated with obesity treatment and diagnosis.

Keywords: Long non-coding RNA, TUG1, diseases related to obesity, obesity, exosomes, molecular mechanism.

Graphical Abstract

[1]
Inoue, D.S.; Antunes, B.M.; Maideen, M.F.B.; Lira, F.S. Pathophysiological features of obesity and its impact on cognition: Exercise training as a non-pharmacological approach. Curr. Pharm. Des., 2020, 26(9), 916-931.
[http://dx.doi.org/10.2174/1381612826666200114102524] [PMID: 31942854]
[2]
Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes., 2008, 32(9), 1431-1437.
[3]
Dahik, V.D.; Frisdal, E.; Le Goff, W. Rewiring of lipid metabolism in adipose tissue macrophages in obesity: Impact on insulin resistance and type 2 diabetes. Int. J. Mol. Sci., 2020, 21(15), E5505.
[http://dx.doi.org/10.3390/ijms21155505] [PMID: 32752107]
[4]
O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev., 2015, 16(1), 1-12.
[http://dx.doi.org/10.1111/obr.12229] [PMID: 25407540]
[5]
Friedman, J.M. Obesity in the new millennium. Nature, 2000, 404(6778), 632-634.
[http://dx.doi.org/10.1038/35007504] [PMID: 10766249]
[6]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[7]
Zhang, F.F.; Liu, Y.H.; Wang, D.W.; Liu, T.S.; Yang, Y.; Guo, J.M.; Pan, Y.; Zhang, Y.F.; Du, H.; Li, L.; Jin, L. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia, 2020, 63(4), 811-824.
[http://dx.doi.org/10.1007/s00125-020-05090-y] [PMID: 32008054]
[8]
Sun, L.; Lin, J.D. Function and mechanism of long noncoding RNAs in adipocyte biology. Diabetes, 2019, 68(5), 887-896.
[http://dx.doi.org/10.2337/dbi18-0009] [PMID: 31010880]
[9]
Hu, W.; Ding, Y.; Wang, S.; Xu, L.; Yu, H. The construction and analysis of the aberrant lncRNA-miRNA-mRNA network in adipose tissue from type 2 diabetes individuals with obesity. J. Diabetes Res., 2020, 2020, 3980742.
[http://dx.doi.org/10.1155/2020/3980742] [PMID: 32337289]
[10]
Sun, L.; Goff, L.A.; Trapnell, C.; Alexander, R.; Lo, K.A.; Hacisuleyman, E.; Sauvageau, M.; Tazon-Vega, B.; Kelley, D.R.; Hendrickson, D.G.; Yuan, B.; Kellis, M.; Lodish, H.F.; Rinn, J.L. Long noncoding RNAs regulate adipogenesis. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3387-3392.
[http://dx.doi.org/10.1073/pnas.1222643110] [PMID: 23401553]
[11]
Cai, R.; Tang, G.; Zhang, Q.; Yong, W.; Zhang, W.; Xiao, J.; Wei, C.; He, C.; Yang, G.; Pang, W. A novel lnc-RNA, named lnc-ORA, is identified by RNA-Seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells, 2019, 8(5), E477.
[http://dx.doi.org/10.3390/cells8050477] [PMID: 31109074]
[12]
Cai, R.; Sun, Y.; Qimuge, N.; Wang, G.; Wang, Y.; Chu, G.; Yu, T.; Yang, G.; Pang, W. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating Adiponectin mRNA translation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(4), 420-432.
[http://dx.doi.org/10.1016/j.bbalip.2018.01.005] [PMID: 29414510]
[13]
Schmidt, E.; Dhaouadi, I.; Gaziano, I.; Oliverio, M.; Klemm, P.; Awazawa, M.; Mitterer, G.; Fernandez-Rebollo, E.; Pradas-Juni, M.; Wagner, W.; Hammerschmidt, P.; Loureiro, R.; Kiefer, C.; Hansmeier, N.R.; Khani, S.; Bergami, M.; Heine, M.; Ntini, E.; Frommolt, P.; Zentis, P.; Ørom, U.A.; Heeren, J.; Blüher, M.; Bilban, M.; Kornfeld, J.W. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat. Commun., 2018, 9(1), 3622.
[http://dx.doi.org/10.1038/s41467-018-05933-8] [PMID: 30190464]
[14]
Young, T.L.; Matsuda, T.; Cepko, C.L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol., 2005, 15(6), 501-512.
[http://dx.doi.org/10.1016/j.cub.2005.02.027] [PMID: 15797018]
[15]
Katsushima, K.; Natsume, A.; Ohka, F.; Shinjo, K.; Hatanaka, A.; Ichimura, N.; Sato, S.; Takahashi, S.; Kimura, H.; Totoki, Y.; Shibata, T.; Naito, M.; Kim, H.J.; Miyata, K.; Kataoka, K.; Kondo, Y. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat. Commun., 2016, 7, 13616.
[http://dx.doi.org/10.1038/ncomms13616] [PMID: 27922002]
[16]
Lewandowski, J.P.; Dumbović, G.; Watson, A.R.; Hwang, T.; Jacobs-Palmer, E.; Chang, N.; Much, C.; Turner, K.M.; Kirby, C.; Rubinstein, N.D.; Groff, A.F.; Liapis, S.C.; Gerhardinger, C.; Bester, A.; Pandolfi, P.P.; Clohessy, J.G.; Hoekstra, H.E.; Sauvageau, M.; Rinn, J.L. The Tug1 lncRNA locus is essential for male fertility. Genome Biol., 2020, 21(1), 237.
[http://dx.doi.org/10.1186/s13059-020-02081-5] [PMID: 32894169]
[17]
Guo, C.; Qi, Y.; Qu, J.; Gai, L.; Shi, Y.; Yuan, C. Pathophysiological Functions of the lncRNA TUG1. Curr. Pharm. Des., 2020, 26(6), 688-700.
[http://dx.doi.org/10.2174/1381612826666191227154009] [PMID: 31880241]
[18]
Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol., 2020, 16(4), 223-237.
[http://dx.doi.org/10.1038/s41581-019-0244-2] [PMID: 32024986]
[19]
Wang, Z.; Liu, Z.; Yang, Y.; Kang, L. Identification of biomarkers and pathways in hypertensive nephropathy based on the ceRNA regulatory network. BMC Nephrol., 2020, 21(1), 476.
[http://dx.doi.org/10.1186/s12882-020-02142-8] [PMID: 33176720]
[20]
Shi, L.; Tian, C.; Sun, L.; Cao, F.; Meng, Z. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem. Biophys. Res. Commun., 2018, 501(3), 688-695.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.049] [PMID: 29758198]
[21]
Dimmeler, S.; Hermann, C.; Zeiher, A.M. Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis? Eur. Cytokine Netw., 1998, 9(4), 697-698.
[PMID: 9889419]
[22]
Li, F.P.; Lin, D.Q.; Gao, L.Y. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7439-7447.
[PMID: 30468492]
[23]
Chen, C.; Cheng, G.; Yang, X.; Li, C.; Shi, R.; Zhao, N. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am. J. Transl. Res., 2016, 8(7), 2981-2991.
[PMID: 27508018]
[24]
Yan, H.Y.; Bu, S.Z.; Zhou, W.B.; Mai, Y.F. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20), 6922-6929.
[PMID: 30402858]
[25]
You, G.; Long, X.; Song, F.; Huang, J.; Tian, M.; Xiao, Y.; Deng, S.; Wu, Q. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des. Devel. Ther., 2020, 14, 457-468.
[http://dx.doi.org/10.2147/DDDT.S233932] [PMID: 32099330]
[26]
Zhang, L.; Cheng, H.; Yue, Y.; Li, S.; Zhang, D.; He, R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc. Pathol., 2018, 33, 6-15.
[http://dx.doi.org/10.1016/j.carpath.2017.11.004]
[27]
Yung, J.H.M.; Giacca, A. Role of c-Jun N-terminal Kinase (JNK) in obesity and type 2 diabetes. Cells, 2020, 9(3), E706.
[http://dx.doi.org/10.3390/cells9030706] [PMID: 32183037]
[28]
Abdulle, L.E.; Hao, J.L.; Pant, O.P.; Liu, X.F.; Zhou, D.D.; Gao, Y.; Suwal, A.; Lu, C.W. MALAT1 as a diagnostic and therapeutic target in diabetes-related complications: A promising long-noncoding RNA. Int. J. Med. Sci., 2019, 16(4), 548-555.
[http://dx.doi.org/10.7150/ijms.30097] [PMID: 31171906]
[29]
Zhang, Y.; Ma, Y.; Gu, M.; Peng, Y. lncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR 204 targeted SIRT1 in diabetic mice. Int. J. Mol. Med., 2020, 46(6), 2225-2234.
[http://dx.doi.org/10.3892/ijmm.2020.4741] [PMID: 33125086]
[30]
Zhang, Y.; Gu, M.; Ma, Y.; Peng, Y. LncRNA TUG1 reduces inflammation and enhances insulin sensitivity in white adipose tissue by regulating miR-204/SIRT1 axis in obesity mice. Mol. Cell. Biochem., 2020, 475(1-2), 171-183.
[http://dx.doi.org/10.1007/s11010-020-03869-6] [PMID: 32888158]
[31]
Dillmann, W.H. Diabetic cardiomyopathy. Circ. Res., 2019, 124(8), 1160-1162.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314665] [PMID: 30973809]
[32]
Zhao, L.; Li, W.; Zhao, H. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p. Am. J. Transl. Res., 2020, 12(3), 718-730.
[PMID: 32269707]
[33]
Wang, F.; Gao, X.; Zhang, R.; Zhao, P.; Sun, Y.; Li, C. LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression. Int. J. Clin. Exp. Pathol., 2019, 12(3), 717-729.
[PMID: 31933879]
[34]
Zhou, L.; Liu, Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat. Rev. Nephrol., 2015, 11(9), 535-545.
[http://dx.doi.org/10.1038/nrneph.2015.88] [PMID: 26055352]
[35]
Lei, X.; Zhang, L.; Li, Z.; Ren, J. Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des. Devel. Ther., 2018, 12, 2785-2793.
[http://dx.doi.org/10.2147/DDDT.S166525] [PMID: 30233141]
[36]
Zhao, Y.; Li, Q.; Ouyang, Q.; Wu, L.; Chen, X. Activated mesangial cells acquire the function of antigen presentation. Cell. Immunol., 2021, 361, 104279.
[http://dx.doi.org/10.1016/j.cellimm.2020.104279] [PMID: 33422698]
[37]
Zang, X.J.; Li, L.; Du, X.; Yang, B.; Mei, C.L. LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(17), 7519-7525.
[PMID: 31539141]
[38]
Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism, 2019, 92, 98-107.
[http://dx.doi.org/10.1016/j.metabol.2018.10.011] [PMID: 30399375]
[39]
Lassale, C.; Tzoulaki, I.; Moons, K.G.M.; Sweeting, M.; Boer, J.; Johnson, L.; Huerta, J.M.; Agnoli, C.; Freisling, H.; Weiderpass, E.; Wennberg, P. van der A, D.L.; Arriola, L.; Benetou, V.; Boeing, H.; Bonnet, F.; Colorado-Yohar, S.M.; Engström, G.; Eriksen, A.K.; Ferrari, P.; Grioni, S.; Johansson, M.; Kaaks, R.; Katsoulis, M.; Katzke, V.; Key, T.J.; Matullo, G.; Melander, O.; Molina-Portillo, E.; Moreno-Iribas, C.; Norberg, M.; Overvad, K.; Panico, S.; Quirós, J.R.; Saieva, C.; Skeie, G.; Steffen, A.; Stepien, M.; Tjønneland, A.; Trichopoulou, A.; Tumino, R.; van der Schouw, Y.T.; Verschuren, W.M.M.; Langenberg, C.; Di Angelantonio, E.; Riboli, E.; Wareham, N.J.; Danesh, J.; Butterworth, A.S. Separate and combined associations of obesity and metabolic health with coronary heart disease: A pan-European case-cohort analysis. Eur. Heart J., 2018, 39(5), 397-406.
[http://dx.doi.org/10.1093/eurheartj/ehx448] [PMID: 29020414]
[40]
Yusuf, S.; Hawken, S.; Ounpuu, S.; Bautista, L.; Franzosi, M.G.; Commerford, P.; Lang, C.C.; Rumboldt, Z.; Onen, C.L.; Lisheng, L.; Tanomsup, S.; Wangai, P., Jr; Razak, F.; Sharma, A.M.; Anand, S.S. INTERHEART study investigators Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet, 2005, 366(9497), 1640-1649.
[http://dx.doi.org/10.1016/S0140-6736(05)67663-5] [PMID: 16271645]
[41]
Turkieh, A.; Charrier, H.; Dubois-Deruy, E.; Porouchani, S.; Bouvet, M.; Pinet, F. Noncoding RNAs in cardiac autophagy following myocardial infarction. Oxid. Med. Cell. Longev., 2019, 2019, 8438650.
[http://dx.doi.org/10.1155/2019/8438650] [PMID: 31341537]
[42]
Li, B.; Wu, Y. LncRNA TUG1 overexpression promotes apoptosis of cardiomyocytes and predicts poor prognosis of myocardial infarction. J. Clin. Pharm. Ther., 2020, 45(6), 1452-1456.
[http://dx.doi.org/10.1111/jcpt.13190] [PMID: 32767580]
[43]
Yang, H.; He, X.; Wang, C.; Zhang, L.; Yu, J.; Wang, K. Knockdown of TUG 1 suppresses hypoxia-induced apoptosis of cardiomyocytes by up-regulating miR-133a. Arch. Biochem. Biophys., 2020, 681, 108262.
[http://dx.doi.org/10.1016/j.abb.2020.108262] [PMID: 31926162]
[44]
Zou, X.; Wang, J.; Tang, L.; Wen, Q. LncRNA TUG1 contributes to cardiac hypertrophy via regulating miR-29b-3p. In Vitro Cell. Dev. Biol. Anim., 2019, 55(7), 482-490.
[http://dx.doi.org/10.1007/s11626-019-00368-x] [PMID: 31183682]
[45]
Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage, 2013, 21(9), 1145-1153.
[http://dx.doi.org/10.1016/j.joca.2013.03.018] [PMID: 23973124]
[46]
Litwic, A.; Edwards, M.H.; Dennison, E.M.; Cooper, C. Epidemiology and burden of osteoarthritis. Br. Med. Bull., 2013, 105, 185-199.
[http://dx.doi.org/10.1093/bmb/lds038] [PMID: 23337796]
[47]
Felson, D.T.; Lawrence, R.C.; Dieppe, P.A.; Hirsch, R.; Helmick, C.G.; Jordan, J.M.; Kington, R.S.; Lane, N.E.; Nevitt, M.C.; Zhang, Y.; Sowers, M.; McAlindon, T.; Spector, T.D.; Poole, A.R.; Yanovski, S.Z.; Ateshian, G.; Sharma, L.; Buckwalter, J.A.; Brandt, K.D.; Fries, J.F. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann. Intern. Med., 2000, 133(8), 635-646.
[http://dx.doi.org/10.7326/0003-4819-133-8-200010170-00016] [PMID: 11033593]
[48]
Tang, L.P.; Ding, J.B.; Liu, Z.H.; Zhou, G.J. LncRNA TUG1 promotes osteoarthritis-induced degradation of chondrocyte extracellular matrix via miR-195/MMP-13 axis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(24), 8574-8581.
[PMID: 30575896]
[49]
Duan, J.; Shen, T.; Dong, H.; Han, S.; Li, G. Association of the expression levels of long-chain noncoding RNA TUG1 and its gene polymorphisms with knee osteoarthritis. Genet. Test. Mol. Biomarkers, 2021, 25(2), 102-110.
[http://dx.doi.org/10.1089/gtmb.2020.0208] [PMID: 33596137]
[50]
Ligibel, J.A.; Alfano, C.M.; Courneya, K.S.; Demark-Wahnefried, W.; Burger, R.A.; Chlebowski, R.T.; Fabian, C.J.; Gucalp, A.; Hershman, D.L.; Hudson, M.M.; Jones, L.W.; Kakarala, M.; Ness, K.K.; Merrill, J.K.; Wollins, D.S.; Hudis, C.A. American society of clinical oncology position statement on obesity and cancer. J. Clin. Oncol., 2014, 32(31), 3568-3574.
[http://dx.doi.org/10.1200/JCO.2014.58.4680] [PMID: 25273035]
[51]
Yan, Z.; Bi, M.; Zhang, Q.; Song, Y.; Hong, S. LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis. Biosci. Rep., 2020, 40(6), BSR20201025.
[http://dx.doi.org/10.1042/BSR20201025] [PMID: 32391554]
[52]
Hao, W.Y.; Guo, L.W.; Luo, J.; Shao, G.L.; Zheng, J.P. LncRNA TUG1 promotes growth and metastasis of cholangiocarcinoma cells by inhibiting miR-29a. Cancer Manag. Res., 2020, 12, 11103-11111.
[http://dx.doi.org/10.2147/CMAR.S270515] [PMID: 33173343]
[53]
Zong, M.; Feng, W.; Wan, L.; Yu, X.; Yu, W. LncRNA TUG1 promotes esophageal cancer development through regulating PLK1 expression by sponging miR-1294. Biotechnol. Lett., 2020, 42(12), 2537-2549.
[http://dx.doi.org/10.1007/s10529-020-02984-0] [PMID: 33009634]
[54]
Guo, Y.; Sun, Z.; Chen, M.; Lun, J. LncRNA TUG1 Regulates Proliferation of Cardiac Fibroblast via the miR-29b-3p/TGF-β1 Axis. Front. Cardiovasc. Med., 2021, 8, 646806.
[http://dx.doi.org/10.3389/fcvm.2021.646806] [PMID: 34540908]
[55]
Ebrahimi, R.; Toolabi, K.; Jannat Ali Pour, N.; Mohassel Azadi, S.; Bahiraee, A.; Zamani-Garmsiri, F.; Emamgholipour, S. Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: Is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 2020, 12, 36.
[http://dx.doi.org/10.1186/s13098-020-00544-0] [PMID: 32368256]
[56]
Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 174, 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[57]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[58]
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest., 2016, 126(4), 1208-1215.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[59]
Xie, F.; Liu, Y.L.; Chen, X.Y.; Li, Q.; Zhong, J.; Dai, B.Y.; Shao, X.F.; Wu, G.B. Role of microRNA, LncRNA, and exosomes in the progression of osteoarthritis: A review of recent literature. Orthop. Surg., 2020, 12(3), 708-716.
[http://dx.doi.org/10.1111/os.12690] [PMID: 32436304]
[60]
Chang, W.; Wang, J. Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells, 2019, 8(8), E853.
[http://dx.doi.org/10.3390/cells8080853] [PMID: 31398847]
[61]
Sun, Z.; Yang, S.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Xu, J.; Xia, K.; Chang, Y.; Liu, J.; Yuan, W. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol. Cancer, 2018, 17(1), 82.
[http://dx.doi.org/10.1186/s12943-018-0831-z] [PMID: 29678180]
[62]
Sun, H.J.; Zhu, X.X.; Cai, W.W.; Qiu, L.Y. Functional roles of exosomes in cardiovascular disorders: A systematic review. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(22), 5197-5206.
[PMID: 29228434]
[63]
Gezer, U.; Özgür, E.; Cetinkaya, M.; Isin, M.; Dalay, N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol. Int., 2014, 38(9), 1076-1079.
[http://dx.doi.org/10.1002/cbin.10301] [PMID: 24798520]
[64]
Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; Basile, F.; Di Pietro, C.; Purrello, M.; Ragusa, M. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids, 2018, 12, 229-241.
[http://dx.doi.org/10.1016/j.omtn.2018.05.009] [PMID: 30195762]
[65]
Poulet, C.; Njock, M.S.; Moermans, C.; Louis, E.; Louis, R.; Malaise, M.; Guiot, J. Exosomal long non-coding RNAs in lung diseases. Int. J. Mol. Sci., 2020, 21(10), E3580.
[http://dx.doi.org/10.3390/ijms21103580] [PMID: 32438606]
[66]
Lei, L.; Mou, Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol. Ther., 2020, 21(8), 717-725.
[http://dx.doi.org/10.1080/15384047.2020.1764318] [PMID: 32432954]
[67]
Wang, W.; Zhu, N.; Yan, T.; Shi, Y.N.; Chen, J.; Zhang, C.J.; Xie, X.J.; Liao, D.F.; Qin, L. The crosstalk: Exosomes and lipid metabolism. Cell Commun. Signal., 2020, 18(1), 119.
[http://dx.doi.org/10.1186/s12964-020-00581-2] [PMID: 32746850]
[68]
Zhang, B.; Yang, Y.; Xiang, L.; Zhao, Z.; Ye, R. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes. J. Cell. Physiol., 2019, 234(10), 16692-16702.
[http://dx.doi.org/10.1002/jcp.28354] [PMID: 30807657]
[69]
Lorente-Cebrián, S.; González-Muniesa, P.; Milagro, F.I.; Martínez, J.A. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: Emerging roles as biomarkers and therapeutic targets. Clin. Sci., 2019, 133(1), 23-40.
[http://dx.doi.org/10.1042/CS20180890]
[70]
Lei, L.M.; Lin, X.; Xu, F.; Shan, S.K.; Guo, B.; Li, F.X.; Zheng, M.H.; Wang, Y.; Xu, Q.S.; Yuan, L.Q. Exosomes and obesity-related insulin resistance. Front. Cell Dev. Biol., 2021, 9, 651996.
[http://dx.doi.org/10.3389/fcell.2021.651996] [PMID: 33816504]
[71]
Jayabalan, N.; Nair, S.; Nuzhat, Z.; Rice, G.E.; Zuñiga, F.A.; Sobrevia, L.; Leiva, A.; Sanhueza, C.; Gutiérrez, J.A.; Lappas, M.; Freeman, D.J.; Salomon, C. Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Front. Endocrinol. (Lausanne), 2017, 8, 239.
[http://dx.doi.org/10.3389/fendo.2017.00239] [PMID: 29021781]
[72]
Safdar, A.; Saleem, A.; Tarnopolsky, M.A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol., 2016, 12(9), 504-517.
[http://dx.doi.org/10.1038/nrendo.2016.76] [PMID: 27230949]
[73]
Maligianni, I.; Yapijakis, C.; Bacopoulou, F.; Chrousos, G. The potential role of exosomes in child and adolescent obesity. Children (Basel), 2021, 8(3), 196.
[http://dx.doi.org/10.3390/children8030196] [PMID: 33800718]
[74]
Zhang, Y.; Yu, M.; Tian, W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif., 2016, 49(1), 3-13.
[http://dx.doi.org/10.1111/cpr.12233] [PMID: 26776755]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy