Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

MiRNA-145 and Its Direct Downstream Targets in Digestive System Cancers: A Promising Therapeutic Target

Author(s): Yini Ma, Xiu Cao, Guojuan Shi and Tianlu Shi*

Volume 27, Issue 19, 2021

Published on: 29 October, 2020

Page: [2264 - 2273] Pages: 10

DOI: 10.2174/1381612826666201029095702

Price: $65

Abstract

MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating the expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles in cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as a valuable biomarker for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.

Keywords: miR-145, digestive system cancers, direct targets, biomarkers, proliferation, apoptosis.

[1]
Zhang H, Feng Q, Chen WD, Wang YD. HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int J Mol Sci 2018; 19(11): 19.
[http://dx.doi.org/10.3390/ijms19113295] [PMID: 30360560]
[2]
Ang C, Doyle E, Branch A. Bisphosphonates as potential adjuvants for patients with cancers of the digestive system. World J Gastroenterol 2016; 22(3): 906-16.
[http://dx.doi.org/10.3748/wjg.v22.i3.906] [PMID: 26811636]
[3]
Skroblin P, Mayr M. “Going long”: long non-coding RNAs as biomarkers. Circ Res 2014; 115(7): 607-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.304839] [PMID: 25214572]
[4]
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12(12): 861-74.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[5]
Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8(2): 93-103.
[http://dx.doi.org/10.1038/nrg1990] [PMID: 17230196]
[6]
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120(1): 21-4.
[http://dx.doi.org/10.1016/j.cell.2004.12.031] [PMID: 15652478]
[7]
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10(12): 1957-66.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[8]
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[9]
Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature 2007; 448(7149): 83-6.
[http://dx.doi.org/10.1038/nature05983] [PMID: 17589500]
[10]
Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436(7051): 740-4.
[http://dx.doi.org/10.1038/nature03868] [PMID: 15973356]
[11]
Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305(5689): 1437-41.
[http://dx.doi.org/10.1126/science.1102513] [PMID: 15284456]
[12]
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[13]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543): 853-8.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[14]
Ji LY, Jiang DQ, Dong NN. The role of miR-145 in microvasculature. Pharmazie 2013; 68(6): 387-91.
[PMID: 23875242]
[15]
Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460(7256): 705-10.
[http://dx.doi.org/10.1038/nature08195] [PMID: 19578358]
[16]
Carter D. New global survey shows an increasing cancer burden. Am J Nurs 2014; 114(3): 17.
[http://dx.doi.org/10.1097/01.NAJ.0000444482.41467.3a] [PMID: 24572524]
[17]
Chuang SC, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett 2009; 286(1): 9-14.
[http://dx.doi.org/10.1016/j.canlet.2008.10.040] [PMID: 19091458]
[18]
Chen W, Zheng R, Zeng H, Zhang S, He J. Annual report on status of cancer in China, 2011. Chin J Cancer Res 2015; 27(1): 2-12.
[http://dx.doi.org/10.1186/s40880-015-0001-2] [PMID: 25717220]
[19]
Wu Y, Meng X, Huang C, Li J. Emerging role of silent information regulator 1 (SIRT1) in hepatocellular carcinoma: a potential therapeutic target. Tumour Biol 2015; 36(6): 4063-74.
[http://dx.doi.org/10.1007/s13277-015-3488-x] [PMID: 25926383]
[20]
Gramantieri L, Ferracin M, Fornari F, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007; 67(13): 6092-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4607] [PMID: 17616664]
[21]
Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 2008; 47(4): 1223-32.
[http://dx.doi.org/10.1002/hep.22158] [PMID: 18307259]
[22]
Gao F, Sun X, Wang L, Tang S, Yan C. Downregulation of MicroRNA-145 caused by Hepatitis B virus X protein promotes expression of CUL5 and contributes to pathogenesis of Hepatitis B virus-associated hepatocellular carcinoma. Cell Physiol Biochem 2015; 37(4): 1547-59.
[http://dx.doi.org/10.1159/000438522] [PMID: 26512974]
[23]
Bandopadhyay M, Banerjee A, Sarkar N, et al. Tumor suppressor micro RNA miR-145 and onco micro RNAs miR-21 and miR-222 expressions are differentially modulated by hepatitis B virus X protein in malignant hepatocytes. BMC Cancer 2014; 14: 721.
[http://dx.doi.org/10.1186/1471-2407-14-721] [PMID: 25260533]
[24]
Xing AY, Wang B, Shi DB, et al. Deregulated expression of miR-145 in manifold human cancer cells. Exp Mol Pathol 2013; 95(1): 91-7.
[http://dx.doi.org/10.1016/j.yexmp.2013.05.003] [PMID: 23714355]
[25]
Noh JH, Chang YG, Kim MG, et al. MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer. Cancer Lett 2013; 335(2): 455-62.
[http://dx.doi.org/10.1016/j.canlet.2013.03.003] [PMID: 23499894]
[26]
Li Q, Liu X, Yin Y, et al. Insulin regulates glucose consumption and lactate production through reactive oxygen species and pyruvate kinase M2. Oxid Med Cell Longev 2014; 2014: 504953.
[http://dx.doi.org/10.1155/2014/504953] [PMID: 24895527]
[27]
Wang Y, Hu C, Cheng J, et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun 2014; 446(4): 1255-60.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.107] [PMID: 24690171]
[28]
Quint K, Agaimy A, Di Fazio P, et al. Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Arch 2011; 459(2): 129-39.
[http://dx.doi.org/10.1007/s00428-011-1103-0] [PMID: 21713366]
[29]
Qian YW, Chen Y, Yang W, et al. p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis Gastroenterology 2012; 142: 1547-58.
[30]
Wang L, Guo ZY, Zhang R, et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 2013; 34(8): 1773-81.
[http://dx.doi.org/10.1093/carcin/bgt139] [PMID: 23615404]
[31]
Zheng X, Jiang F, Katakowski M, Lu Y, Chopp M. ADAM17 promotes glioma cell malignant phenotype. Mol Carcinog 2012; 51(2): 150-64.
[http://dx.doi.org/10.1002/mc.20772] [PMID: 21480393]
[32]
Balasubramanian S, Fan M, Messmer-Blust AF, et al. The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein. J Biol Chem 2011; 286(22): 20054-64.
[http://dx.doi.org/10.1074/jbc.M111.249326] [PMID: 21502320]
[33]
Li YQ, Yan JP, Xu WL, et al. ADAM17 mediates MMP9 expression in lung epithelial cells. PLoS One 2013; 8(1): e51701.
[http://dx.doi.org/10.1371/journal.pone.0051701] [PMID: 23341882]
[34]
Liu Y, Wu C, Wang Y, et al. MicroRNA-145 inhibits cell proliferation by directly targeting ADAM17 in hepatocellular carcinoma. Oncol Rep 2014; 32(5): 1923-30.
[http://dx.doi.org/10.3892/or.2014.3424] [PMID: 25174729]
[35]
Li A, Dawson JC, Forero-Vargas M, et al. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 2010; 20(4): 339-45.
[http://dx.doi.org/10.1016/j.cub.2009.12.035] [PMID: 20137952]
[36]
Chan C, Jankova L, Fung CL, et al. Fascin expression predicts survival after potentially curative resection of node-positive colon cancer. Am J Surg Pathol 2010; 34(5): 656-66.
[http://dx.doi.org/10.1097/PAS.0b013e3181db36c0] [PMID: 20410808]
[37]
Wang G, Zhu S, Gu Y, Chen Q, Liu X, Fu H. MicroRNA-145 and MicroRNA-133a Inhibited Proliferation, Migration, and Invasion, While Promoted Apoptosis in Hepatocellular Carcinoma Cells Via Targeting FSCN1. Dig Dis Sci 2015; 60(10): 3044-52.
[http://dx.doi.org/10.1007/s10620-015-3706-9] [PMID: 26173501]
[38]
Mao Y, Yang H, Xu H, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut 2010; 59(12): 1687-93.
[http://dx.doi.org/10.1136/gut.2010.214916] [PMID: 20876776]
[39]
Gai X, Tang B, Liu F, et al. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3β/MMPs. J Genet Genomics 2019; 46(5): 235-45.
[http://dx.doi.org/10.1016/j.jgg.2019.03.013] [PMID: 31186161]
[40]
Xu Q, Liu LZ, Qian X, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res 2012; 40(2): 761-74.
[http://dx.doi.org/10.1093/nar/gkr730] [PMID: 21917858]
[41]
Yin Y, Yan ZP, Lu NN, et al. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta 2013; 1829(2): 239-47.
[http://dx.doi.org/10.1016/j.bbagrm.2012.11.006] [PMID: 23201159]
[42]
Liu H, Qin CY, Han GQ, Xu HW, Meng M, Yang Z. Mechanism of apoptotic effects induced selectively by ursodeoxycholic acid on human hepatoma cell lines. World J Gastroenterol 2007; 13(11): 1652-8.
[http://dx.doi.org/10.3748/wjg.v13.i11.1652] [PMID: 17461466]
[43]
Zhang J, Guo H, Qian G, et al. MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network. Mol Cancer 2010; 9: 211.
[http://dx.doi.org/10.1186/1476-4598-9-211] [PMID: 20687965]
[44]
Zhang J, Guo H, Zhang H, et al. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer 2011; 117(1): 86-95.
[http://dx.doi.org/10.1002/cncr.25522] [PMID: 20737575]
[45]
Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011; 71(15): 5214-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4645] [PMID: 21690566]
[46]
Yu Y, Nangia-Makker P, Farhana L, G Rajendra S, Levi E, Majumdar AP. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer 2015; 14: 98.
[http://dx.doi.org/10.1186/s12943-015-0372-7] [PMID: 25928322]
[47]
Uren A, Toretsky JA. Ewing’s sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent. Future Oncol 2005; 1(4): 521-8.
[http://dx.doi.org/10.2217/14796694.1.4.521] [PMID: 16556028]
[48]
Ladanyi M. EWS-FLI1 and Ewing’s sarcoma: recent molecular data and new insights. Cancer Biol Ther 2002; 1(4): 330-6.
[http://dx.doi.org/10.4161/cbt.1.4.2900] [PMID: 12432241]
[49]
Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89(2): 175-84.
[http://dx.doi.org/10.1016/S0092-8674(00)80197-X] [PMID: 9108473]
[50]
Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004; 4(5): 335-48.
[http://dx.doi.org/10.1038/nrc1362] [PMID: 15122205]
[51]
Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359(6398): 845-8.
[http://dx.doi.org/10.1038/359845a0] [PMID: 1279432]
[52]
Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 2011; 50(5): 307-12.
[http://dx.doi.org/10.1002/gcc.20854] [PMID: 21305640]
[53]
Wushou A, Hou J, Zhao YJ, Shao ZM. Twist-1 up-regulation in carcinoma correlates to poor survival. Int J Mol Sci 2014; 15(12): 21621-30.
[http://dx.doi.org/10.3390/ijms151221621] [PMID: 25429425]
[54]
Shen X, Jiang H, Chen Z, et al. MicroRNA-145 Inhibits Cell Migration and Invasion in Colorectal Cancer by Targeting TWIST. OncoTargets Ther 2019; 12: 10799-809.
[http://dx.doi.org/10.2147/OTT.S216147] [PMID: 31849487]
[55]
McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 2016; 7(2): 418-9.
[http://dx.doi.org/10.3945/an.116.012211] [PMID: 26980827]
[56]
Lei C, Du F, Sun L, et al. miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6. Cell Death Dis 2017; 8(10): e3101.
[http://dx.doi.org/10.1038/cddis.2017.493] [PMID: 29022908]
[57]
Puri C, Chibalina MV, Arden SD, Kruppa AJ, Kendrick-Jones J, Buss F. Overexpression of myosin VI in prostate cancer cells enhances PSA and VEGF secretion, but has no effect on endocytosis. Oncogene 2010; 29(2): 188-200.
[http://dx.doi.org/10.1038/onc.2009.328] [PMID: 19855435]
[58]
Wang Z, Ying M, Wu Q, Wang R, Li Y. Overexpression of myosin VI regulates gastric cancer cell progression. Gene 2016; 593(1): 100-9.
[http://dx.doi.org/10.1016/j.gene.2016.08.015] [PMID: 27515005]
[59]
Ishiyama N, Lee SH, Liu S, et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 2010; 141(1): 117-28.
[http://dx.doi.org/10.1016/j.cell.2010.01.017] [PMID: 20371349]
[60]
Castillo SD, Angulo B, Suarez-Gauthier A, et al. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer. J Pathol 2010; 222(1): 89-98.
[http://dx.doi.org/10.1002/path.2732] [PMID: 20556744]
[61]
Mann KM, Ward JM, Yew CC, et al. Australian Pancreatic Cancer Genome Initiative. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2012; 109(16): 5934-41.
[http://dx.doi.org/10.1073/pnas.1202490109] [PMID: 22421440]
[62]
Talvinen K, Tuikkala J, Nykänen M, et al. Altered expression of p120catenin predicts poor outcome in invasive breast cancer. J Cancer Res Clin Oncol 2010; 136(9): 1377-87.
[http://dx.doi.org/10.1007/s00432-010-0789-8] [PMID: 20151151]
[63]
Stairs DB, Bayne LJ, Rhoades B, et al. Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell 2011; 19(4): 470-83.
[http://dx.doi.org/10.1016/j.ccr.2011.02.007] [PMID: 21481789]
[64]
Xing AY, Wang YW, Su ZX, Shi DB, Wang B, Gao P. Catenin-δ1, negatively regulated by miR-145, promotes tumour aggressiveness in gastric cancer. J Pathol 2015; 236(1): 53-64.
[http://dx.doi.org/10.1002/path.4495] [PMID: 25470111]
[65]
Campos AR, Grossman D, White K. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. J Neurogenet 1985; 2(3): 197-218.
[http://dx.doi.org/10.3109/01677068509100150] [PMID: 3926976]
[66]
Li Q, Tong D, Guo C, et al. MicroRNA-145 suppresses gastric cancer progression by targeting Hu-antigen R. Am J Physiol Cell Physiol 2020; 318(3): C605-14.
[http://dx.doi.org/10.1152/ajpcell.00118.2019] [PMID: 31940247]
[67]
Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003; 349(23): 2241-52.
[http://dx.doi.org/10.1056/NEJMra035010] [PMID: 14657432]
[68]
Medical Research Council Oesophageal Cancer Working Group. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002; 359(9319): 1727-33.
[http://dx.doi.org/10.1016/S0140-6736(02)08651-8] [PMID: 12049861]
[69]
Lin DC, Du XL, Wang MR. Protein alterations in ESCC and clinical implications: a review. Dis Esophagus 2009; 22(1): 9-20.
[http://dx.doi.org/10.1111/j.1442-2050.2008.00845.x] [PMID: 18564170]
[70]
Daigo Y, Nakamura Y. From cancer genomics to thoracic oncology: discovery of new biomarkers and therapeutic targets for lung and esophageal carcinoma. Gen Thorac Cardiovasc Surg 2008; 56(2): 43-53.
[http://dx.doi.org/10.1007/s11748-007-0211-x] [PMID: 18297458]
[71]
Wu BL, Xu LY, Du ZP, et al. MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World J Gastroenterol 2011; 17(1): 79-88.
[http://dx.doi.org/10.3748/wjg.v17.i1.79] [PMID: 21218087]
[72]
Kano M, Seki N, Kikkawa N, et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 2010; 127(12): 2804-14.
[http://dx.doi.org/10.1002/ijc.25284] [PMID: 21351259]
[73]
Jayo A, Parsons M. Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 2010; 42(10): 1614-7.
[http://dx.doi.org/10.1016/j.biocel.2010.06.019] [PMID: 20601080]
[74]
Pelosi G, Pasini F, Fraggetta F, et al. Independent value of fascin immunoreactivity for predicting lymph node metastases in typical and atypical pulmonary carcinoids. Lung Cancer 2003; 42(2): 203-13.
[http://dx.doi.org/10.1016/S0169-5002(03)00294-0] [PMID: 14568688]
[75]
Darnel AD, Behmoaram E, Vollmer RT, et al. Fascin regulates prostate cancer cell invasion and is associated with metastasis and biochemical failure in prostate cancer. Clin Cancer Res 2009; 15(4): 1376-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1789] [PMID: 19228738]
[76]
Wang H, Hang C, Ou XL, et al. MiR-145 functions as a tumor suppressor via regulating angiopoietin-2 in pancreatic cancer cells. Cancer Cell Int 2016; 16(1): 65.
[http://dx.doi.org/10.1186/s12935-016-0331-4] [PMID: 27570490]
[77]
Hu B, Cheng SY. Angiopoietin-2: development of inhibitors for cancer therapy. Curr Oncol Rep 2009; 11(2): 111-6.
[http://dx.doi.org/10.1007/s11912-009-0017-3] [PMID: 19216842]
[78]
Lewis CE, De Palma M, Naldini L. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 2007; 67(18): 8429-32.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1684] [PMID: 17875679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy