Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy

Author(s): Weiqiang Zhou, Shanchun Guo*, Mingli Liu, Matthew E. Burow and Guangdi Wang*

Volume 26, Issue 17, 2019

Page: [3026 - 3041] Pages: 16

DOI: 10.2174/0929867324666170830111531

Price: $65

Abstract

Chemokines, which have chemotactic abilities, are comprised of a family of small cytokines with 8-10 kilodaltons. Chemokines work in immune cells by trafficking and regulating cell proliferation, migration, activation, differentiation, and homing. CXCR-4 is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also known as CXCL12), which has been found to be expressed in more than 23 different types of cancers. Recently, the SDF-1/CXCR-4 signaling pathway has emerged as a potential therapeutic target for human tumor because of its critical role in tumor initiation and progression by activating multiple signaling pathways, such as ERK1/2, ras, p38 MAPK, PLC/ MAPK, and SAPK/ JNK, as well as regulating cancer stem cells. CXCL12/CXCR4 antagonists have been produced, which have shown encouraging results in anti-cancer activity. Here, we provide a brief overview of the CXCL12/CXCR4 axis as a molecular target for cancer treatment. We also review the potential utility of targeting CXCL12/CXCR4 axis in combination of immunotherapy and/or chemotherapy based on up-to-date literature and ongoing research progress.

Keywords: Cancer, cancer stem cell, immunotherapy, CXCR4, CXCL12, chemokine, kilodaltons.

[1]
Ono, S.J.; Nakamura, T.; Miyazaki, D.; Ohbayashi, M.; Dawson, M.; Toda, M. Chemokines: roles in leukocyte development, trafficking, and effector function. J. Allergy Clin. Immunol., 2003, 111(6), 1185-1199.
[http://dx.doi.org/10.1067/mai.2003.1594] [PMID: 12789214]
[2]
Mukaida, N.; Baba, T. Chemokines in tumor development and progression. Exp. Cell Res., 2012, 318(2), 95-102.
[http://dx.doi.org/10.1016/j.yexcr.2011.10.012] [PMID: 22036649]
[3]
Keeley, E.C.; Mehrad, B.; Strieter, R.M. Chemokines as mediators of tumor angiogenesis and neovascularization. Exp. Cell Res., 2011, 317(5), 685-690.
[http://dx.doi.org/10.1016/j.yexcr.2010.10.020] [PMID: 21040721]
[4]
Gerber, P.A.; Hippe, A.; Buhren, B.A.; Müller, A.; Homey, B. Chemokines in tumor-associated angiogenesis. Biol. Chem., 2009, 390(12), 1213-1223.
[http://dx.doi.org/10.1515/BC.2009.144] [PMID: 19804363]
[5]
Itatani, Y.; Kawada, K.; Inamoto, S.; Yamamoto, T.; Ogawa, R.; Taketo, M.M.; Sakai, Y. The Role of chemokines in promoting colorectal cancer invasion/metastasis. Int. J. Mol. Sci., 2016, 17(5), E643.
[http://dx.doi.org/10.3390/ijms17050643] [PMID: 27136535]
[6]
Massara, M.; Bonavita, O.; Mantovani, A.; Locati, M.; Bonecchi, R. Atypical chemokine receptors in cancer: friends or foes? J. Leukoc. Biol., 2016, 99(6), 927-933.
[http://dx.doi.org/10.1189/jlb.3MR0915-431RR] [PMID: 26908826]
[7]
Furuse, K.; Fukuoka, M.; Kawahara, M.; Nishikawa, H.; Takada, Y.; Kudoh, S.; Katagami, N.; Ariyoshi, Y. Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J. Clin. Oncol., 1999, 17(9), 2692-2699.
[http://dx.doi.org/10.1200/JCO.1999.17.9.2692] [PMID: 10561343]
[8]
Zlotnik, A.; Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2), 121-127.
[http://dx.doi.org/10.1016/S1074-7613(00)80165-X] [PMID: 10714678]
[9]
Murphy, P.M.; Baggiolini, M.; Charo, I.F.; Hébert, C.A.; Horuk, R.; Matsushima, K.; Miller, L.H.; Oppenheim, J.J.; Power, C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev., 2000, 52(1), 145-176.
[PMID: 10699158]
[10]
Zlotnik, A.; Burkhardt, A.M.; Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol., 2011, 11(9), 597-606.
[http://dx.doi.org/10.1038/nri3049] [PMID: 21866172]
[11]
Wald, O.; Shapira, O.M.; Izhar, U. CXCR4/CXCL12 axis in non small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics, 2013, 3(1), 26-33.
[http://dx.doi.org/10.7150/thno.4922] [PMID: 23382783]
[12]
Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824), 50-56.
[http://dx.doi.org/10.1038/35065016] [PMID: 11242036]
[13]
Salvucci, O.; Yao, L.; Villalba, S.; Sajewicz, A.; Pittaluga, S.; Tosato, G. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood, 2002, 99(8), 2703-2711.
[http://dx.doi.org/10.1182/blood.V99.8.2703] [PMID: 11929756]
[14]
Guo, F.; Wang, Y.; Liu, J.; Mok, S.C.; Xue, F.; Zhang, W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene, 2016, 35(7), 816-826.
[http://dx.doi.org/10.1038/onc.2015.139] [PMID: 25961926]
[15]
Hou, K.L.; Hao, M.G.; Bo, J.J.; Wang, J.H. CXCR7 in tumorigenesis and progression. Chin. J. Cancer, 2010, 29(4), 456-459.
[http://dx.doi.org/10.5732/cjc.009.10404] [PMID: 20346226]
[16]
Pawig, L.; Klasen, C.; Weber, C.; Bernhagen, J.; Noels, H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front. Immunol., 2015, 6(429), 429.
[PMID: 26347749]
[17]
Balabanian, K.; Lagane, B.; Infantino, S.; Chow, K.Y.; Harriague, J.; Moepps, B.; Arenzana-Seisdedos, F.; Thelen, M.; Bachelerie, F. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J. Biol. Chem., 2005, 280(42), 35760-35766.
[http://dx.doi.org/10.1074/jbc.M508234200] [PMID: 16107333]
[18]
Tang, T.; Xia, Q.J.; Qiao, X.; Xi, M. Expression of C-X-C chemokine receptor type 7 in otorhinolaryngologic neoplasms. Singapore Med. J., 2016, 57(3), 157-160.
[http://dx.doi.org/10.11622/smedj.2016057] [PMID: 26996902]
[19]
Petit, I.; Jin, D.; Rafii, S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol., 2007, 28(7), 299-307.
[http://dx.doi.org/10.1016/j.it.2007.05.007] [PMID: 17560169]
[20]
Nagasawa, T.; Kikutani, H.; Kishimoto, T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. USA, 1994, 91(6), 2305-2309.
[http://dx.doi.org/10.1073/pnas.91.6.2305] [PMID: 8134392]
[21]
Kucia, M.; Reca, R.; Miekus, K.; Wanzeck, J.; Wojakowski, W.; Janowska-Wieczorek, A.; Ratajczak, J.; Ratajczak, M.Z. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 2005, 23(7), 879-894.
[http://dx.doi.org/10.1634/stemcells.2004-0342] [PMID: 15888687]
[22]
Busillo, J.M.; Benovic, J.L. Regulation of CXCR4 signaling. Biochim. Biophys. Acta, 2007, 1768(4), 952-963.
[http://dx.doi.org/10.1016/j.bbamem.2006.11.002] [PMID: 17169327]
[23]
Dewan, M.Z.; Ahmed, S.; Iwasaki, Y.; Ohba, K.; Toi, M.; Yamamoto, N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed. Pharmacother., 2006, 60(6), 273-276.
[http://dx.doi.org/10.1016/j.biopha.2006.06.004] [PMID: 16828253]
[24]
Décaillot, F.M.; Kazmi, M.A.; Lin, Y.; Ray-Saha, S.; Sakmar, T.P.; Sachdev, P. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J. Biol. Chem., 2011, 286(37), 32188-32197.
[http://dx.doi.org/10.1074/jbc.M111.277038] [PMID: 21730065]
[25]
Singh, A.K.; Arya, R.K.; Trivedi, A.K.; Sanyal, S.; Baral, R.; Dormond, O.; Briscoe, D.M.; Datta, D. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev., 2013, 24(1), 41-49.
[http://dx.doi.org/10.1016/j.cytogfr.2012.08.007] [PMID: 22989616]
[26]
Sun, X.; Cheng, G.; Hao, M.; Zheng, J.; Zhou, X.; Zhang, J.; Taichman, R.S.; Pienta, K.J.; Wang, J. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev., 2010, 29(4), 709-722.
[http://dx.doi.org/10.1007/s10555-010-9256-x] [PMID: 20839032]
[27]
Cheng, Z.J.; Zhao, J.; Sun, Y.; Hu, W.; Wu, Y.L.; Cen, B.; Wu, G.X.; Pei, G. β-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J. Biol. Chem., 2000, 275(4), 2479-2485.
[http://dx.doi.org/10.1074/jbc.275.4.2479] [PMID: 10644702]
[28]
Sun, Y.; Cheng, Z.; Ma, L.; Pei, G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J. Biol. Chem., 2002, 277(51), 49212-49219.
[http://dx.doi.org/10.1074/jbc.M207294200] [PMID: 12370187]
[29]
Saba, N.F.; Wang, Y.; Fu, H.; Koenig, L.; Khuri, F.R.; Shin, D.M.; Chen, Z.G. Association of cytoplasmic CXCR4 with loss of epithelial marker and activation of ERK1/2 and AKT signaling pathways in non-small-cell lung cancer. Clin. Lung Cancer, 2016, 22(16), 30381-30383.
[http://dx.doi.org/[DOI: 10.1016/j.cllc.2016.12.005] [PMID: 28073681]
[30]
Romain, B.; Hachet-Haas, M.; Rohr, S.; Brigand, C.; Galzi, J.L.; Gaub, M.P.; Pencreach, E.; Guenot, D. Hypoxia differentially regulated CXCR4 and CXCR7 signaling in colon cancer. Mol. Cancer, 2014, 13(58), 58.
[http://dx.doi.org/10.1186/1476-4598-13-58] [PMID: 24629239]
[31]
Choe, Y.; Pleasure, S.J. Wnt signaling regulates intermediate precursor production in the postnatal dentate gyrus by regulating CXCR4 expression. Dev. Neurosci., 2012, 34(6), 502-514.
[http://dx.doi.org/10.1159/000345353] [PMID: 23257686]
[32]
Esencay, M.; Newcomb, E.W.; Zagzag, D. HGF upregulates CXCR4 expression in gliomas via NF-kappaB: implications for glioma cell migration. J. Neurooncol., 2010, 99(1), 33-40.
[http://dx.doi.org/10.1007/s11060-010-0111-2] [PMID: 20157762]
[33]
Maroni, P.; Bendinelli, P.; Matteucci, E.; Desiderio, M.A. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis, 2007, 28(2), 267-279.
[http://dx.doi.org/10.1093/carcin/bgl129] [PMID: 16840440]
[34]
Matteucci, E.; Ridolfi, E.; Maroni, P.; Bendinelli, P.; Desiderio, M.A. c-Src/histone deacetylase 3 interaction is crucial for hepatocyte growth factor dependent decrease of CXCR4 expression in highly invasive breast tumor cells. Mol. Cancer Res., 2007, 5(8), 833-845.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0054] [PMID: 17699109]
[35]
Ridolfi, E.; Matteucci, E.; Maroni, P.; Desiderio, M.A. Inhibitory effect of HGF on invasiveness of aggressive MDA-MB231 breast carcinoma cells, and role of HDACs. Br. J. Cancer, 2008, 99(10), 1623-1634.
[http://dx.doi.org/10.1038/sj.bjc.6604726] [PMID: 18941460]
[36]
Cao, Y.; Karin, M. NF-kappaB in mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia, 2003, 8(2), 215-223.
[http://dx.doi.org/10.1023/A:1025905008934] [PMID: 14635796]
[37]
Helbig, G.; Christopherson, K.W., II; Bhat-Nakshatri, P.; Kumar, S.; Kishimoto, H.; Miller, K.D.; Broxmeyer, H.E.; Nakshatri, H. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem., 2003, 278(24), 21631-21638.
[http://dx.doi.org/10.1074/jbc.M300609200] [PMID: 12690099]
[38]
Fareh, M.; Turchi, L.; Virolle, V.; Debruyne, D.; Almairac, F.; de-la-Forest Divonne, S.; Paquis, P.; Preynat-Seauve, O.; Krause, K.H.; Chneiweiss, H.; Virolle, T. The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ., 2012, 19(2), 232-244.
[http://dx.doi.org/10.1038/cdd.2011.89] [PMID: 21720384]
[39]
Vila-Coro, A.J.; Rodríguez-Frade, J.M.; Martín De Ana, A.; Moreno-Ortíz, M.C.; Martínez-A, C.; Mellado, M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J., 1999, 13(13), 1699-1710.
[http://dx.doi.org/10.1096/fasebj.13.13.1699] [PMID: 10506573]
[40]
Soldevila, G.; Licona, I.; Salgado, A.; Ramírez, M.; Chávez, R.; García-Zepeda, E. Impaired chemokine-induced migration during T-cell development in the absence of Jak 3. Immunology, 2004, 112(2), 191-200.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01863.x] [PMID: 15147562]
[41]
Hinton, C.V.; Avraham, S.; Avraham, H.K. Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin. Exp. Metastasis, 2010, 27(2), 97-105.
[http://dx.doi.org/10.1007/s10585-008-9210-2] [PMID: 18814042]
[42]
Peng, S.B.; Peek, V.; Zhai, Y.; Paul, D.C.; Lou, Q.; Xia, X.; Eessalu, T.; Kohn, W.; Tang, S. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol. Cancer Res., 2005, 3(4), 227-236.
[PMID: 15831676]
[43]
Han, Y.; He, T.; Huang, D.R.; Pardo, C.A.; Ransohoff, R.M. TNF-alpha mediates SDF-1 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes. J. Clin. Invest., 2001, 108(3), 425-435.
[http://dx.doi.org/10.1172/JCI12629] [PMID: 11489936]
[44]
Kukreja, P.; Abdel-Mageed, A.B.; Mondal, D.; Liu, K.; Agrawal, K.C. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res., 2005, 65(21), 9891-9898.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1293] [PMID: 16267013]
[45]
Cabioglu, N.; Summy, J.; Miller, C.; Parikh, N.U.; Sahin, A.A.; Tuzlali, S.; Pumiglia, K.; Gallick, G.E.; Price, J.E. CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res., 2005, 65(15), 6493-6497.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1303] [PMID: 16061624]
[46]
Li, Y.M.; Pan, Y.; Wei, Y.; Cheng, X.; Zhou, B.P.; Tan, M.; Zhou, X.; Xia, W.; Hortobagyi, G.N.; Yu, D.; Hung, M.C. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell, 2004, 6(5), 459-469.
[http://dx.doi.org/10.1016/j.ccr.2004.09.027] [PMID: 15542430]
[47]
Gros, S.J.; Kurschat, N.; Drenckhan, A.; Dohrmann, T.; Forberich, E.; Effenberger, K.; Reichelt, U.; Hoffman, R.M.; Pantel, K.; Kaifi, J.T.; Izbicki, J.R. Involvement of CXCR4 chemokine receptor in metastastic HER2-positive esophageal cancer. PLoS One, 2012, 7(10), e47287.
[http://dx.doi.org/10.1371/journal.pone.0047287] [PMID: 23082154]
[48]
Al Zobair, A.A.; Al Obeidy, B.F.; Yang, L.; Yang, C.; Hui, Y.; Yu, H.; Zheng, F.; Yang, G.; Xie, C.; Zhou, F.; Zhou, Y. Concomitant overexpression of EGFR and CXCR4 is associated with worse prognosis in a new molecular subtype of non-small cell lung cancer. Oncol. Rep., 2013, 29(4), 1524-1532.
[http://dx.doi.org/10.3892/or.2013.2254] [PMID: 23443279]
[49]
Chinni, S.R.; Yamamoto, H.; Dong, Z.; Sabbota, A.; Bonfil, R.D.; Cher, M.L. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol. Cancer Res., 2008, 6(3), 446-457.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0117] [PMID: 18337451]
[50]
Porcile, C.; Bajetto, A.; Barbieri, F.; Barbero, S.; Bonavia, R.; Biglieri, M.; Pirani, P.; Florio, T.; Schettini, G. Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp. Cell Res., 2005, 308(2), 241-253.
[http://dx.doi.org/10.1016/j.yexcr.2005.04.024] [PMID: 15921680]
[51]
Marchese, A.; Raiborg, C.; Santini, F.; Keen, J.H.; Stenmark, H.; Benovic, J.L. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev. Cell, 2003, 5(5), 709-722.
[http://dx.doi.org/10.1016/S1534-5807(03)00321-6] [PMID: 14602072]
[52]
Begon, D.Y.; Delacroix, L.; Vernimmen, D.; Jackers, P.; Winkler, R.; Yang, Y. Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells. J. Biol. Chem., 2005, 280(26), 24428-24434.
[http://dx.doi.org/10.1074/jbc.M503790200] [PMID: 15870067]
[53]
Lee, B.C.; Lee, T.H.; Zagozdzon, R.; Avraham, S.; Usheva, A.; Avraham, H.K. Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res., 2005, 65(7), 2840-2845.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3309] [PMID: 15805285]
[54]
Kim, H.C.; Choi, K.C.; Choi, H.K.; Kang, H.B.; Kim, M.J.; Lee, Y.H.; Lee, O.H.; Lee, J.; Kim, Y.J.; Jun, W.; Jeong, J.W.; Yoon, H.G. HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell. Mol. Life Sci., 2010, 67(20), 3499-3510.
[http://dx.doi.org/10.1007/s00018-010-0388-5] [PMID: 20473547]
[55]
Uchida, D.; Onoue, T.; Begum, N.M.; Kuribayashi, N.; Tomizuka, Y.; Tamatani, T.; Nagai, H.; Miyamoto, Y. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells. Mol. Cancer, 2009, 8(62), 62.
[http://dx.doi.org/10.1186/1476-4598-8-62] [PMID: 19671192]
[56]
Luker, K.E.; Luker, G.D. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett., 2006, 238(1), 30-41.
[http://dx.doi.org/10.1016/j.canlet.2005.06.021] [PMID: 16046252]
[57]
Liang, Z.; Brooks, J.; Willard, M.; Liang, K.; Yoon, Y.; Kang, S.; Shim, H. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem. Biophys. Res. Commun., 2007, 359(3), 716-722.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.182] [PMID: 17559806]
[58]
Miyoshi, K.; Kohashi, K.; Fushimi, F.; Yamamoto, H.; Kishimoto, J.; Taguchi, T.; Iwamoto, Y.; Oda, Y. Close correlation between CXCR4 and VEGF expression and frequent CXCR7 expression in rhabdomyosarcoma. Hum. Pathol., 2014, 45(9), 1900-1909.
[http://dx.doi.org/10.1016/j.humpath.2014.05.012] [PMID: 25086956]
[59]
Seong, H.; Ryu, J.; Jeong, J.Y.; Chung, I.Y.; Han, Y.S.; Hwang, S.H.; Park, J.M.; Kang, S.S.; Seo, S.W. Resveratrol suppresses vascular endothelial growth factor secretion via inhibition of CXC-chemokine receptor 4 expression in ARPE-19 cells. Mol. Med. Rep., 2015, 12(1), 1479-1484.
[http://dx.doi.org/10.3892/mmr.2015.3518] [PMID: 25815440]
[60]
Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer, 2004, 4(7), 540-550.
[http://dx.doi.org/10.1038/nrc1388] [PMID: 15229479]
[61]
Balkwill, F.R. The chemokine system and cancer. J. Pathol., 2012, 226(2), 148-157.
[http://dx.doi.org/10.1002/path.3029] [PMID: 21989643]
[62]
Wang, Z.; Sun, J.; Feng, Y.; Tian, X.; Wang, B.; Zhou, Y. Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Tumour Biol., 2016, 37(7), 8515-8528.
[http://dx.doi.org/10.1007/s13277-016-5016-z] [PMID: 27079871]
[63]
Vela, M.; Aris, M.; Llorente, M.; Garcia-Sanz, J.A.; Kremer, L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front. Immunol., 2015, 6(12), 12.
[PMID: 25688243]
[64]
Gangadhar, T.; Nandi, S.; Salgia, R. The role of chemokine receptor CXCR4 in lung cancer. Cancer Biol. Ther., 2010, 9(6), 409-416.
[http://dx.doi.org/10.4161/cbt.9.6.11233] [PMID: 20147779]
[65]
Xu, C.; Zhao, H.; Chen, H.; Yao, Q. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des. Devel. Ther., 2015, 9, 4953-4964.
[PMID: 26356032]
[66]
Zhao, H.; Guo, L.; Zhao, H.; Zhao, J.; Weng, H.; Zhao, B. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget, 2015, 6(7), 5022-5040.
[http://dx.doi.org/10.18632/oncotarget.3217] [PMID: 25669980]
[67]
Balkwill, F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol., 2004, 14(3), 171-179.
[http://dx.doi.org/10.1016/j.semcancer.2003.10.003] [PMID: 15246052]
[68]
Ghosh, M.C.; Makena, P.S.; Gorantla, V.; Sinclair, S.E.; Waters, C.M. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 302(9), L846-L856.
[http://dx.doi.org/10.1152/ajplung.00321.2011] [PMID: 22345572]
[69]
Huang, Y.C.; Hsiao, Y.C.; Chen, Y.J.; Wei, Y.Y.; Lai, T.H.; Tang, C.H. Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells. Biochem. Pharmacol., 2007, 74(12), 1702-1712.
[http://dx.doi.org/10.1016/j.bcp.2007.08.025] [PMID: 17904532]
[70]
Jin, Z.; Zhao, C.; Han, X.; Han, Y. Wnt5a promotes ewing sarcoma cell migration through upregulating CXCR4 expression. BMC Cancer, 2012, 12(480), 480.
[http://dx.doi.org/10.1186/1471-2407-12-480] [PMID: 23075330]
[71]
Wang, M.; Chen, G.Y.; Song, H.T.; Hong, X.; Yang, Z.Y.; Sui, G.J. Significance of CXCR4, phosphorylated STAT3 and VEGF-A expression in resected non-small cell lung cancer. Exp. Ther. Med., 2011, 2(3), 517-522.
[http://dx.doi.org/10.3892/etm.2011.235] [PMID: 22977534]
[72]
Cai, X.; Chen, Z.; Pan, X.; Xia, L.; Chen, P.; Yang, Y.; Hu, H.; Zhang, J.; Li, K.; Ge, J.; Yu, K.; Zhuang, J. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethyl-pyrazine: mechanisms contributing to the SDF-1/CXCR4 axis. PLoS One, 2014, 9(2), e88176.
[http://dx.doi.org/10.1371/journal.pone.0088176] [PMID: 24505417]
[73]
Onoue, T.; Uchida, D.; Begum, N.M.; Tomizuka, Y.; Yoshida, H.; Sato, M. Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int. J. Oncol., 2006, 29(5), 1133-1138.
[PMID: 17016644]
[74]
Bertolini, G.; D’Amico, L.; Moro, M.; Landoni, E.; Perego, P.; Miceli, R.; Gatti, L.; Andriani, F.; Wong, D.; Caserini, R.; Tortoreto, M.; Milione, M.; Ferracini, R.; Mariani, L.; Pastorino, U.; Roato, I.; Sozzi, G.; Roz, L. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM- lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res., 2015, 75(17), 3636-3649.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3781] [PMID: 26141860]
[75]
Su, L.; Zhang, J.; Xu, H.; Wang, Y.; Chu, Y.; Liu, R.; Xiong, S. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin. Cancer Res., 2005, 11(23), 8273-8280.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0537] [PMID: 16322285]
[76]
Wang, L.; Wang, Z.; Liu, X.; Liu, F. High-level C-X-C chemokine receptor type 4 expression correlates with brain-specific metastasis following complete resection of non-small cell lung cancer. Oncol. Lett., 2014, 7(6), 1871-1876.
[http://dx.doi.org/10.3892/ol.2014.1979] [PMID: 24932250]
[77]
Choi, Y.H.; Burdick, M.D.; Strieter, B.A.; Mehrad, B.; Strieter, R.M. CXCR4, but not CXCR7, discriminates metastatic behavior in non-small cell lung cancer cells. Mol. Cancer Res., 2014, 12(1), 38-47.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0334] [PMID: 24025971]
[78]
Wagner, P.L.; Hyjek, E.; Vazquez, M.F.; Meherally, D.; Liu, Y.F.; Chadwick, P.A.; Rengifo, T.; Sica, G.L.; Port, J.L.; Lee, P.C.; Paul, S.; Altorki, N.K.; Saqi, A. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J. Thorac. Cardiovasc. Surg., 2009, 137(3), 615-621.
[http://dx.doi.org/10.1016/j.jtcvs.2008.07.039] [PMID: 19258077]
[79]
Singla, A.K.; Downey, C.M.; Bebb, G.D.; Jirik, F.R. Characterization of a murine model of metastatic human non-small cell lung cancer and effect of CXCR4 inhibition on the growth of metastases. Oncoscience, 2015, 2(3), 263-271.
[http://dx.doi.org/10.18632/oncoscience.117] [PMID: 25897429]
[80]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[81]
Polyak, K.; Haviv, I.; Campbell, I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet., 2009, 25(1), 30-38.
[http://dx.doi.org/10.1016/j.tig.2008.10.012] [PMID: 19054589]
[82]
Pietras, K.; Ostman, A. Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res., 2010, 316(8), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[83]
Panneerselvam, J.; Jin, J.; Shanker, M.; Lauderdale, J.; Bates, J.; Wang, Q.; Zhao, Y.D.; Archibald, S.J.; Hubin, T.J.; Ramesh, R. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS One, 2015, 10(3), e0122439.
[http://dx.doi.org/10.1371/journal.pone.0122439] [PMID: 25775124]
[84]
Yu, X.; Xia, W.; Zhang, T.; Wang, H.; Xie, Y.; Yang, J.; Miao, J. Enhanced cytotoxicity of IL-24 gene-modified dendritic cells co-cultured with cytokine-induced killer cells to hepatocellular carcinoma cells. Int. J. Hematol., 2010, 92(2), 276-282.
[http://dx.doi.org/10.1007/s12185-010-0654-1] [PMID: 20697855]
[85]
Chambers, A.F.; Groom, A.C.; MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer, 2002, 2(8), 563-572.
[http://dx.doi.org/10.1038/nrc865] [PMID: 12154349]
[86]
Phillips, R.J.; Burdick, M.D.; Lutz, M.; Belperio, J.A.; Keane, M.P.; Strieter, R.M. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med., 2003, 167(12), 1676-1686.
[http://dx.doi.org/10.1164/rccm.200301-071OC] [PMID: 12626353]
[87]
Zhi, Y.; Chen, J.; Zhang, S.; Chang, X.; Ma, J.; Dai, D. Down-regulation of CXCL12 by DNA hypermethylation and its involvement in gastric cancer metastatic progression. Dig. Dis. Sci., 2012, 57(3), 650-659.
[http://dx.doi.org/10.1007/s10620-011-1922-5] [PMID: 21960286]
[88]
Fridrichova, I.; Smolkova, B.; Kajabova, V.; Zmetakova, I.; Krivulcik, T.; Mego, M.; Cierna, Z.; Karaba, M.; Benca, J.; Pindak, D.; Bohac, M.; Repiska, V.; Danihel, L. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl. Res., 2015, 165(6), 717-730.
[http://dx.doi.org/10.1016/j.trsl.2014.12.006] [PMID: 25620615]
[89]
Zmetakova, I.; Danihel, L.; Smolkova, B.; Mego, M.; Kajabova, V.; Krivulcik, T.; Rusnak, I.; Rychly, B.; Danis, D.; Repiska, V.; Blasko, P.; Karaba, M.; Benca, J.; Pechan, J.; Fridrichova, I. Evaluation of protein expression and DNA methylation profiles detected by pyrosequencing in invasive breast cancer. Neoplasma, 2013, 60(6), 635-646.
[http://dx.doi.org/10.4149/neo_2013_082] [PMID: 23906298]
[90]
Wendt, M.K.; Johanesen, P.A.; Kang-Decker, N.; Binion, D.G.; Shah, V.; Dwinell, M.B. Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene, 2006, 25(36), 4986-4997.
[http://dx.doi.org/10.1038/sj.onc.1209505] [PMID: 16568088]
[91]
Suzuki, M.; Mohamed, S.; Nakajima, T.; Kubo, R.; Tian, L.; Fujiwara, T.; Suzuki, H.; Nagato, K.; Chiyo, M.; Motohashi, S.; Yasufuku, K.; Iyoda, A.; Yoshida, S.; Sekine, Y.; Shibuya, K.; Hiroshima, K.; Nakatani, Y.; Yoshino, I.; Fujisawa, T. Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis. Int. J. Oncol., 2008, 33(1), 113-119.
[PMID: 18575756]
[92]
Goltz, D.; Holmes, E.E.; Gevensleben, H.; Sailer, V.; Dietrich, J.; Jung, M.; Röhler, M.; Meller, S.; Ellinger, J.; Kristiansen, G.; Dietrich, D. CXCL12 promoter methylation and PD-L1 expression as prognostic biomarkers in prostate cancer patients. Oncotarget, 2016, 7(33), 53309-53320.
[http://dx.doi.org/10.18632/oncotarget.10786] [PMID: 27462860]
[93]
Pang, L.Y.; Argyle, D.J. Using naturally occurring tumours in dogs and cats to study telomerase and cancer stem cell biology. Biochim. Biophys. Acta, 2009, 1792(4), 380-391.
[http://dx.doi.org/10.1016/j.bbadis.2009.02.010] [PMID: 19254761]
[94]
Chen, W.; Dong, J.; Haiech, J.; Kilhoffer, M.C.; Zeniou, M. Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy., 2016, 2016, 1740936.
[http://dx.doi.org/10.1155/2016/1740936]
[95]
Peiris-Pagès, M.; Martinez-Outschoorn, U.E.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer stem cell metabolism. Breast Cancer Res., 2016, 18(1), 55.
[http://dx.doi.org/10.1186/s13058-016-0712-6] [PMID: 27220421]
[96]
Wang, J.; Li, Z.H.; White, J.; Zhang, L.B. Lung cancer stem cells and implications for future therapeutics. Cell Biochem. Biophys., 2014, 69(3), 389-398.
[http://dx.doi.org/10.1007/s12013-014-9844-4] [PMID: 24549856]
[97]
Alamgeer, M.; Peacock, C.D.; Matsui, W.; Ganju, V.; Watkins, D.N. Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 2013, 18(5), 757-764.
[http://dx.doi.org/10.1111/resp.12094] [PMID: 23586700]
[98]
O’Flaherty, J.D.; Barr, M.; Fennell, D.; Richard, D.; Reynolds, J.; O’Leary, J.; O’Byrne, K. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J. Thorac. Oncol., 2012, 7(12), 1880-1890.
[http://dx.doi.org/10.1097/JTO.0b013e31826bfbc6] [PMID: 23154562]
[99]
Shi, A.M.; Tao, Z.Q.; Li, H.; Wang, Y.Q.; Zhao, J. Cancer stem cells targeting agents--a review. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(21), 4064-4067.
[PMID: 26592827]
[100]
Sullivan, J.P.; Spinola, M.; Dodge, M.; Raso, M.G.; Behrens, C.; Gao, B.; Schuster, K.; Shao, C.; Larsen, J.E.; Sullivan, L.A.; Honorio, S.; Xie, Y.; Scaglioni, P.P.; DiMaio, J.M.; Gazdar, A.F.; Shay, J.W.; Wistuba, I.I.; Minna, J.D. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res., 2010, 70(23), 9937-9948.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0881] [PMID: 21118965]
[101]
Huang, C.P.; Tsai, M.F.; Chang, T.H.; Tang, W.C.; Chen, S.Y.; Lai, H.H.; Lin, T.Y.; Yang, J.C.; Yang, P.C.; Shih, J.Y.; Lin, S.B. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett., 2013, 328(1), 144-151.
[http://dx.doi.org/10.1016/j.canlet.2012.08.021] [PMID: 22935675]
[102]
Gorelik, E.; Lokshin, A.; Levina, V. Lung cancer stem cells as a target for therapy. Anticancer. Agents Med. Chem., 2010, 10(2), 164-171.
[http://dx.doi.org/10.2174/187152010790909308] [PMID: 20184538]
[103]
Lennartsson, J.; Rönnstrand, L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev., 2012, 92(4), 1619-1649.
[http://dx.doi.org/10.1152/physrev.00046.2011] [PMID: 23073628]
[104]
Yan, Y.; Zuo, X.; Wei, D. Concise Review: Emerging role of CD44 in cancer stem cells: A promising biomarker and therapeutic target. Stem Cells Transl. Med., 2015, 4(9), 1033-1043.
[http://dx.doi.org/10.5966/sctm.2015-0048] [PMID: 26136504]
[105]
Bourguignon, L.Y.; Shiina, M.; Li, J.J. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv. Cancer Res., 2014, 123, 255-275.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00010-1] [PMID: 25081533]
[106]
Williams, K.; Motiani, K.; Giridhar, P.V.; Kasper, S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp. Biol. Med. (Maywood), 2013, 238(3), 324-338.
[http://dx.doi.org/10.1177/1535370213480714] [PMID: 23598979]
[107]
Qu, H.; Li, R.; Liu, Z.; Zhang, J.; Luo, R. Prognostic value of cancer stem cell marker CD133 expression in non-small cell lung cancer: a systematic review. Int. J. Clin. Exp. Pathol., 2013, 6(11), 2644-2650.
[PMID: 24228135]
[108]
Grosse-Gehling, P.; Fargeas, C.A.; Dittfeld, C.; Garbe, Y.; Alison, M.R.; Corbeil, D.; Kunz-Schughart, L.A. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J. Pathol., 2013, 229(3), 355-378.
[http://dx.doi.org/10.1002/path.4086] [PMID: 22899341]
[109]
Kubo, T.; Takigawa, N.; Osawa, M.; Harada, D.; Ninomiya, T.; Ochi, N.; Ichihara, E.; Yamane, H.; Tanimoto, M.; Kiura, K. Subpopulation of small-cell lung cancer cells expressing CD133 and CD87 show resistance to chemotherapy. Cancer Sci., 2013, 104(1), 78-84.
[http://dx.doi.org/10.1111/cas.12045] [PMID: 23066953]
[110]
Yang, Y.; Fan, Y.; Qi, Y.; Liu, D.; Wu, K.; Wen, F.; Zhao, S. Side population cells separated from A549 lung cancer cell line possess cancer stem cell-like properties and inhibition of autophagy potentiates the cytotoxic effect of cisplatin. Oncol. Rep., 2015, 34(2), 929-935.
[http://dx.doi.org/10.3892/or.2015.4057] [PMID: 26081992]
[111]
Singh, S.; Trevino, J.; Bora-Singhal, N.; Coppola, D.; Haura, E.; Altiok, S.; Chellappan, S.P. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol. Cancer, 2012, 11(73), 73.
[http://dx.doi.org/10.1186/1476-4598-11-73] [PMID: 23009336]
[112]
Salcido, C.D.; Larochelle, A.; Taylor, B.J.; Dunbar, C.E.; Varticovski, L. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br. J. Cancer, 2010, 102(11), 1636-1644.
[http://dx.doi.org/10.1038/sj.bjc.6605668] [PMID: 20424609]
[113]
Yen, W.C.; Fischer, M.M.; Axelrod, F.; Bond, C.; Cain, J.; Cancilla, B.; Henner, W.R.; Meisner, R.; Sato, A.; Shah, J.; Tang, T.; Wallace, B.; Wang, M.; Zhang, C.; Kapoun, A.M.; Lewicki, J.; Gurney, A.; Hoey, T. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin. Cancer Res., 2015, 21(9), 2084-2095.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2808] [PMID: 25934888]
[114]
Hassan, K.A.; Wang, L.; Korkaya, H.; Chen, G.; Maillard, I.; Beer, D.G.; Kalemkerian, G.P.; Wicha, M.S. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin. Cancer Res., 2013, 19(8), 1972-1980.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0370] [PMID: 23444212]
[115]
Zhang, S.; Wang, Y.; Mao, J.H.; Hsieh, D.; Kim, I.J.; Hu, L.M.; Xu, Z.; Long, H.; Jablons, D.M.; You, L. Inhibition of CK2α down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells. PLoS One, 2012, 7(6), e38996.
[http://dx.doi.org/10.1371/journal.pone.0038996] [PMID: 22768056]
[116]
Justilien, V.; Walsh, M.P.; Ali, S.A.; Thompson, E.A.; Murray, N.R.; Fields, A.P. The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell, 2014, 25(2), 139-151.
[http://dx.doi.org/10.1016/j.ccr.2014.01.008] [PMID: 24525231]
[117]
Yagui-Beltrán, A.; Jablons, D.M. A translational approach to lung cancer research: From EGFRs to Wnt and cancer stem cells. Ann. Thorac. Cardiovasc. Surg., 2009, 15(4), 213-220.
[PMID: 19763051]
[118]
Chang, Y.W.; Su, Y.J.; Hsiao, M.; Wei, K.C.; Lin, W.H.; Liang, C.L.; Chen, S.C.; Lee, J.L. Diverse targets of β-catenin during the epithelial-mesenchymal transition define cancer stem cells and predict disease relapse. Cancer Res., 2015, 75(16), 3398-3410.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3265] [PMID: 26122848]
[119]
Lu, C.; Huang, T.; Chen, W.; Lu, H. GnRH participates in the self-renewal of A549-derived lung cancer stem-like cells through upregulation of the JNK signaling pathway. Oncol. Rep., 2015, 34(1), 244-250.
[http://dx.doi.org/10.3892/or.2015.3956] [PMID: 25955300]
[120]
Song, W.; Ma, Y.; Wang, J.; Brantley-Sieders, D.; Chen, J. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res., 2014, 74(9), 2444-2454.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2136] [PMID: 24607842]
[121]
Lee, S.O.; Yang, X.; Duan, S.; Tsai, Y.; Strojny, L.R.; Keng, P.; Chen, Y. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer. Oncotarget, 2015, 12(10)
[PMID: 26675547]
[122]
Malanga, D.; De Marco, C.; Guerriero, I.; Colelli, F.; Rinaldo, N.; Scrima, M.; Mirante, T.; De Vitis, C.; Zoppoli, P.; Ceccarelli, M.; Riccardi, M.; Ravo, M.; Weisz, A.; Federico, A.; Franco, R.; Rocco, G.; Mancini, R.; Rizzuto, A.; Gulletta, E.; Ciliberto, G.; Viglietto, G. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells. Oncotarget, 2015, 6(40), 42667-42686.
[http://dx.doi.org/10.18632/oncotarget.5626] [PMID: 26486080]
[123]
Larzabal, L.; El-Nikhely, N.; Redrado, M.; Seeger, W.; Savai, R.; Calvo, A. Differential effects of drugs targeting cancer stem cell (CSC) and non-CSC populations on lung primary tumors and metastasis. PLoS One, 2013, 8(11), e79798.
[http://dx.doi.org/10.1371/journal.pone.0079798] [PMID: 24278179]
[124]
Wu, W.; Cao, J.; Ji, Z.; Wang, J.; Jiang, T.; Ding, H. Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget, 2016, 7(49), 81144-81155.
[http://dx.doi.org/10.18632/oncotarget.13214] [PMID: 27835894]
[125]
Moro, M.; Bertolini, G.; Pastorino, U.; Roz, L.; Sozzi, G. Combination treatment with all-trans retinoic acid prevents cisplatin-induced enrichment of CD133+ tumor-initiating cells and reveals heterogeneity of cancer stem cell compartment in lung cancer. J. Thorac. Oncol., 2015, 10(7), 1027-1036.
[http://dx.doi.org/10.1097/JTO.0000000000000563] [PMID: 26020124]
[126]
Tu, Z.; Xie, S.; Xiong, M.; Liu, Y.; Yang, X.; Tembo, K.M.; Huang, J.; Hu, W.; Huang, X.; Pan, S.; Liu, P.; Altaf, E.; Kang, G.; Xiong, J.; Zhang, Q. CXCR4 is involved in CD133-induced EMT in non-small cell lung cancer. Int. J. Oncol., 2016, 19(10)
[PMID: 28000861]
[127]
Wang, Z.; Sun, J.; Feng, Y.; Tian, X.; Wang, B.; Zhou, Y. Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Tumour Biol., 2016, 37(7), 8515-8528.
[http://dx.doi.org/10.1007/s13277-016-5016-z] [PMID: 27079871]
[128]
Mantovani, A. Chemokines in neoplastic progression. Semin. Cancer Biol., 2004, 14(3), 147-148.
[http://dx.doi.org/10.1016/j.semcancer.2003.10.010] [PMID: 15246048]
[129]
Mantovani, A.; Allavena, P.; Sozzani, S.; Vecchi, A.; Locati, M.; Sica, A. Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin. Cancer Biol., 2004, 14(3), 155-160.
[http://dx.doi.org/10.1016/j.semcancer.2003.10.001] [PMID: 15246050]
[130]
Peled, A.; Wald, O.; Burger, J. Development of novel CXCR4-based therapeutics. Expert Opin. Investig. Drugs, 2012, 21(3), 341-353.
[http://dx.doi.org/10.1517/13543784.2012.656197] [PMID: 22283809]
[131]
Liekens, S.; Schols, D.; Hatse, S. CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr. Pharm. Des., 2010, 16(35), 3903-3920.
[http://dx.doi.org/10.2174/138161210794455003] [PMID: 21158728]
[132]
Jung, M.J.; Rho, J.K.; Kim, Y.M.; Jung, J.E.; Jin, Y.B.; Ko, Y.G.; Lee, J.S.; Lee, S.J.; Lee, J.C.; Park, M.J. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene, 2013, 32(2), 209-221.
[http://dx.doi.org/10.1038/onc.2012.37] [PMID: 22370645]
[133]
Nian, W.Q.; Chen, F.L.; Ao, X.J.; Chen, Z.T. CXCR4 positive cells from Lewis lung carcinoma cell line have cancer metastatic stem cell characteristics. Mol. Cell. Biochem., 2011, 355(1-2), 241-248.
[http://dx.doi.org/10.1007/s11010-011-0860-z] [PMID: 21553023]
[134]
Bertolini, G.; Roz, L.; Perego, P.; Tortoreto, M.; Fontanella, E.; Gatti, L.; Pratesi, G.; Fabbri, A.; Andriani, F.; Tinelli, S.; Roz, E.; Caserini, R.; Lo Vullo, S.; Camerini, T.; Mariani, L.; Delia, D.; Calabrò, E.; Pastorino, U.; Sozzi, G. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16281-16286.
[http://dx.doi.org/10.1073/pnas.0905653106] [PMID: 19805294]
[135]
Es-Haghi, M.; Soltanian, S.; Dehghani, H. Perspective: Cooperation of Nanog, NF-κB, and CXCR4 in a regulatory network for directed migration of cancer stem cells. Tumour Biol., 2016, 37(2), 1559-1565.
[http://dx.doi.org/10.1007/s13277-015-4690-6] [PMID: 26715265]
[136]
Lundin, A.; Driscoll, B. Lung cancer stem cells: progress and prospects. Cancer Lett., 2013, 338(1), 89-93.
[http://dx.doi.org/10.1016/j.canlet.2012.08.014] [PMID: 22906416]
[137]
Marcucci, F.; Rumio, C.; Lefoulon, F. Anti-cancer stem-like cell compounds in clinical development - an overview and critical appraisal. Front. Oncol., 2016, 6(115), 115.
[PMID: 27242955]
[138]
Codony-Servat, J.; Rosell, R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl. Lung Cancer Res., 2015, 4(6), 689-703.
[PMID: 26798578]
[139]
Fahham, D.; Weiss, I.D.; Abraham, M.; Beider, K.; Hanna, W.; Shlomai, Z.; Eizenberg, O.; Zamir, G.; Izhar, U.; Shapira, O.M.; Peled, A.; Wald, O. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non-small cell lung cancer. J. Thorac. Cardiovasc. Surg., 2012, 144(5), 1167-1175, e1161.
[http://dx.doi.org/10.1016/j.jtcvs.2012.07.031] [PMID: 22925564]
[140]
Tamamura, H.; Hiramatsu, K.; Ueda, S.; Wang, Z.; Kusano, S.; Terakubo, S.; Trent, J.O.; Peiper, S.C.; Yamamoto, N.; Nakashima, H.; Otaka, A.; Fujii, N. Stereoselective synthesis of [L-Arg-L/D-3-(2-naphthyl)alanine]-type (E)-alkene dipeptide isosteres and its application to the synthesis and biological evaluation of pseudopeptide analogues of the CXCR4 antagonist FC131. J. Med. Chem., 2005, 48(2), 380-391.
[http://dx.doi.org/10.1021/jm049429h] [PMID: 15658852]
[141]
Yoshikawa, Y.; Kobayashi, K.; Oishi, S.; Fujii, N.; Furuya, T. Molecular modeling study of cyclic pentapeptide CXCR4 antagonists: new insight into CXCR4-FC131 interactions. Bioorg. Med. Chem. Lett., 2012, 22(6), 2146-2150.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.134] [PMID: 22365757]
[142]
Tamamura, H.; Hori, A.; Kanzaki, N.; Hiramatsu, K.; Mizumoto, M.; Nakashima, H.; Yamamoto, N.; Otaka, A.; Fujii, N. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett., 2003, 550(1-3), 79-83.
[http://dx.doi.org/10.1016/S0014-5793(03)00824-X] [PMID: 12935890]
[143]
N.F.. Schiano, C.; Infante, T.; Napoli, C., CXCR4 inhibitors: tumor vasculature and therapeutic challenges. Recent Patents Anticancer Drug Discov., 2012, 7(3), 251-264.
[http://dx.doi.org/10.2174/157489212801820039]
[144]
Otani, Y.; Kijima, T.; Kohmo, S.; Oishi, S.; Minami, T.; Nagatomo, I.; Takahashi, R.; Hirata, H.; Suzuki, M.; Inoue, K.; Takeda, Y.; Kida, H.; Tachibana, I.; Fujii, N.; Kumanogoh, A. Suppression of metastases of small cell lung cancer cells in mice by a peptidic CXCR4 inhibitor TF14016. FEBS Lett., 2012, 586(20), 3639-3644.
[http://dx.doi.org/10.1016/j.febslet.2012.08.011] [PMID: 22992418]
[145]
Stone, N.D.; Dunaway, S.B.; Flexner, C.; Tierney, C.; Calandra, G.B.; Becker, S.; Cao, Y.J.; Wiggins, I.P.; Conley, J.; MacFarland, R.T.; Park, J.G.; Lalama, C.; Snyder, S.; Kallungal, B.; Klingman, K.L.; Hendrix, C.W. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob. Agents Chemother., 2007, 51(7), 2351-2358.
[http://dx.doi.org/10.1128/AAC.00013-07] [PMID: 17452489]
[146]
Nyunt, M.M.; Becker, S.; MacFarland, R.T.; Chee, P.; Scarborough, R.; Everts, S.; Calandra, G.B.; Hendrix, C.W. Pharmacokinetic effect of AMD070, an Oral CXCR4 antagonist, on CYP3A4 and CYP2D6 substrates midazolam and dextromethorphan in healthy volunteers. J. Acquir. Immune Defic. Syndr., 2008, 47(5), 559-565.
[http://dx.doi.org/10.1097/QAI.0b013e3181627566] [PMID: 18362694]
[147]
De Clercq, E. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol., 2009, 77(11), 1655-1664.
[http://dx.doi.org/10.1016/j.bcp.2008.12.014] [PMID: 19161986]
[148]
DiPersio, J.F.; Stadtmauer, E.A.; Nademanee, A.; Micallef, I.N.; Stiff, P.J.; Kaufman, J.L.; Maziarz, R.T.; Hosing, C.; Früehauf, S.; Horwitz, M.; Cooper, D.; Bridger, G.; Calandra, G. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood, 2009, 113(23), 5720-5726.
[PMID: 19363221]
[149]
DiPersio, J.F.; Uy, G.L.; Yasothan, U.; Kirkpatrick, P. Plerixafor. Nat. Rev. Drug Discov., 2009, 8(2), 105-106.
[http://dx.doi.org/10.1038/nrd2819] [PMID: 19180104]
[150]
O’Boyle, G.; Swidenbank, I.; Marshall, H.; Barker, C.E.; Armstrong, J.; White, S.A.; Fricker, S.P.; Plummer, R.; Wright, M.; Lovat, P.E. Inhibition of CXCR4-CXCL12 chemotaxis in melanoma by AMD11070. Br. J. Cancer, 2013, 108(8), 1634-1640.
[http://dx.doi.org/10.1038/bjc.2013.124] [PMID: 23538388]
[151]
Liang, Z.; Zhan, W.; Zhu, A.; Yoon, Y.; Lin, S.; Sasaki, M.; Klapproth, J.M.; Yang, H.; Grossniklaus, H.E.; Xu, J.; Rojas, M.; Voll, R.J.; Goodman, M.M.; Arrendale, R.F.; Liu, J.; Yun, C.C.; Snyder, J.P.; Liotta, D.C.; Shim, H. Development of a unique small molecule modulator of CXCR4. PLoS One, 2012, 7(4), e34038.
[http://dx.doi.org/10.1371/journal.pone.0034038] [PMID: 22485156]
[152]
Planesas, J.M.; Pérez-Nueno, V.I.; Borrell, J.I.; Teixidó, J. Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor. J. Mol. Graph. Model., 2015, 60, 1-14.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.004] [PMID: 26080355]
[153]
Jenkinson, S.; Thomson, M.; McCoy, D.; Edelstein, M.; Danehower, S.; Lawrence, W.; Wheelan, P.; Spaltenstein, A.; Gudmundsson, K. Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist. Antimicrob. Agents Chemother., 2010, 54(2), 817-824.
[http://dx.doi.org/10.1128/AAC.01293-09] [PMID: 19949058]
[154]
Murakami, T.; Kumakura, S.; Yamazaki, T.; Tanaka, R.; Hamatake, M.; Okuma, K.; Huang, W.; Toma, J.; Komano, J.; Yanaka, M.; Tanaka, Y.; Yamamoto, N. The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: comparative studies with AMD3100. Antimicrob. Agents Chemother., 2009, 53(7), 2940-2948.
[http://dx.doi.org/10.1128/AAC.01727-08] [PMID: 19451305]
[155]
Iwanaga, T.; Iwasaki, Y.; Ohashi, M.; Ohinata, R.; Takahashi, K.; Yamaguchi, T.; Matsumoto, H.; Nakano, D. [Inhibitory effect of CXCR4 blockers on a CXCR4-expressing gastric cancer cell line in nude mice Gan To Kagaku Ryoho, 2012, 39(12), 1788-1790.
[PMID: 23267887]
[156]
Kuhne, M.R.; Mulvey, T.; Belanger, B.; Chen, S.; Pan, C.; Chong, C.; Cao, F.; Niekro, W.; Kempe, T.; Henning, K.A.; Cohen, L.J.; Korman, A.J.; Cardarelli, P.M. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin. Cancer Res., 2013, 19(2), 357-366.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2333] [PMID: 23213054]
[157]
Gil, M.; Seshadri, M.; Komorowski, M.P.; Abrams, S.I.; Kozbor, D. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc. Natl. Acad. Sci. USA, 2013, 110(14), E1291-E1300.
[http://dx.doi.org/10.1073/pnas.1220580110] [PMID: 23509246]
[158]
Drenckhan, A.; Kurschat, N.; Dohrmann, T.; Raabe, N.; Koenig, A.M.; Reichelt, U.; Kaifi, J.T.; Izbicki, J.R.; Gros, S.J. Effective inhibition of metastases and primary tumor growth with CTCE-9908 in esophageal cancer. J. Surg. Res., 2013, 182(2), 250-256.
[http://dx.doi.org/10.1016/j.jss.2012.09.035] [PMID: 23117118]
[159]
Koga, C.; Kobayashi, S.; Nagano, H.; Tomimaru, Y.; Hama, N.; Wada, H.; Kawamoto, K.; Eguchi, H.; Konno, M.; Ishii, H.; Umeshita, K.; Doki, Y.; Mori, M. Reprogramming using microRNA-302 improves drug sensitivity in hepatocellular carcinoma cells. Ann Surg Oncol., 2014, 21 Suppl 4(4), S591-600.
[http://dx.doi.org/10.1245/s10434-014-3705-7]
[160]
Yu, T.; Liu, K.; Wu, Y.; Fan, J.; Chen, J.; Li, C.; Yang, Q.; Wang, Z. MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/β-catenin signaling pathway. Oncogene, 2014, 33(42), 5017-5027.
[http://dx.doi.org/10.1038/onc.2013.448] [PMID: 24141785]
[161]
Wang, X.; Li, F.; Zhou, X. miR-204-5p regulates cell proliferation and metastasis through inhibiting CXCR4 expression in OSCC. Biomed. Pharmacother., 2016, 82, 202-207.
[http://dx.doi.org/10.1016/j.biopha.2016.04.060] [PMID: 27470356]
[162]
Yuan, W.; Guo, Y.Q.; Li, X.Y.; Deng, M.Z.; Shen, Z.H.; Bo, C.B.; Dai, Y.F.; Huang, M.Y.; Yang, Z.Y.; Quan, Y.S.; Tian, L.; Wang, X. MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway. Oncotarget, 2016, 7(37), 60230-60244.
[http://dx.doi.org/10.18632/oncotarget.11176] [PMID: 27517626]
[163]
Liang, Z.; Wu, T.; Lou, H.; Yu, X.; Taichman, R.S.; Lau, S.K.; Nie, S.; Umbreit, J.; Shim, H. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res., 2004, 64(12), 4302-4308.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3958] [PMID: 15205345]
[164]
Wald, O.; Izhar, U.; Amir, G.; Kirshberg, S.; Shlomai, Z.; Zamir, G.; Peled, A.; Shapira, O.M. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: role in non-small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg., 2011, 141(6), 1503-1512.
[http://dx.doi.org/10.1016/j.jtcvs.2010.11.056] [PMID: 21463876]
[165]
Zhan, W.; Liang, Z.; Zhu, A.; Kurtkaya, S.; Shim, H.; Snyder, J.P.; Liotta, D.C. Discovery of small molecule CXCR4 antagonists. J. Med. Chem., 2007, 50(23), 5655-5664.
[http://dx.doi.org/10.1021/jm070679i] [PMID: 17958344]
[166]
De Clercq, E. AMD3100/CXCR4 Inhibitor. Front. Immunol., 2015, 6(276), 276.
[PMID: 26106388]
[167]
Kato, I.; Niwa, A.; Heike, T.; Fujino, H.; Saito, M.K.; Umeda, K.; Hiramatsu, H.; Ito, M.; Morita, M.; Nishinaka, Y.; Adachi, S.; Ishikawa, F.; Nakahata, T. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis. PLoS One, 2011, 6(11), e27042.
[http://dx.doi.org/10.1371/journal.pone.0027042] [PMID: 22069486]
[168]
Uy, G.L.; Rettig, M.P.; Motabi, I.H.; McFarland, K.; Trinkaus, K.M.; Hladnik, L.M.; Kulkarni, S.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; Vij, R.; Westervelt, P.; DiPersio, J.F. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood, 2012, 119(17), 3917-3924.
[http://dx.doi.org/10.1182/blood-2011-10-383406] [PMID: 22308295]
[169]
Taromi, S.; Kayser, G.; Catusse, J. von, E.D.; Reichardt, W.; Braun, F.; Weber, W.A.; Zeiser, R.; Burger, M., CXCR4 antagonists suppress small cell lung cancer progression. Oncotarget, 2016, 9(10), 13238.
[http://dx.doi.org/[doi: 10.18632/oncotarget.13238]
[170]
Lefort, S.; Thuleau, A.; Kieffer, Y.; Sirven, P.; Bieche, I.; Marangoni, E.; Vincent-Salomon, A.; Mechta-Grigoriou, F. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene, 2016, 26, 284.
[PMID: 27669438]
[171]
Cavnar, S.P.; Ray, P.; Moudgil, P.; Chang, S.L.; Luker, K.E.; Linderman, J.J.; Takayama, S.; Luker, G.D. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis. Integr. Biol., 2014, 6(5), 564-576.
[http://dx.doi.org/10.1039/C4IB00015C] [PMID: 24675873]
[172]
Hassan, S.; Buchanan, M.; Jahan, K.; Aguilar-Mahecha, A.; Gaboury, L.; Muller, W.J.; Alsawafi, Y.; Mourskaia, A.A.; Siegel, P.M.; Salvucci, O.; Basik, M. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int. J. Cancer, 2011, 129(1), 225-232.
[http://dx.doi.org/10.1002/ijc.25665] [PMID: 20830712]
[173]
Liang, Z.; Bian, X.; Shim, H. Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression. Breast Cancer Res. Treat., 2014, 146(3), 535-542.
[http://dx.doi.org/10.1007/s10549-014-3053-0] [PMID: 25030358]
[174]
Labbaye, C.; Spinello, I.; Quaranta, M.T.; Pelosi, E.; Pasquini, L.; Petrucci, E.; Biffoni, M.; Nuzzolo, E.R.; Billi, M.; Foà, R.; Brunetti, E.; Grignani, F.; Testa, U.; Peschle, C. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat. Cell Biol., 2008, 10(7), 788-801.
[http://dx.doi.org/10.1038/ncb1741] [PMID: 18568019]
[175]
Yin, P.; Peng, R.; Peng, H.; Yao, L.; Sun, Y.; Wen, L.; Wu, T.; Zhou, J.; Zhang, Z. MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Mol. Biotechnol., 2015, 57(1), 1-11.
[http://dx.doi.org/10.1007/s12033-014-9796-3] [PMID: 25150396]
[176]
Liang, Z.; Wu, H.; Reddy, S.; Zhu, A.; Wang, S.; Blevins, D.; Yoon, Y.; Zhang, Y.; Shim, H. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem. Biophys. Res. Commun., 2007, 363(3), 542-546.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.007] [PMID: 17889832]
[177]
Zhang, J.; Liu, J.; Liu, Y.; Wu, W.; Li, X.; Wu, Y.; Chen, H.; Zhang, K.; Gu, L. miR-101 represses lung cancer by inhibiting interaction of fibroblasts and cancer cells by down-regulating CXCL12. Biomed. Pharmacother., 2015, 74, 215-221.
[http://dx.doi.org/10.1016/j.biopha.2015.08.013] [PMID: 26349988]
[178]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[179]
Gentzler, R.; Hall, R.; Kunk, P.R.; Gaughan, E.; Dillon, P.; Slingluff, C.L., Jr; Rahma, O.E. Beyond melanoma: inhibiting the PD-1/PD-L1 pathway in solid tumors. Immunotherapy, 2016, 8(5), 583-600.
[http://dx.doi.org/10.2217/imt-2015-0029] [PMID: 27140411]
[180]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328), 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[181]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[182]
Poulet, F.M.; Wolf, J.J.; Herzyk, D.J.; DeGeorge, J.J. An Evaluation of the impact of PD-1 pathway blockade on reproductive safety of therapeutic PD-1 inhibitors. Birth Defects Res. B Dev. Reprod. Toxicol., 2016, 107(2), 108-119.
[http://dx.doi.org/10.1002/bdrb.21176] [PMID: 27062127]
[183]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[184]
Callahan, M.K.; Wolchok, J.D. Clinical activity, toxicity, biomarkers, and future development of CTLA-4 checkpoint antagonists. Semin. Oncol., 2015, 42(4), 573-586.
[http://dx.doi.org/10.1053/j.seminoncol.2015.05.008] [PMID: 26320062]
[185]
Fearon, D.T. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol. Res., 2014, 2(3), 187-193.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0002] [PMID: 24778314]
[186]
Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 2011, 365(8), 725-733.
[http://dx.doi.org/10.1056/NEJMoa1103849] [PMID: 21830940]
[187]
Almåsbak, H.; Aarvak, T.; Vemuri, M.C. CAR T cell therapy: A game changer in cancer treatment. J. Immunol. Res., 2016, 2016(10), 5474602.
[PMID: 27298832]
[188]
Byrne, K.T.; Vonderheide, R.H.; Jaffee, E.M.; Armstrong, T.D. Special conference on tumor immunology and immunotherapy: a new chapter. Cancer Immunol. Res., 2015, 3(6), 590-597.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0106] [PMID: 25968457]
[189]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[190]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[191]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[192]
Carbognin, L.; Pilotto, S.; Milella, M.; Vaccaro, V.; Brunelli, M.; Caliò, A.; Cuppone, F.; Sperduti, I.; Giannarelli, D.; Chilosi, M.; Bronte, V.; Scarpa, A.; Bria, E.; Tortora, G. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): Sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One, 2015, 10(6), e0130142.
[http://dx.doi.org/10.1371/journal.pone.0130142] [PMID: 26086854]
[193]
Hingorani, S.R.; Wang, L.; Multani, A.S.; Combs, C.; Deramaudt, T.B.; Hruban, R.H.; Rustgi, A.K.; Chang, S.; Tuveson, D.A. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 2005, 7(5), 469-483.
[http://dx.doi.org/10.1016/j.ccr.2005.04.023] [PMID: 15894267]
[194]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]
[195]
Chen, Y.; Ramjiawan, R.R.; Reiberger, T.; Ng, M.R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E.C.; Reddy, T.P.; Fan, C.; Huang, P.; Bardeesy, N.; Zhu, A.X.; Jain, R.K.; Duda, D.G. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology, 2015, 61(5), 1591-1602.
[http://dx.doi.org/10.1002/hep.27665] [PMID: 25529917]
[196]
Burger, M.; Glodek, A.; Hartmann, T.; Schmitt-Gräff, A.; Silberstein, L.E.; Fujii, N.; Kipps, T.J.; Burger, J.A. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003, 22(50), 8093-8101.
[http://dx.doi.org/10.1038/sj.onc.1207097] [PMID: 14603250]
[197]
Beider, K.; Begin, M.; Abraham, M.; Wald, H.; Weiss, I.D.; Wald, O.; Pikarsky, E.; Zeira, E.; Eizenberg, O.; Galun, E.; Hardan, I.; Engelhard, D.; Nagler, A.; Peled, A. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp. Hematol., 2011, 39(3), 282-292.
[http://dx.doi.org/10.1016/j.exphem.2010.11.010] [PMID: 21138752]
[198]
Muralidharan, R.; Panneerselvam, J.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. HuR-targeted nanotherapy in combination with AMD3100 suppresses CXCR4 expression, cell growth, migration and invasion in lung cancer. Cancer Gene Ther., 2015, 22(12), 581-590.
[http://dx.doi.org/10.1038/cgt.2015.55] [PMID: 26494555]
[199]
Smith, M.C.; Luker, K.E.; Garbow, J.R.; Prior, J.L.; Jackson, E.; Piwnica-Worms, D.; Luker, G.D. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res., 2004, 64(23), 8604-8612.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1844] [PMID: 15574767]
[200]
Domanska, U.M.; Timmer-Bosscha, H.; Nagengast, W.B.; Oude Munnink, T.H.; Kruizinga, R.C.; Ananias, H.J.; Kliphuis, N.M.; Huls, G.; De Vries, E.G.; de Jong, I.J.; Walenkamp, A.M. CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia, 2012, 14(8), 709-718.
[http://dx.doi.org/10.1593/neo.12324] [PMID: 22952424]
[201]
Yang, Q.; Zhang, F.; Ding, Y.; Huang, J.; Chen, S.; Wu, Q.; Wang, Z.; Wang, Z.; Chen, C. Antitumour activity of the recombination polypeptide GST-NT21MP is mediated by inhibition of CXCR4 pathway in breast cancer. Br. J. Cancer, 2014, 110(5), 1288-1297.
[http://dx.doi.org/10.1038/bjc.2014.1] [PMID: 24448360]
[202]
Huang, E.H.; Singh, B.; Cristofanilli, M.; Gelovani, J.; Wei, C.; Vincent, L.; Cook, K.R.; Lucci, A.A. CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J. Surg. Res., 2009, 155(2), 231-236.
[http://dx.doi.org/10.1016/j.jss.2008.06.044] [PMID: 19482312]
[203]
Singh, B.; Cook, K.R.; Martin, C.; Huang, E.H.; Mosalpuria, K.; Krishnamurthy, S.; Cristofanilli, M.; Lucci, A. Evaluation of a CXCR4 antagonist in a xenograft mouse model of inflammatory breast cancer. Clin. Exp. Metastasis, 2010, 27(4), 233-240.
[http://dx.doi.org/10.1007/s10585-010-9321-4] [PMID: 20229045]
[204]
Wong, D.; Kandagatla, P.; Korz, W.; Chinni, S.R. Targeting CXCR4 with CTCE-9908 inhibits prostate tumor metastasis. BMC Urol., 2014, 14(12), 12.
[http://dx.doi.org/10.1186/1471-2490-14-12] [PMID: 24472670]
[205]
Bachelder, R.E.; Wendt, M.A.; Mercurio, A.M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res., 2002, 62(24), 7203-7206.
[PMID: 12499259]
[206]
Kim, B.; Park, B. Baohuoside I suppresses invasion of cervical and breast cancer cells through the downregulation of CXCR4 chemokine receptor expression. Biochemistry, 2014, 53(48), 7562-7569.
[http://dx.doi.org/10.1021/bi5011927] [PMID: 25407882]
[207]
Yan, H.; Zhang, Z.; Jia, X.; Song, J. d-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: optimization and in vitro, in vivo evaluation. Int. J. Nanomedicine, 2016, 11, 4563-4571.
[http://dx.doi.org/10.2147/IJN.S112204] [PMID: 27660448]
[208]
Chen, X.P.; Qian, L.L.; Jiang, H.; Chen, J.H. Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int. J. Clin. Oncol., 2011, 16(5), 519-523.
[http://dx.doi.org/10.1007/s10147-011-0222-6] [PMID: 21455623]
[209]
Park, B.; Sung, B.; Yadav, V.R.; Cho, S.G.; Liu, M.; Aggarwal, B.B. Acetyl-11-keto-β-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int. J. Cancer, 2011, 129(1), 23-33.
[http://dx.doi.org/10.1002/ijc.25966] [PMID: 21448932]
[210]
Park, B.; Prasad, S.; Yadav, V.; Sung, B.; Aggarwal, B.B. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One, 2011, 6(10), e26943.
[http://dx.doi.org/10.1371/journal.pone.0026943] [PMID: 22066019]
[211]
Chua, A.W.; Hay, H.S.; Rajendran, P.; Shanmugam, M.K.; Li, F.; Bist, P.; Koay, E.S.; Lim, L.H.; Kumar, A.P.; Sethi, G. Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-κB activation in breast and pancreatic tumor cells. Biochem. Pharmacol., 2010, 80(10), 1553-1562.
[http://dx.doi.org/10.1016/j.bcp.2010.07.045] [PMID: 20699088]
[212]
Li, S.H.; Dong, W.C.; Fan, L.; Wang, G.S. Suppression of chronic lymphocytic leukemia progression by CXCR4 inhibitor WZ811. Am. J. Transl. Res., 2016, 8(9), 3812-3821.
[PMID: 27725861]
[213]
Hartimath, S.V.; Khayum, M.A.van W.A.; Dierckx, R.A.; de, V.E.F., N-[11C]Methyl-AMD3465 PET as a Tool for In Vivo Measurement of Chemokine Receptor 4 (CXCR4) Occupancy by Therapeutic Drugs. Mol. Imaging Biol., 2016, 28, 28.
[214]
Ling, X.; Spaeth, E.; Chen, Y.; Shi, Y.; Zhang, W.; Schober, W.; Hail, N., Jr; Konopleva, M.; Andreeff, M. The CXCR4 antagonist AMD3465 regulates oncogenic signaling and invasiveness in vitro and prevents breast cancer growth and metastasis in vivo. PLoS One, 2013, 8(3), e58426.
[http://dx.doi.org/10.1371/journal.pone.0058426] [PMID: 23484027]
[215]
Yi, T.; Kabha, E.; Papadopoulos, E.; Wagner, G. 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget, 2014, 5(15), 6028-6037.
[http://dx.doi.org/10.18632/oncotarget.2112] [PMID: 25115391]
[216]
Zhu, A.; Zhan, W.; Liang, Z.; Yoon, Y.; Yang, H.; Grossniklaus, H.E.; Xu, J.; Rojas, M.; Lockwood, M.; Snyder, J.P.; Liotta, D.C.; Shim, H. Dipyrimidine amines: a novel class of chemokine receptor type 4 antagonists with high specificity. J. Med. Chem., 2010, 53(24), 8556-8568.
[http://dx.doi.org/10.1021/jm100786g] [PMID: 21105715]
[217]
Yadav, V.R.; Sung, B.; Prasad, S.; Kannappan, R.; Cho, S.G.; Liu, M.; Chaturvedi, M.M.; Aggarwal, B.B. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J. Mol. Med. (Berl.), 2010, 88(12), 1243-1253.
[http://dx.doi.org/10.1007/s00109-010-0669-3] [PMID: 20798912]
[218]
Badr, G.; Lefevre, E.A.; Mohany, M. Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PLoS One, 2011, 6(9), e23741.
[http://dx.doi.org/10.1371/journal.pone.0023741] [PMID: 21912642]
[219]
Mooring, S.R.; Liu, J.; Liang, Z.; Ahn, J.; Hong, S.; Yoon, Y.; Snyder, J.P.; Shim, H. Benzenesulfonamides: a unique class of chemokine receptor type 4 inhibitors. ChemMedChem, 2013, 8(4), 622-632.
[http://dx.doi.org/10.1002/cmdc.201200582] [PMID: 23468189]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy