Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

S16020 Pyridocarbazole Derivatives Display High Activity to Lung Cancer Cells

Author(s): Gabriela Chabowska, Helena Moreira*, Beata Tylińska and Ewa Barg*

Volume 22, Issue 13, 2022

Published on: 06 April, 2022

Page: [2419 - 2428] Pages: 10

DOI: 10.2174/1871520621666211214104926

Price: $65

Abstract

Background: Despite the dynamic development of medicine, globally cancer diseases remain the second leading cause of death. Therefore, there is a strong necessity to improve chemotherapy regimens and search for new anticancer agents. Pyridocarbazoles are compounds with confirmed antitumor properties based on multimodal mechanisms, i.e. DNA intercalation and topoisomerase II-DNA complex inhibition. One of them, S16020, displayed a wide spectrum of activity.

Objective: The aim of the study was to investigate the antitumor potency of six S16020 derivatives, synthesized according to the SAR (structure-activity relationship) method.

Methods: The biological evaluation included influence on cancer cell viability, proliferation, and migration, as well as P-glycoprotein activity. NHDF, A549, MCF-7, LoVo, and LoVo/DX cell lines were used in the study.

Results: All derivatives displayed low toxicity to normal (NHDF) cells at 1 and 2 μM (≤ 20% of cell growth inhibition). The highest reduction in cell viability was noted in A549 cells, which was accompanied by significant disruption of cells proliferation and motility. Compound 1 exhibited the strongest cytotoxic, antiproliferative, and antimigratory effects, higher than the reference olivacine. A significant reduction in P-glycoprotein activity was found for derivatives 6 and 1.

Conclusion: S16020 derivatives could be considered as potential candidates for new anticancer drugs.

Keywords: Pyridocarbazole, S16020, olivacine, SAR, anticancer drugs, p-glycoprotein inhibitor, cancer cells migration.

Graphical Abstract

[1]
You, W.; Henneberg, M. Cancer incidence increasing globally: The role of relaxed natural selection. Evol. Appl., 2017, 11(2), 140-152.
[http://dx.doi.org/10.1111/eva.12523] [PMID: 29387151]
[2]
Piasny, J.; Wiatrak, B.; Dobosz, A. Tylińska, B.; Gębarowski, T. Antitumor activity of new olivacine derivatives. Molecules, 2020, 25(11), 2512.
[http://dx.doi.org/10.3390/molecules25112512] [PMID: 32481577]
[3]
Spandana, Z.; Sreenivasulu, R.; Basaveswara Rao, M.V. Design, synthesis and anticancer evaluation of carbazole fused aminopyrimidine derivatives. Lett. Org. Chem., 2019, 16(8), 662-667.
[http://dx.doi.org/10.2174/1570178616666181211094526]
[4]
Ghobadi, N.; Nazari, N.; Gholamzadeh, P. The Friedländer Reaction: A Powerful Strategy for the Synthesis of Heterocycles. In:Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A., Eds.; Elsevier: Amsterdam. , 2020, 232, pp. 85-134.
[http://dx.doi.org/10.1016/bs.aihch.2020.01.001]
[5]
Léonce, S.; Perez, V.; Casabianca-Pignede, M-R.; Anstett, M.; Bisagni, E.; Pierré, A.; Atassi, G. In vitro cytotoxicity of S16020-2, a new olivacine de-rivative. Invest. New Drugs, 1996, 14(2), 169-180.
[http://dx.doi.org/10.1007/BF00210788] [PMID: 8913838]
[6]
Leon, L.; Vasconcellos, M.E.; Leon, W.; Cruz, F.S.; Docampo, R.; de Souza, W. Trypanosoma cruzi: Effect of olivacine on macromolecular synthesis, ultrastructure, and respiration of epimastigotes. Exp. Parasitol., 1978, 45(2), 151-159.
[http://dx.doi.org/10.1016/0014-4894(78)90054-1] [PMID: 98344]
[7]
Pereira Rocha, M.; Rodrigues Valadares Campana, P.; de Oliveira Scoaris, D.; de Almeida, V.L.; Dias Lopes, J.C.; Fonseca Silva, A.; Pieters, L.; Gontijo Silva, C. Biological activities of extracts from Aspidosperma sub-incanum Mart. and in silico prediction for inhibition of acetylcholinester-ase. Phytother. Res., 2018, 32(10), 2021-2033.
[http://dx.doi.org/10.1002/ptr.6133] [PMID: 29998591]
[8]
Dilek, Ö.; Patir, S.; Tilki, T.; Ertürk, E. Total synthesis of olivacine and ellipticine via a lactone ring-opening and aromatization cascade. J. Org. Chem., 2019, 84(12), 7901-7916.
[http://dx.doi.org/10.1021/acs.joc.9b00706] [PMID: 31117560]
[9]
Tylińska, B.; Jasztold-Howorko, R.; Kowalczewska, K.; Szczaurska-Nowak, K.; Gębarowski, T.; Wietrzyk, J. Design, synthesis and analysis of anticancer activity of new SAR-based S16020 derivatives. Acta Pol. Pharm. -. Drug Res. (Stuttg.), 2018, 75(6), 1313-1320.
[http://dx.doi.org/10.32383/appdr/89921]
[10]
Moreira, H.; Szyjka, A. Gąsiorowski, K. Chemopreventive activity of celastrol in drug-resistant human colon carcinoma cell cultures. Oncotarget, 2018, 9(30), 21211-21223.
[http://dx.doi.org/10.18632/oncotarget.25014] [PMID: 29765532]
[11]
Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphe-nols. PLoS One, 2010, 5(4), e10202.
[http://dx.doi.org/10.1371/journal.pone.0010202] [PMID: 20419137]
[12]
Liang, C-C.; Park, A.Y.; Guan, J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2007, 2(2), 329-333.
[http://dx.doi.org/10.1038/nprot.2007.30] [PMID: 17406593]
[13]
Wang, X.; Decker, C.C.; Zechner, L.; Krstin, S.; Wink, M. In vitro wound healing of tumor cells: inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol. Toxicol., 2019, 20(1), 4.
[http://dx.doi.org/10.1186/s40360-018-0284-4] [PMID: 30626448]
[14]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[15]
Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631.
[http://dx.doi.org/10.1124/dmd.113.056176] [PMID: 24492893]
[16]
Palko-Łabuz, A.; Środa-Pomianek, K.; Wesołowska, O.; Kostrzewa-Susłow, E.; Uryga, A.; Michalak, K. MDR reversal and pro-apoptotic effects of statins and statins combined with flavonoids in colon cancer cells. Biomed. Pharmacother., 2019, 109, 1511-1522.
[http://dx.doi.org/10.1016/j.biopha.2018.10.169] [PMID: 30551403]
[17]
Issa, S.; Prandina, A.; Bedel, N.; Rongved, P.; Yous, S.; Le Borgne, M.; Bouaziz, Z. Carbazole scaffolds in cancer therapy: A review from 2012 to 2018. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1321-1346.
[http://dx.doi.org/10.1080/14756366.2019.1640692] [PMID: 31328585]
[18]
Gębarowski, T.; Wiatrak, B.; Gębczak, K.; Tylińska, B.; Gąsiorowski, K. Effect of new olivacine derivatives on p53 protein level. Pharmacol. Rep., 2020, 72(1), 214-224.
[http://dx.doi.org/10.1007/s43440-019-00004-1] [PMID: 32016852]
[19]
Meng, F.; Henson, R.; Lang, M.; Wehbe, H.; Maheshwari, S.; Mendell, J.T.; Jiang, J.; Schmittgen, T.D.; Patel, T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 2006, 130(7), 2113-2129.
[http://dx.doi.org/10.1053/j.gastro.2006.02.057] [PMID: 16762633]
[20]
Pelaprat, D.; Delbarre, A.; Le Guen, I.; Roques, B.P.; Le Pecq, J.B. DNA intercalating compounds as potential antitumor agents. 2. Preparation and properties of 7H-pyridocarbazole dimers. J. Med. Chem., 1980, 23(12), 1336-1343.
[http://dx.doi.org/10.1021/jm00186a010] [PMID: 7452686]
[21]
Awada, A.; Giacchetti, S.; Gerard, B.; Eftekhary, P.; Lucas, C.; De Valeriola, D.; Poullain, M.G.; Soudon, J.; Dosquet, C.; Brillanceau, M-H.; Giroux, B.; Marty, M.; Bleiberg, H.; Calvo, F.; Piccart, M. Clinical phase I and pharma-cokinetic study of S 16020, a new olivacine derivative: Report on three in-fusion schedules. Ann. Oncol., 2002, 13(12), 1925-1934.
[http://dx.doi.org/10.1093/annonc/mdf321] [PMID: 12453862]
[22]
Guilbaud, N.; Kraus-Berthier, L.; Saint-Dizier, D.; Rouillon, M-H.; Jan, M.; Burbridge, M.; Visalli, M.; Bisagni, E.; Pierré, A.; Atassi, G. In vivo anti-tumor activity of S 16020-2, a new olivacine derivative. Cancer Chemother. Pharmacol., 1996, 38(6), 513-521.
[http://dx.doi.org/10.1007/s002800050520] [PMID: 8823492]
[23]
Kraus-Berthier, L.; Guilbaud, N.; Jan, M.; Saint-Dizier, D.; Rouillon, M.H.; Burbridge, M.F.; Pierré, A.; Atassi, G. Experimental antitumour activity of S 16020-2 in a panel of human tumours. Eur. J. Cancer, 1997, 33(11), 1881-1887.
[http://dx.doi.org/10.1016/S0959-8049(97)00232-3] [PMID: 9470851]
[24]
Pivot, X.; Awada, A.; Gedouin, D.; Kerger, J.; Rolland, F.; Cupissol, D.; Caponigro, F.; Comella, G.; Lopez-Pousa, J.J.; Guardiola, E.; Giroux, B.; Gérard, B.; Schneider, M. Results of randomised phase II studies comparing S16020 with methotrexate in patients with recurrent head and neck cancer. Ann. Oncol., 2003, 14(3), 373-377.
[http://dx.doi.org/10.1093/annonc/mdg114] [PMID: 12598340]
[25]
Shimazu, A.; Kawagoshi, M.; Takeda, S.; Kurasaki, H.; Kato, A.; Morii, N.; Sakai, N.; Konakahara, T. Determination of binding modes and binding constants for the complexes of 6H-pyrido[4,3-b]carbazole derivatives with DNA. Bioorg. Med. Chem., 2017, 25(3), 1094-1112.
[http://dx.doi.org/10.1016/j.bmc.2016.12.031] [PMID: 28063783]
[26]
Le Mée, S.; Pierré, A.; Markovits, J.; Atassi, G.; Jacquemin-Sablon, A.; Saucier, J-M. S16020-2, a new highly cytotoxic antitumor olivacine deriva-tive: DNA interaction and DNA topoisomerase II inhibition. Mol. Pharmacol., 1998, 53(2), 213-220.
[http://dx.doi.org/10.1124/mol.53.2.213] [PMID: 9463478]
[27]
Fossé, P.; René, B.; Charra, M.; Paoletti, C.; Saucier, J.M. Stimulation of topoisomerase II-mediated DNA cleavage by ellipticine derivatives: Struc-ture-activity relationship. Mol. Pharmacol., 1992, 42(4), 590-595.
[PMID: 1331751]
[28]
Vendôme, J.; Letard, S.; Martin, F.; Svinarchuk, F.; Dubreuil, P.; Auclair, C.; Le Bret, M. Molecular modeling of wild-type and D816V c-Kit inhibition based on ATP-competitive binding of ellipticine derivatives to tyrosine ki-nases. J. Med. Chem., 2005, 48(20), 6194-6201.
[http://dx.doi.org/10.1021/jm050231m] [PMID: 16190746]
[29]
Prudent, R.; Moucadel, V.; Nguyen, C-H.; Barette, C.; Schmidt, F.; Florent, J-C.; Lafanechère, L.; Sautel, C.F.; Duchemin-Pelletier, E.; Spreux, E.; Fil-hol, O.; Reiser, J-B.; Cochet, C. Antitumor activity of pyridocarbazole and benzopyridoindole derivatives that inhibit protein kinase CK2. Cancer Res., 2010, 70(23), 9865-9874.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0917] [PMID: 21118972]
[30]
Kim, J.M.; Noh, E.M.; Song, H.K.; You, Y.O.; Jung, S.H.; Kim, J.S.; Kwon, K.B.; Lee, Y.R.; Youn, H.J. Silencing of casein kinase 2 inhibits PKC induced cell invasion by targeting MMP 9 in MCF 7 cells. Mol. Med. Rep., 2018, 17(6), 8397-8402.
[http://dx.doi.org/10.3892/mmr.2018.8885] [PMID: 29658601]
[31]
Ku, M.J.; Park, J.W.; Ryu, B.J.; Son, Y-J.; Kim, S.H.; Lee, S.Y. CK2 inhibi-tor CX4945 induces sequential inactivation of proteins in the signaling pathways related with cell migration and suppresses metastasis of A549 human lung cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(20), 5609-5613.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.043] [PMID: 24012124]
[32]
Tao, S.; Meng, S.; Zheng, X.; Xie, L. ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer. Mol. Med. Rep., 2017, 15(3), 1143-1148.
[http://dx.doi.org/10.3892/mmr.2017.6141] [PMID: 28138703]
[33]
Roninson, I.B.; Abelson, H.T.; Housman, D.E.; Howell, N.; Varshavsky, A. Amplification of specific DNA sequences correlates with multi-drug re-sistance in Chinese hamster cells. Nature, 1984, 309(5969), 626-628.
[http://dx.doi.org/10.1038/309626a0] [PMID: 6728022]
[34]
Choi, Y.H.; Yu, A-M. ABC transporters in multidrug resistance and phar-macokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy