Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Novel Coumarin Derivatives Containing a Triazole Moiety: A Study on Synthesis, Cytotoxicity, Membrane Dysfunction, Apoptosis, Cell Cycle, and Antiangiogenic Effects

Author(s): Adem Güner*, Hakan Bektaş and Emre Menteşe

Volume 22, Issue 13, 2022

Published on: 15 March, 2022

Page: [2429 - 2438] Pages: 10

DOI: 10.2174/1871520622666220106104324

Price: $65

conference banner
Abstract

Background: Coumarin is a functional compound with a pronounced wide range of biological activities and has recently been shown to have anticancer effects on various human cancer cells. Cisplatin is widely used in treating many cancers, but its effectiveness is limited due to acquired resistance and dose-related side effects.

Objective: This study aimed to reveal the chemosensitizing ability of novel synthesized coumarin-triazole hybrid compounds (3a-f) compared to the cisplatin in A549, MCF-7, and HeLa cancer cells.

Methods: Cytotoxicity was determined by MTT assay. Lactate dehydrogenase (LDH), antioxidant/oxidant status, and DNA fragmentation were determined spectrophotometrically using commercial kits. Muse™ Cell Analyzer was used to assess cell cycle progression. Pro/anti-apoptotic gene expressions were determined by Real-Time qPCR. The antiangiogenic activity was determined by VEGF expression and Hen's chorioallantoic membrane model.

Results: Compounds 3c, -d, -e, and -f potentiated the cisplatin-induced cytotoxicity by increasing LDH release and DNA fragmentation, inducing G2/M cell cycle arrest, overproducing oxidative stress, and decreasing cellular antioxidant levels. These compounds combined with cisplatin caused upregulation in the pro-apoptotic Bax, Bıd, caspase-3, caspase-8, caspase-9, Fas, and p53 gene expressions while downregulating anti-apoptotic DFFA, NFkB1, and Bcl2 gene expressions. These combinations caused vascular loss and a reduction in VEGF expression.

Conclusion: These results suggest that a combinational regimen of coumarin compounds with cisplatin could enhance the effect of cisplatin in A549 cells. Besides, these compounds exhibit relatively low toxicity in normal cells, thus decreasing the dose requirement of cisplatin in cancer treatments.

Keywords: Cisplatin, coumarin, cytotoxicity, lung cancer, resistance, ROS.

Graphical Abstract

[1]
Global Cancer Observatory (GLOBOCAN). Global cancer statistics 2020. Global cancer statistics, 2020. Available from: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf (Accessed Feb 10, 2021).
[2]
Aleksakhina, S.N.; Kashyap, A.; Imyanitov, E.N. Mechanisms of acquired tumor drug resistance. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2), 188310.
[http://dx.doi.org/10.1016/j.bbcan.2019.188310] [PMID: 31442474]
[3]
Balcıoğlu, S.; Karataş, M.O.; Ateş, B.; Alıcı, B.; Özdemir, İ. Therapeutic potential of coumarin bearing metal complexes: Where are we headed? Bioorg. Med. Chem. Lett., 2020, 30(2), 126805.
[http://dx.doi.org/10.1016/j.bmcl.2019.126805] [PMID: 31753700]
[4]
Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm. (Weinheim), 2020, 353(8), e2000025.
[http://dx.doi.org/10.1002/ardp.202000025] [PMID: 32383190]
[5]
Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Coumarin-based drugs: A patent review (2008 -- present). Expert Opin. Ther. Pat., 2012, 22(4), 437-454.
[http://dx.doi.org/10.1517/13543776.2012.678835] [PMID: 22475457]
[6]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[7]
Menteşe, E.; Güner, A.; Polatlı, E.; Emirik, M.; Bektaş, H.; Kahveci, B. Synthesis and anticancer activities of some new coumarin derivatives in-cluding the triazole ring and their in silico molecular docking studies. Arch. Pharm. (Weinheim), 2021, 354(3), e2000284.
[http://dx.doi.org/10.1002/ardp.202000284] [PMID: 33146895]
[8]
Ma, J.; Li, L.; Yue, K.; Li, Y.; Liu, H.; Wang, P.G.; Wang, C.; Wang, J.; Luo, W.; Xie, S. Bromocoumarinplatin, targeting simultaneously mitochondria and nuclei with p53 apoptosis pathway to overcome cisplatin resistance. Bioorg. Chem., 2020, 99, 103768.
[http://dx.doi.org/10.1016/j.bioorg.2020.103768] [PMID: 32217375]
[9]
Kahveci, B. Yılmaz, F.; Menteşe, E.; Ülker, S. Design, synthesis and bio-logical evaluation of coumarin–triazole hybrid molecules as potential anti-tumor and pancreatic lipase agents. Arch. Pharm. (Weinheim), 2017, 350(8), 1600369.
[http://dx.doi.org/10.1002/ardp.201600369] [PMID: 28543820]
[10]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[11]
Güner, A.; Polatli, E.; Akkan, T. Bektaş, H.; Albay, C. Anticancer and antiangiogenesis activities of novel synthesized 2-substituted benzimidaz-oles molecules. Turk. J. Chem., 2019, 43, 1270-1289.
[http://dx.doi.org/10.3906/kim-1904-46]
[12]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[13]
Yu, H.; Hou, Z.; Yang, X.; Mou, Y.; Guo, C. Design, synthesis, and mecha-nism of dihydroartemisinin-coumarin hybrids as potential anti-neuroinflammatory agents. Molecules, 2019, 24(9), 1672.
[http://dx.doi.org/10.3390/molecules24091672]
[14]
Sinha, S.; Kumaran, A.P.; Mishra, D.; Paira, P. Synthesis and cytotoxicity study of novel 3-(triazolyl)coumarins based fluorescent scaffolds. Bioorg. Med. Chem. Lett., 2016, 26(22), 5557-5561.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.078] [PMID: 27769619]
[15]
Haghighitalab, A.; Matin, M.M.; Bahrami, A.R.; Iranshahi, M.; Haghighi, F.; Porsa, H. Enhancement of cisplatin cytotoxicity in combination with her-niarin in vitro. Drug Chem. Toxicol., 2014, 37(2), 156-162.
[http://dx.doi.org/10.3109/01480545.2013.834354] [PMID: 24116377]
[16]
Wróblewska-Łuczka, P.; Grabarska, A.; Florek-Łuszczki, M.; Plewa, Z.; Łuszczki, J.J. Synergy, additivity, and antagonism between cisplatin and se-lected coumarins in human melanoma cells. Int. J. Mol. Sci., 2021, 22(2), 537.
[http://dx.doi.org/10.3390/ijms22020537] [PMID: 33430369]
[17]
Alam, N.; Qayum, A.; Kumar, A.; Khare, V.; Sharma, P.R.; Andotra, S.S.; Singh, S.K.; Koul, S.; Gupta, P.N. Improved efficacy of cisplatin in combi-nation with a nano-formulation of pentacyclic triterpenediol. Mater. Sci. Eng. C, 2016, 68, 109-116.
[http://dx.doi.org/10.1016/j.msec.2016.05.093] [PMID: 27524002]
[18]
Güner, A. Toxic and irritant effects induced by zearalenone: Prevention by taurine. Toxin Rev., 2021, 1, 25-34.
[http://dx.doi.org/10.1080/15569543.2020.1777432]
[19]
Kalaiarasi, G.; Rajkumar, S.R.J.; Dharani, S. Małecki, J.G.; Prabhakaran, R. An investigation on 3-acetyl-7-methoxy-coumarin Schiff bases and their Ru (II) metallates with potent antiproliferative activity and enhanced LDH and NO release. RSC Advances, 2018, 8(3), 1539-1561.
[http://dx.doi.org/10.1039/C7RA12104K]
[20]
Sivalingam, K.S.; Paramasivan, P.; Weng, C.F.; Viswanadha, V.P. Neferine potentiates the antitumor effect of cisplatin in human lung adenocarcinoma cells via a mitochondria-mediated apoptosis pathway. J. Cell. Biochem., 2017, 118(9), 2865-2876.
[http://dx.doi.org/10.1002/jcb.25937] [PMID: 28214344]
[21]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galas-so, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[22]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[23]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mecha-nisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[24]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[25]
Kim, S.J.; Kim, H.S.; Seo, Y.R. Understanding of ROS-inducing strategy in anticancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 12.
[http://dx.doi.org/10.1155/2019/5381692]
[26]
Le Gal, K.; Ibrahim, M.X.; Wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyürek, L.M.; Lindahl, P.; Nilsson, J.; Bergo, M.O. Antioxi-dants can increase melanoma metastasis in mice. Sci. Transl. Med., 2015, 7(308), 308re8.
[http://dx.doi.org/10.1126/scitranslmed.aad3740] [PMID: 26446958]
[27]
Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 2000, 29(3-4), 323-333.
[http://dx.doi.org/10.1016/S0891-5849(00)00302-6] [PMID: 11035261]
[28]
Wu, W.; Wang, H.D.; Guo, W.; Yang, K.; Zhao, Y.P.; Jiang, Y.G.; He, P. Up-regulation of Fas reverses cisplatin resistance of human small cell lung can-cer cells. J. Exp. Clin. Cancer Res., 2010, 29, 49.
[http://dx.doi.org/10.1186/1756-9966-29-49] [PMID: 20470393]
[29]
Shamimi-Noori, S.; Yeow, W.S.; Ziauddin, M.F.; Xin, H.; Tran, T.L.N.; Xie, J.; Loehfelm, A.; Patel, P.; Yang, J.; Schrump, D.S.; Fang, B.L.; Nguyen, D.M. Cisplatin enhances the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand gene therapy via recruitment of the mito-chondria-dependent death signaling pathway. Cancer Gene Ther., 2008, 15(6), 356-370.
[http://dx.doi.org/10.1038/sj.cgt.7701120] [PMID: 18309355]
[30]
Zhu, T.; Chen, R.; Yu, H.; Feng, Y.; Chen, J.; Lu, Q.; Xie, J.; Ding, W.; Ma, T. Antitumor effect of a copper (II) complex of a coumarin derivative and phe-nanthroline on lung adenocarcinoma cells and the mechanism of action. Mol. Med. Rep., 2014, 10(5), 2477-2482.
[http://dx.doi.org/10.3892/mmr.2014.2519] [PMID: 25176185]
[31]
Liedert, B.; Materna, V.; Schadendorf, D.; Thomale, J.; Lage, H. Overexpres-sion of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J. Invest. Dermatol., 2003, 121(1), 172-176.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12313.x] [PMID: 12839578]
[32]
Rosell, R.; Lord, R.V.N.; Taron, M.; Reguart, N. DNA repair and cisplatin resistance in non-small-cell lung cancer. Lung Cancer, 2002, 38(3), 217-227.
[http://dx.doi.org/10.1016/S0169-5002(02)00224-6] [PMID: 12445742]
[33]
Sarin, N.; Engel, F.; Kalayda, G.V.; Mannewitz, M.; Cinatl, J.J.; Rothweiler, F.; Michaelis, M.; Saafan, H.; Ritter, C.A.; Jaehde, U.; Frötschl, R. Cisplatin resistance in non-small cell lung cancer cells is associated with an abroga-tion of cisplatin-induced G2/M cell cycle arrest. PLoS One, 2017, 12(7), e0181081.
[http://dx.doi.org/10.1371/journal.pone.0181081] [PMID: 28746345]
[34]
Lundholm, L.; Hååg, P.; Zong, D.; Juntti, T.; Mörk, B.; Lewensohn, R.; Viktorsson, K. Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activa-tion and diminished cell cycle arrest. Cell Death Dis., 2013, 4(1), e478.
[http://dx.doi.org/10.1038/cddis.2012.211] [PMID: 23370278]
[35]
Zhang, W.; Li, Z.; Zhou, M.; Wu, F.; Hou, X.; Luo, H.; Liu, H.; Han, X.; Yan, G.; Ding, Z.; Li, R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(3), 799-807.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.095] [PMID: 24418772]
[36]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[37]
Ramer, R.; Schmied, T.; Wagner, C.; Haustein, M.; Hinz, B. The antiangio-genic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget, 2018, 9(75), 34038-34055.
[http://dx.doi.org/10.18632/oncotarget.25954] [PMID: 30344920]
[38]
Jian, W.; Levitt, J.M.; Lerner, S.P.; Sonpavde, G. Preclinical antitumor and antiangiogenic activity of a metronomic schedule of cisplatin against hu-man transitional cell carcinoma (TCC). J. Clin. Oncol., 2009, 27(15), e16018-e16018.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e16018]
[39]
Shen, F.Z.; Wang, J.; Liang, J.; Mu, K.; Hou, J.Y.; Wang, Y.T. Low-dose metronomic chemotherapy with cisplatin: Can it suppress angiogenesis in H22 hepatocarcinoma cells? Int. J. Exp. Pathol., 2010, 91(1), 10-16.
[http://dx.doi.org/10.1111/j.1365-2613.2009.00684.x] [PMID: 20096070]
[40]
Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor angio-genesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med., 2019, 9(1), 84.
[http://dx.doi.org/10.3390/jcm9010084] [PMID: 31905724]
[41]
Zhong, X.S.; Liu, L.Z.; Skinner, H.D.; Cao, Z.; Ding, M.; Jiang, B.H. Mecha-nism of vascular endothelial growth factor expression mediated by cispla-tin in human ovarian cancer cells. Biochem. Biophys. Res. Commun., 2007, 358(1), 92-98.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.083] [PMID: 17470361]
[42]
Pan, R.; Dai, Y.; Gao, X.H.; Lu, D.; Xia, Y.F. Inhibition of vascular endo-thelial growth factor-induced angiogenesis by scopoletin through interrupt-ing the autophosphorylation of VEGF receptor 2 and its downstream sig-naling pathways. Vascul. Pharmacol., 2011, 54(1-2), 18-28.
[http://dx.doi.org/10.1016/j.vph.2010.11.001] [PMID: 21078410]
[43]
El-Sawy, E.R.; Ebaid, M.S.; Rady, H.M.; Shalby, A.B.; Ahmed, K.M.; Abo-Salem, H.M. Synthesis and molecular docking of novel non-cytotoxic anti-angiogenic sulfonyl coumarin derivatives against hepatocellular carcinoma cells in vitro. J. Appl. Pharm. Sci., 2017, 7, 49-66.
[44]
Majnooni, M.B.; Fakhri, S.; Smeriglio, A.; Trombetta, D.; Croley, C.R.; Bhattacharyya, P.; Sobarzo-Sánchez, E.; Farzaei, M.H.; Bishayee, A. Antiangiogenic effects of coumarins against cancer: From chemistry to medicine. Molecules, 2019, 24(23), 4278..
[http://dx.doi.org/10.3390/molecules24234278] [PMID: 31771270]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy