Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Melatonin Enhances Anti-tumoral Effects of Menadione on Colon Cancer Cells

Author(s): Alejandro Collin, Romina Kohan, Nori Tolosa de Talamoni and Gabriela Picotto*

Volume 22, Issue 13, 2022

Published on: 17 March, 2022

Page: [2411 - 2418] Pages: 8

DOI: 10.2174/1871520621666211207141729

Price: $65

Abstract

Background: Colon cancer is one of the most important causes of death in the entire world. New pharmacological strategies are always needed, especially in resistant variants of this pathology. We have previously reported that drugs such as menadione (MEN), D, L-buthionine-S,R-sulfoximine or calcitriol, used in combination, enhanced cell sensibility of breast and colon tumour models, due to their ability to modify the oxidative status of the cells. Melatonin (MEL), a hormone regulating circadian rhythms, has anti-oxidant and anti-apoptotic properties at low concentrations, while at high doses, it has been shown to inhibit cancer cell growth.

Objective: The objective of this study is to determine the antitumoral action of the combination MEN and MEL on colon cancer cells.

Methods: Caco-2 cells were employed to evaluate the effects of both compounds, used alone or combined, on cellular growth/morphology, oxidative and nitrosative stress, and cell migration.

Results: MEN plus MEL dramatically reduced cell proliferation in a time and dose-dependent manner. The antiproliferative effects began at 48 h. At the same time, the combination modified the content of superoxide anion, induced the formation of reactive nitrogen species and enhanced catalase activity. Cell migration process was delayed. Also, changes in nuclear morphology consistent with cell death were observed.

Conclusion: The enhanced effect of simultaneous use of MEN and MEL on Caco-2 cells suggests that this combined action may have therapeutic potential as an adjuvant on intestinal cancer acting in different oncogenic pathways.

Keywords: Colon cancer, menadione, melatonin, wound healing assay, oxidative stress, antiproliferative effects.

Graphical Abstract

[1]
Palomares, T.; Caramés, M.; García-Alonso, I.; Alonso-Varona, A. Glutathi-one modulation reverses the growth-promoting effect of growth factors, im-proving the 5-fluorouracil antitumour response in WiDr colon cancer cells. Anticancer Res., 2009, 29(10), 3957-3965.
[PMID: 19846936]
[2]
Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemothera-py. J. Exp. Clin. Cancer Res., 2018, 37, 266.
[http://dx.doi.org/10.1186/s13046-018-0909-x]
[3]
Alcindor, T.; Beauger, N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr. Oncol., 2011, 18(1), 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[4]
Morawska, K.; Goirand, F.; Marceau, L.; Devaux, M.; Cueff, A.; Bertaut, A.; Vincent, J.; Bengrine-Lefevre, L.; Ghiringhelli, F.; Schmitt, A. 5-FU thera-peutic drug monitoring as a valuable option to reduce toxicity in patients with gastrointestinal cancer. Oncotarget, 2018, 9(14), 11559-11571.
[http://dx.doi.org/10.18632/oncotarget.24338] [PMID: 29545919]
[5]
Talib, W.H. Melatonin and cancer hallmarks. Molecules, 2018, 23(3), 518.
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[6]
Gao, Y.; Xiao, X.; Zhang, C.; Yu, W.; Guo, W.; Zhang, Z.; Li, Z.; Feng, X.; Hao, J.; Zhang, K.; Xiao, B.; Chen, M.; Huang, W.; Xiong, S.; Wu, X.; Deng, W. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling path-ways. J. Pineal Res., 2017, 62(2), e12380.
[http://dx.doi.org/10.1111/jpi.12380] [PMID: 27865009]
[7]
Lee, J.H.; Yun, C.W.; Han, Y.S.; Kim, S.; Jeong, D.; Kwon, H.Y.; Kim, H.; Baek, M.J.; Lee, S.H. Melatonin and 5-fluorouracil co-suppress colon cancer stem cells by regulating cellular prion protein-Oct4 axis. J. Pineal Res., 2018, 65(4), e12519.
[http://dx.doi.org/10.1111/jpi.12519] [PMID: 30091203]
[8]
Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Ex-trapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci., 2014, 71(16), 2997-3025.
[http://dx.doi.org/10.1007/s00018-014-1579-2] [PMID: 24554058]
[9]
Tan, D-X. Reiter, Russel. J. Mitochondria The birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res., 2019, 2(1), 44-66.
[http://dx.doi.org/10.32794/mr11250011]
[10]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J-J.; Xu, D-P.; Li, H-B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[11]
Asghari, M.H.; Abdollahi, M.; de Oliveira, M.R.; Nabavi, S.M. A review of the protective role of melatonin during phosphine-induced cardiotoxicity: Focus on mitochondrial dysfunction, oxidative stress and apoptosis. J. Pharm. Pharmacol., 2017, 69(3), 236-243.
[http://dx.doi.org/10.1111/jphp.12682] [PMID: 28000313]
[12]
Zakki, S.A.; Muhammad, J.S.; Li, J.L.; Sun, L.; Li, M.L.; Feng, Q.W.; Li, Y.L.; Cui, Z.G.; Inadera, H. Melatonin triggers the anticancer potential of phenylarsine oxide via induction of apoptosis through ROS generation and JNK activation. Metallomics, 2020, 12(3), 396-407.
[http://dx.doi.org/10.1039/C9MT00238C] [PMID: 31959998]
[13]
Kohan, R.; Collin, A.; Guizzardi, S.; Tolosa de Talamoni, N.; Picotto, G. Reactive oxygen species in cancer: A paradox between pro- and anti-tumour activities. Cancer Chemother. Pharmacol., 2020, 86(1), 1-13.
[http://dx.doi.org/10.1007/s00280-020-04103-2] [PMID: 32572519]
[14]
Gil-Martín, E.; Egea, J.; Reiter, R.J.; Romero, A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med. Res. Rev., 2019, 39(6), 2239-2285.
[http://dx.doi.org/10.1002/med.21582] [PMID: 30950095]
[15]
Bułdak, R.J.; Pilc-Gumuła, K.; Bułdak, Ł.; Witkowska, D.; Kukla, M.; Polaniak, R.; Zwirska-Korczala, K. Effects of ghrelin, leptin and melatonin on the levels of reactive oxygen species, antioxidant enzyme activity and viability of the HCT 116 human colorectal carcinoma cell line. Mol. Med. Rep., 2015, 12(2), 2275-2282.
[http://dx.doi.org/10.3892/mmr.2015.3599] [PMID: 25873273]
[16]
Díaz de Barboza, G.; Kohan, R.; Picotto, G.; Talamoni, G.; Collin, A.; Areco, V.; Peralta López, M.; Tolosa de Talamoni, N. Synthesis, Localiza-tion and Biological effects of melatonin on intact and diseased intes-tine.Melatonin, Production, Functions and Benefits; Romero Martínez, A.; López-Muñoz, F; Egea, J., Ed.; Nova Science Publishers: New York, 2021.
[17]
Yang, G.G.; Zhang, H.; Zhang, D.Y.; Cao, Q.; Yang, J.; Ji, L.N.; Mao, Z.W. Cancer-specific chemotherapeutic strategy based on the vitamin K3 mediat-ed ROS regenerative feedback and visualized drug release in vivo. Biomaterials, 2018, 185, 73-85.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.065] [PMID: 30227273]
[18]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86, 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[19]
Guizzardi, S.; Picotto, G.; Rodriguez, V.; Welsh, J.; Narvaez, C.; Bohl, L.; Tolosa de Talamoni, N. Combined treatment of menadione and calcitriol in-creases the antiproliferative effect by promoting oxidative/nitrosative stress, mitochondrial dysfunction, and autophagy in breast cancer MCF-7 cells. Can. J. Physiol. Pharmacol., 2020, 98(8), 548-556.
[http://dx.doi.org/10.1139/cjpp-2019-0585] [PMID: 32762631]
[20]
Marchionatti, A.M.; Picotto, G.; Narvaez, C.J.; Welsh, J. Tolosa de Tala-moni, N.G. Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol., 2009, 113(3-5), 227-232.
[http://dx.doi.org/10.1016/j.jsbmb.2009.01.004] [PMID: 19429426]
[21]
Bohl, L.; Guizzardi, S.; Rodríguez, V.; Hinrichsen, L.; Rozados, V.; Cremo-nezzi, D.; Tolosa de Talamoni, N.; Picotto, G. Combined calcitriol and men-adione reduces experimental murine triple negative breast tumor. Biomed. Pharmacother., 2017, 94, 21-26.
[http://dx.doi.org/10.1016/j.biopha.2017.07.058] [PMID: 28750356]
[22]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241.
[http://dx.doi.org/10.1016/j.lfs.2019.05.009] [PMID: 31077716]
[23]
Liu, P.; Xie, X.; Yang, A.; Kong, Y.; Allen-Gipson, D.; Tian, Z.; Zhou, L.; Tang, H.; Xie, X. Melatonin regulates breast cancer progression by the lnc010561/miR-30/FKBP3 axis. Mol. Ther. Nucleic Acids, 2020, 19, 765-774.
[http://dx.doi.org/10.1016/j.omtn.2019.12.019] [PMID: 31955008]
[24]
Ren, X.; Santhosh, S.M.; Coppo, L.; Ogata, F.T.; Lu, J.; Holmgren, A. The combination of ascorbate and menadione causes cancer cell death by oxida-tive stress and replicative stress. Free Radic. Biol. Med., 2019, 134, 350-358.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.037] [PMID: 30703479]
[25]
Semkova, S.; Zhelev, Z.; Miller, T.; Sugaya, K.; Aoki, I.; Higashi, T.; Bakalo-va, R. Menadione/Ascorbate induces overproduction of mitochondrial su-peroxide and impairs mitochondrial function in cancer: Comparative study on cancer and normal cells of the same origin. Anticancer Res., 2020, 40(4), 1963-1972.
[http://dx.doi.org/10.21873/anticanres.14151] [PMID: 32234885]
[26]
Lin, S.; Li, Y.; Zamyatnin, A.A.; Werner, J.; Bazhin, A.V. Reactive oxygen species and colorectal cancer. J. Cell. Physiol., 2018, 233(7), 5119-5132.
[http://dx.doi.org/10.1002/jcp.26356] [PMID: 29215746]
[27]
Liaudat, A.C.; Bohl, L.P.; Tolosa de Talamoni, N.G.; Maletto, B.; Pistoresi-Palencia, M.C.; Picotto, G. Oxidative stress, cell cycle arrest and differentia-tion contribute toward the antiproliferative action of BSO and calcitriol on Caco-2 cells. Anticancer Drugs, 2014, 25(7), 810-818.
[http://dx.doi.org/10.1097/CAD.0000000000000109] [PMID: 24681551]
[28]
Soares, A.S.; Costa, V.M.; Diniz, C.; Fresco, P. Combination of Cl IB MECA with paclitaxel is a highly effective cytotoxic therapy causing mTOR dependent autophagy and mitotic catastrophe on human melanoma cells. J. Cancer Res. Clin. Oncol., 2014, 140(6), 921-935.
[http://dx.doi.org/10.1007/s00432-014-1645-z] [PMID: 24659394]
[29]
Serrander, L.; Cartier, L.; Bedard, K.; Banfi, B.; Lardy, B.; Plastre, O.; Sien-kiewicz, A.; Fórró, L.; Schlegel, W.; Krause, K.H. NOX4 activity is deter-mined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J., 2007, 406(1), 105-114.
[http://dx.doi.org/10.1042/BJ20061903] [PMID: 17501721]
[30]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[31]
Miranda, K.M.; Espey, M.G.; Wink, D.A.A. A rapid, simple spectrophoto-metric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 2001, 5(1), 62-71.
[http://dx.doi.org/10.1006/niox.2000.0319] [PMID: 11178938]
[32]
Bradford, M.M. A rapid and sensitive method for the quantitation of mi-crogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1–2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[33]
Jonkman, J.E.N.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Ste-vens, K.M.; Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes. Migr., 2014, 8(5), 440-451.
[http://dx.doi.org/10.4161/cam.36224] [PMID: 25482647]
[34]
Asghari, M.H.; Moloudizargari, M.; Ghobadi, E.; Fallah, M.; Abdollahi, M. Melatonin as a multifunctional anti-cancer molecule: Implications in gas-tric cancer. Life Sciences, 2017, 185, 38-45.
[http://dx.doi.org/10.1016/j.lfs.2017.07.020]
[35]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. International J. Molecular Sci. Int. J. Mol. Sci., 2017, 18(4), 843.
[http://dx.doi.org/10.3390/ijms18040843]
[36]
Kizhuveetil, U.; Palukuri, M.V.; Sharma, P.; Karunagaran, D.; Rengaswamy, R.; Suraishkumar, G.K. Entrainment of superoxide rhythm by menadione in HCT116 colon cancer cells. Sci. Rep., 2019, 9(1), 3347.
[http://dx.doi.org/10.1038/s41598-019-40017-7] [PMID: 30833672]
[37]
Ortega, Á.L.; Mena, S.; Estrela, J.M. Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel), 2010, 2(2), 274-304.
[http://dx.doi.org/10.3390/cancers2020274] [PMID: 24281071]
[38]
Wang, X.; Decker, C.C.; Zechner, L.; Krstin, S.; Wink, M. In vitro wound healing of tumor cells: Inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol. Toxicol., 2019, 20(1), 4.
[http://dx.doi.org/10.1186/s40360-018-0284-4] [PMID: 30626448]
[39]
Denlinger, C.S.; Barsevick, A.M. The challenges of colorectal cancer survi-vorship. J. Natl. Compr. Canc. Netw., 2009, 7(8), 883-893.
[http://dx.doi.org/10.6004/jnccn.2009.0058] [PMID: 19755048]
[40]
León, J.; Casado, J.; Jiménez Ruiz, S.M.; Zurita, M.S.; González-Puga, C.; Rejón, J.D.; Gila, A.; Muñoz de Rueda, P.; Pavón, E.J.; Reiter, R.J.; Ruiz-Extremera, A.; Salmerón, J. Melatonin reduces endothelin-1 expression and secretion in colon cancer cells through the inactivation of FoxO-1 and NF-κβ. J. Pineal Res., 2014, 56(4), 415-426.
[http://dx.doi.org/10.1111/jpi.12131] [PMID: 24628039]
[41]
Wang, J.; Hao, H.; Yao, L.; Zhang, X.; Zhao, S.; Ling, E.A.; Hao, A.; Li, G. Melatonin suppresses migration and invasion via inhibition of oxidative stress pathway in glioma cells. J. Pineal Res., 2012, 53(2), 180-187.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00985.x] [PMID: 22404622]
[42]
Taziki, S.; Sattari, M.R.; Dastmalchi, S.; Eghbal, M.A. Cytoprotective effects of melatonin against amitriptyline-induced toxicity in isolated rat hepato-cytes. Adv. Pharm. Bull., 2015, 5(3), 329-334.
[http://dx.doi.org/10.15171/apb.2015.046] [PMID: 26504754]
[43]
Batista, A.P.; da Silva, T.G.; Teixeira, A.A.; de Medeiros, P.L.; Teixeira, V.W.; Alves, L.C.; Dos Santos, F.A.; Silva, E.C. Ultrastructural aspects of melatonin cytotoxicity on Caco-2 cells in vitro. Micron, 2014, 59, 17-23.
[http://dx.doi.org/10.1016/j.micron.2013.12.003] [PMID: 24530360]
[44]
Perillo, B.; di Donato, M.; Pezone, A.; di Zazzo, E.; Giovannelli, P.; Galas-so, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[45]
Hong, Y.; Won, J.; Lee, Y.; Lee, S.; Park, K.; Chang, K.T.; Hong, Y. Melato-nin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J. Pineal Res., 2014, 56(3), 264-274.
[http://dx.doi.org/10.1111/jpi.12119] [PMID: 24484372]
[46]
Valdameri, G.; Trombetta-Lima, M.; Worfel, P.R.; Pires, A.R.A.; Martinez, G.R.; Noleto, G.R.; Cadena, S.M.S.C.; Sogayar, M.C.; Winnischofer, S.M.B.; Rocha, M.E.M. Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem. Biol. Interact., 2011, 193(2), 180-189.
[http://dx.doi.org/10.1016/j.cbi.2011.06.009] [PMID: 21756884]
[47]
Su, S.C.; Hsieh, M.J.; Yang, W.E.; Chung, W.H.; Reiter, R.J.; Yang, S.F. Cancer metastasis: Mechanisms of inhibition by melatonin. J. Pineal Res., 2017, 62(1), e12370.
[http://dx.doi.org/10.1111/jpi.12370] [PMID: 27706852]
[48]
Bonnefont-Rousselot, D.; Collin, F. Melatonin: Action as antioxidant and potential applications in human disease and aging. Toxicology, 2010, 278(1), 55-67.
[http://dx.doi.org/10.1016/j.tox.2010.04.008] [PMID: 20417677]
[49]
Zhang, H.M.; Zhang, Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res., 2014, 57(2), 131-146.
[http://dx.doi.org/10.1111/jpi.12162] [PMID: 25060102]
[50]
Moreno, A.C.R.; Saito, R. de F.; Tiago, M.; Massaro, R.R.; Pagni, R.L.; Pe-goraro, R.; Souza, P. da C.; Reiter, R.J.; Campa, A.; Soengas, M.S.; Maria-Engler, S.S. Melatonin inhibits human melanoma cells proliferation and in-vasion via cell cycle arrest and cytoskeleton remodeling. Melatonin Res., 2020, 3(2), 194-209.
[http://dx.doi.org/10.32794/mr11250057]
[51]
Abadi, S.H.M.H.; Shirazi, A.; Alizadeh, A.M.; Changizi, V.; Najafi, M.; Khalighfard, S.; Nosrati, H. The effect of melatonin on superoxide dis-mutase and glutathione peroxidase activity, and malondialdehyde levels in the targeted and the non-targeted lung and heart tissues after irradiation in xenograft mice colon cancer. Curr. Mol. Pharmacol., 2018, 11(4), 326-335.
[http://dx.doi.org/10.2174/1874467211666180830150154] [PMID: 30173656]
[52]
Pariente, R.; Bejarano, I.; Rodríguez, A.B.; Pariente, J.A.; Espino, J. Melato-nin increases the effect of 5-fluorouracil-based chemapy in human colorec-tal adenocarcinoma cells in vitro. Mol. Cell. Biochem., 2018, 440(1-2), 43-51.
[http://dx.doi.org/10.1007/s11010-017-3154-2] [PMID: 28819759]
[53]
Bondy, S.C.; Campbell, A. Mechanisms underlying tumor suppressive properties of melatonin. Int. J. Mol. Sci., 2018, 19(8), 2205.
[http://dx.doi.org/10.3390/ijms19082205] [PMID: 30060531]
[54]
González González, A.; Rueda Revilla, N.; Sánchez-Barceló, E.J. Clinical uses of melatonin: Evaluation of human trials on cancer treatment. Melato-nin Res., 2019, 2(2), 47-69.
[http://dx.doi.org/10.32794/mr11250021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy