Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Therapeutic Potential of Galectin-1 and Galectin-3 in Autoimmune Diseases

Author(s): Yi-Sheng He, Yu-Qian Hu, Kun Xiang, Yue Chen, Ya-Ting Feng, Kang-Jia Yin, Ji-Xiang Huang, Jie Wang, Zheng-Dong Wu, Gui-Hong Wang* and Hai-Feng Pan*

Volume 28, Issue 1, 2022

Published on: 27 September, 2021

Page: [36 - 45] Pages: 10

DOI: 10.2174/1381612827666210927164935

Price: $65

Abstract

Galectins are a highly conserved protein family that binds to β-galactosides. Different members of this family play a variety of biological functions in physiological and pathological processes such as angiogenesis, regulation of immune cell activity, and cell adhesion. Galectins are widely distributed and play a vital role both inside and outside cells. They can regulate homeostasis and immune function in vivo through mechanisms such as apoptosis. Recent studies have indicated that galectins exhibit pleiotropic roles in inflammation. Furthermore, emerging studies have found that galectins are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D), and systemic sclerosis (SSc) by regulating cell adhesion, apoptosis, and other mechanisms. This review will briefly discuss the biological characteristics of the two most widely expressed and extensively explored members of the galectin family, galectin-1 and galectin-3, as well as their pathogenetic and therapeutic roles in autoimmune diseases. This information may provide a novel and promising therapeutic target for autoimmune diseases.

Keywords: Galectin-1, galectin-3, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, type 1 diabetes mellitus.

[1]
Freitag J, Berod L, Kamradt T, Sparwasser T. Immunometabolism and autoimmunity. Immunol Cell Biol 2016; 94(10): 925-34.
[http://dx.doi.org/10.1038/icb.2016.77] [PMID: 27562063]
[2]
Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347(12): 911-20.
[http://dx.doi.org/10.1056/NEJMra020100] [PMID: 12239261]
[3]
Sato S, St-Pierre C, Bhaumik P, Nieminen J. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 2009; 230(1): 172-87.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00790.x] [PMID: 19594636]
[4]
Chou FC, Chen HY, Kuo CC, Sytwu HK. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci 2018; 19(2): E430.
[http://dx.doi.org/10.3390/ijms19020430] [PMID: 29389859]
[5]
Cerliani JP, Blidner AG, Toscano MA, Croci DO, Rabinovich GA. Translating the ‘Sugar Code’ into immune and vascular signaling programs. Trends Biochem Sci 2017; 42(4): 255-73.
[http://dx.doi.org/10.1016/j.tibs.2016.11.003] [PMID: 27986367]
[6]
Nabi IR, Shankar J, Dennis JW. The galectin lattice at a glance. J Cell Sci 2015; 128(13): 2213-9.
[http://dx.doi.org/10.1242/jcs.151159] [PMID: 26092931]
[7]
Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci 2018; 131(9)jcs208884
[http://dx.doi.org/10.1242/jcs.208884] [PMID: 29717004]
[8]
Dhirapong A, Lleo A, Leung P, Gershwin ME, Liu FT. The immunological potential of galectin-1 and -3. Autoimmun Rev 2009; 8(5): 360-3.
[http://dx.doi.org/10.1016/j.autrev.2008.11.009] [PMID: 19064001]
[9]
Lee RT, Ichikawa Y, Allen HJ, Lee YC. Binding characteristics of galactoside-binding lectin (galaptin) from human spleen. J Biol Chem 1990; 265(14): 7864-71.
[http://dx.doi.org/10.1016/S0021-9258(19)39011-8] [PMID: 2335508]
[10]
Triguero-Martínez A, de la Fuente H, Montes N, et al. Validation of galectin-1 as potential diagnostic biomarker of early rheumatoid arthritis. Sci Rep 2020; 10(1): 17799.
[http://dx.doi.org/10.1038/s41598-020-74185-8] [PMID: 33082382]
[11]
Baum LG, Pang M, Perillo NL, et al. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 1995; 181(3): 877-87.
[http://dx.doi.org/10.1084/jem.181.3.877] [PMID: 7869048]
[12]
Blaser C, Kaufmann M, Müller C, et al. Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 1998; 28(8): 2311-9.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08<2311::AID-IMMU2311>3.0.CO;2-G] [PMID: 9710209]
[13]
Rubinstein N, Ilarregui JM, Toscano MA, Rabinovich GA. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens 2004; 64(1): 1-12.
[http://dx.doi.org/10.1111/j.0001-2815.2004.00278.x] [PMID: 15191517]
[14]
Kajitani K, Kobayakawa Y, Nomaru H, Kadoya T, Horie H, Nakabeppu Y. Characterization of galectin-1-positive cells in the mouse hippocampus. Neuroreport 2014; 25(3): 171-6.
[http://dx.doi.org/10.1097/WNR.0000000000000068] [PMID: 24323124]
[15]
Levi G, Teichberg VI. The distribution of electrolectin in mouse: genetic and ontogenic variations. Biochem Biophys Res Commun 1984; 119(2): 801-6.
[http://dx.doi.org/10.1016/S0006-291X(84)80321-6] [PMID: 6712657]
[16]
Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology 2006; 16(11): 137R-57R.
[http://dx.doi.org/10.1093/glycob/cwl025] [PMID: 16840800]
[17]
Salatino M, Croci DO, Bianco GA, Ilarregui JM, Toscano MA, Rabinovich GA. Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin Biol Ther 2008; 8(1): 45-57.
[http://dx.doi.org/10.1517/14712598.8.1.45] [PMID: 18081536]
[18]
Shih TC, Fan Y, Kiss S, et al. Galectin-1 inhibition induces cell apoptosis through dual suppression of CXCR4 and Ras pathways in human malignant peripheral nerve sheath tumors. Neuro-oncol 2019; 21(11): 1389-400.
[http://dx.doi.org/10.1093/neuonc/noz093] [PMID: 31127849]
[19]
Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: A jack-of-all-trades in the resolution of acute and chronic inflammation. J Immunol 2017; 199(11): 3721-30.
[http://dx.doi.org/10.4049/jimmunol.1701172] [PMID: 29158348]
[20]
Friedrichs J, Manninen A, Muller DJ, Helenius J. Galectin-3 regulates integrin alpha2beta1-mediated adhesion to collagen-I and -IV. J Biol Chem 2008; 283(47): 32264-72.
[http://dx.doi.org/10.1074/jbc.M803634200] [PMID: 18806266]
[21]
Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev 2009; 230(1): 160-71.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00794.x] [PMID: 19594635]
[22]
Nakahara S, Oka N, Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis 2005; 10(2): 267-75.
[http://dx.doi.org/10.1007/s10495-005-0801-y] [PMID: 15843888]
[23]
Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM. Galectin-3 in renal pathology: More than just an innocent bystander. Am J Nephrol 2016; 43(5): 305-17.
[http://dx.doi.org/10.1159/000446376] [PMID: 27166158]
[24]
Dong R, Zhang M, Hu Q, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med 2018; 41(2): 599-614.
[PMID: 29207027]
[25]
de Oliveira FL, Gatto M, Bassi N, et al. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 2015; 240(8): 1019-28.
[http://dx.doi.org/10.1177/1535370215593826] [PMID: 26142116]
[26]
Paclik D, Werner L, Guckelberger O, Wiedenmann B, Sturm A. Galectins distinctively regulate central monocyte and macrophage function. Cell Immunol 2011; 271(1): 97-103.
[http://dx.doi.org/10.1016/j.cellimm.2011.06.003] [PMID: 21724180]
[27]
Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 2008; 10e17
[http://dx.doi.org/10.1017/S1462399408000719] [PMID: 18549522]
[28]
Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 2000; 165(7): 3722-9.
[http://dx.doi.org/10.4049/jimmunol.165.7.3722] [PMID: 11034377]
[29]
Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 1999; 97(1): 100-6.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00746.x] [PMID: 10447720]
[30]
van der Leij J, van den Berg A, Blokzijl T, et al. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol 2004; 204(5): 511-8.
[http://dx.doi.org/10.1002/path.1671] [PMID: 15538736]
[31]
van der Leij J, van den Berg A, Harms G, et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol Immunol 2007; 44(4): 506-13.
[http://dx.doi.org/10.1016/j.molimm.2006.02.011] [PMID: 16581128]
[32]
Sano H, Hsu DK, Yu L, et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 2000; 165(4): 2156-64.
[http://dx.doi.org/10.4049/jimmunol.165.4.2156] [PMID: 10925302]
[33]
Hsu DK, Yang RY, Pan Z, et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 2000; 156(3): 1073-83.
[http://dx.doi.org/10.1016/S0002-9440(10)64975-9] [PMID: 10702423]
[34]
Zuberi RI, Hsu DK, Kalayci O, et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 2004; 165(6): 2045-53.
[http://dx.doi.org/10.1016/S0002-9440(10)63255-5] [PMID: 15579447]
[35]
Karlsson A, Christenson K, Matlak M, et al. Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 2009; 19(1): 16-20.
[http://dx.doi.org/10.1093/glycob/cwn104] [PMID: 18849325]
[36]
del Pozo V, Rojo M, Rubio ML, et al. Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med 2002; 166(5): 732-7.
[http://dx.doi.org/10.1164/rccm.2111031] [PMID: 12204873]
[37]
López E, del Pozo V, Miguel T, et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol 2006; 176(3): 1943-50.
[http://dx.doi.org/10.4049/jimmunol.176.3.1943] [PMID: 16424226]
[38]
Takamatsu S. Naturally occurring cell adhesion inhibitors. J Nat Med 2018; 72(4): 817-35.
[http://dx.doi.org/10.1007/s11418-018-1220-z] [PMID: 29779172]
[39]
Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA. Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 2007; 64(13): 1679-700.
[http://dx.doi.org/10.1007/s00018-007-7044-8] [PMID: 17497244]
[40]
Inohara H, Raz A. Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion. Cancer Res 1995; 55(15): 3267-71.
[PMID: 7542167]
[41]
Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP. Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res 2000; 60(10): 2584-8.
[PMID: 10825125]
[42]
Strasser A, Bouillet P. The control of apoptosis in lymphocyte selection. Immunol Rev 2003; 193: 82-92.
[http://dx.doi.org/10.1034/j.1600-065X.2003.00036.x] [PMID: 12752673]
[43]
Motran CC, Molinder KM, Liu SD, Poirier F, Miceli MC. Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. Eur J Immunol 2008; 38(11): 3015-27.
[http://dx.doi.org/10.1002/eji.200838295] [PMID: 18991278]
[44]
Ion G, Fajka-Boja R, Tóth GK, Caron M, Monostori E. Role of p56lck and ZAP70-mediated tyrosine phosphorylation in galectin-1-induced cell death. Cell Death Differ 2005; 12(8): 1145-7.
[http://dx.doi.org/10.1038/sj.cdd.4401628] [PMID: 15832176]
[45]
Kovács-Sólyom F, Blaskó A, Fajka-Boja R, et al. Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1. Immunol Lett 2010; 127(2): 108-18.
[http://dx.doi.org/10.1016/j.imlet.2009.10.003] [PMID: 19874850]
[46]
Blaskó A, Fajka-Boja R, Ion G, Monostori E. How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. Acta Biol Hung 2011; 62(1): 106-11.
[http://dx.doi.org/10.1556/ABiol.61.2011.1.11] [PMID: 21388924]
[47]
Fukumori T, Takenaka Y, Yoshii T, et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 2003; 63(23): 8302-11.
[PMID: 14678989]
[48]
Perillo NL, Uittenbogaart CH, Nguyen JT, Baum LG. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med 1997; 185(10): 1851-8.
[http://dx.doi.org/10.1084/jem.185.10.1851] [PMID: 9151710]
[49]
Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature 1995; 378(6558): 736-9.
[http://dx.doi.org/10.1038/378736a0] [PMID: 7501023]
[50]
Deák M, Hornung Á, Novák J, et al. Novel role for galectin-1 in T-cells under physiological and pathological conditions. Immunobiology 2015; 220(4): 483-9.
[http://dx.doi.org/10.1016/j.imbio.2014.10.023] [PMID: 25468561]
[51]
Brandt B, Büchse T, Abou-Eladab EF, et al. Galectin-1 induced activation of the apoptotic death-receptor pathway in human Jurkat T lymphocytes. Histochem Cell Biol 2008; 129(5): 599-609.
[http://dx.doi.org/10.1007/s00418-008-0395-x] [PMID: 18288482]
[52]
Matarrese P, Tinari A, Mormone E, et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem 2005; 280(8): 6969-85.
[http://dx.doi.org/10.1074/jbc.M409752200] [PMID: 15556941]
[53]
Hahn HP, Pang M, He J, et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 2004; 11(12): 1277-86.
[http://dx.doi.org/10.1038/sj.cdd.4401485] [PMID: 15297883]
[54]
Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD. Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 2007; 109(1): 219-27.
[http://dx.doi.org/10.1182/blood-2006-03-007153] [PMID: 16940423]
[55]
Dias-Baruffi M, Zhu H, Cho M, Karmakar S, McEver RP, Cummings RD. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem 2003; 278(42): 41282-93.
[http://dx.doi.org/10.1074/jbc.M306624200] [PMID: 12853445]
[56]
Stillman BN, Hsu DK, Pang M, et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 2006; 176(2): 778-89.
[http://dx.doi.org/10.4049/jimmunol.176.2.778] [PMID: 16393961]
[57]
Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA 1996; 93(13): 6737-42.
[http://dx.doi.org/10.1073/pnas.93.13.6737] [PMID: 8692888]
[58]
Chen HY, Liu FT, Yang RY. Roles of galectin-3 in immune responses. Arch Immunol Ther Exp (Warsz) 2005; 53(6): 497-504.
[PMID: 16407782]
[59]
Kechida M. Update on autoimmune diseases pathogenesis. Curr Pharm Des 2019; 25(27): 2947-52.
[http://dx.doi.org/10.2174/1381612825666190709205421] [PMID: 31686634]
[60]
Islam MA, Kamal MA, Md Zulfiker AH, Gan SH. Immune-mediated pathogenesis and therapies for inflammatory autoimmune diseases. Curr Pharm Des 2019; 25(27): 2907-8.
[http://dx.doi.org/10.2174/138161282527191007151037] [PMID: 31621552]
[61]
Hornung Á, Monostori É, Kovács L. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function. Lupus 2017; 26(4): 339-47.
[http://dx.doi.org/10.1177/0961203316686846] [PMID: 28100106]
[62]
Hu CY, Chang SK, Wu CS, Tsai WI, Hsu PN. Galectin-3 gene (LGALS3) +292C allele is a genetic predisposition factor for rheumatoid arthritis in Taiwan. Clin Rheumatol 2011; 30(9): 1227-33.
[http://dx.doi.org/10.1007/s10067-011-1741-2] [PMID: 21475983]
[63]
Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet 2010; 376(9746): 1094-108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[64]
Hayashi J, Kihara M, Kato H, Nishimura T. A proteomic profile of synoviocyte lesions microdissected from formalin-fixed paraffin-embedded synovial tissues of rheumatoid arthritis. Clin Proteomics 2015; 12(1): 20.
[http://dx.doi.org/10.1186/s12014-015-9091-8] [PMID: 26251654]
[65]
Ohshima S, Kuchen S, Seemayer CA, et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 2003; 48(10): 2788-95.
[http://dx.doi.org/10.1002/art.11287] [PMID: 14558084]
[66]
Mendez-Huergo SP, Hockl PF, Stupirski JC, et al. Clinical relevance of galectin-1 and galectin-3 in rheumatoid arthritis patients: Differential regulation and correlation with disease activity. Front Immunol 2019; 9: 3057.
[http://dx.doi.org/10.3389/fimmu.2018.03057] [PMID: 30687310]
[67]
Xibillé-Friedmann D, Bustos Rivera-Bahena C, Rojas-Serrano J, Burgos-Vargas R, Montiel-Hernández JL. A decrease in galectin-1 (Gal-1) levels correlates with an increase in anti-Gal-1 antibodies at the synovial level in patients with rheumatoid arthritis. Scand J Rheumatol 2013; 42(2): 102-7.
[http://dx.doi.org/10.3109/03009742.2012.725769] [PMID: 23244209]
[68]
Iqbal AJ, Cooper D, Vugler A, Gittens BR, Moore A, Perretti M. Endogenous galectin-1 exerts tonic inhibition on experimental arthritis. J Immunol 2013; 191(1): 171-7.
[http://dx.doi.org/10.4049/jimmunol.1203291] [PMID: 23720814]
[69]
Toegel S, Weinmann D, André S, et al. Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol 2016; 196(4): 1910-21.
[http://dx.doi.org/10.4049/jimmunol.1501165] [PMID: 26792806]
[70]
Issa SF, Christensen AF, Lindegaard HM, et al. Galectin-3 is persistently increased in early rheumatoid arthritis (RA) and associates with anti-CCP seropositivity and MRI bone lesions, while early fibrosis markers correlate with disease activity. Scand J Immunol 2017; 86(6): 471-8.
[http://dx.doi.org/10.1111/sji.12619] [PMID: 28990250]
[71]
Issa SF, Duer A, Østergaard M, et al. Increased galectin-3 may serve as a serologic signature of pre-rheumatoid arthritis while markers of synovitis and cartilage do not differ between early undifferentiated arthritis subsets. Arthritis Res Ther 2017; 19(1): 80.
[http://dx.doi.org/10.1186/s13075-017-1282-4] [PMID: 28446218]
[72]
Nishi Y, Sano H, Kawashima T, et al. Role of galectin-3 in human pulmonary fibrosis. Allergol Int 2007; 56(1): 57-65.
[http://dx.doi.org/10.2332/allergolint.O-06-449] [PMID: 17259811]
[73]
Neidhart M, Zaucke F, von Knoch R, et al. Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann Rheum Dis 2005; 64(3): 419-24.
[http://dx.doi.org/10.1136/ard.2004.023135] [PMID: 15345499]
[74]
Filer A, Bik M, Parsonage GN, et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum 2009; 60(6): 1604-14.
[http://dx.doi.org/10.1002/art.24574] [PMID: 19479862]
[75]
Forsman H, Islander U, Andréasson E, et al. Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis Rheum 2011; 63(2): 445-54.
[http://dx.doi.org/10.1002/art.30118] [PMID: 21280000]
[76]
de Oliveira FL, Carneiro K, Brito JM, et al. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis. PLoS Negl Trop Dis 2017; 11(2): e0005137.
[http://dx.doi.org/10.1371/journal.pntd.0005137] [PMID: 28231240]
[77]
Guo Q, Zhang L, Yaron JR, et al. Preclinical testing of viral therapeutic efficacy in pristane-induced lupus nephritis and diffuse alveolar hemorrhage mouse models. Methods Mol Biol 2021; 2225: 241-55.
[http://dx.doi.org/10.1007/978-1-0716-1012-1_14] [PMID: 33108667]
[78]
Moulton VR, Tsokos GC. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res Ther 2011; 13(2): 207.
[http://dx.doi.org/10.1186/ar3251] [PMID: 21457530]
[79]
De S, Barnes BJ. B cell transcription factors: Potential new therapeutic targets for SLE. Clin Immunol 2014; 152(1-2): 140-51.
[http://dx.doi.org/10.1016/j.clim.2014.03.009] [PMID: 24674882]
[80]
Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 2001; 1(2): 147-53.
[http://dx.doi.org/10.1038/35100573] [PMID: 11905822]
[81]
Szabó E, Hornung Á, Monostori É, Bocskai M, Czibula Á, Kovács L. Altered cell surface N-glycosylation of resting and activated T cells in systemic lupus erythematosus. Int J Mol Sci 2019; 20(18): E4455.
[http://dx.doi.org/10.3390/ijms20184455] [PMID: 31509989]
[82]
Gruszewska E, Cylwik B, Gińdzieńska-Sieśkiewicz E, Kowal-Bielecka O, Mroczko B, Chrostek L. Diagnostic power of galectin-3 in rheumatic diseases. J Clin Med 2020; 9(10)E3312
[http://dx.doi.org/10.3390/jcm9103312] [PMID: 33076422]
[83]
Zhao CN, Mei YJ, Wu GC, et al. Effect of air pollution on hospital admissions for systemic lupus erythematosus in Bengbu, China: a time series study. Lupus 2019; 28(13): 1541-8.
[http://dx.doi.org/10.1177/0961203319882503] [PMID: 31615325]
[84]
Lukyanov P, Furtak V, Ochieng J. Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer. Biochem Biophys Res Commun 2005; 338(2): 1031-6.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.033] [PMID: 16248982]
[85]
Wu SY, Yu JS, Liu FT, Miaw SC, Wu-Hsieh BA. Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol 2013; 190(7): 3427-37.
[http://dx.doi.org/10.4049/jimmunol.1202122] [PMID: 23455499]
[86]
Fermin Lee A, Chen HY, Wan L, et al. Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol 2013; 183(4): 1209-22.
[http://dx.doi.org/10.1016/j.ajpath.2013.06.017] [PMID: 23916470]
[87]
Mak A, Kow NY. The pathology of T cells in systemic lupus erythematosus. J Immunol Res 2014; 2014: 419029.
[http://dx.doi.org/10.1155/2014/419029] [PMID: 24864268]
[88]
Stowell SR, Qian Y, Karmakar S, et al. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 2008; 180(5): 3091-102.
[http://dx.doi.org/10.4049/jimmunol.180.5.3091] [PMID: 18292532]
[89]
Beccaria CG, Amezcua Vesely MC, Fiocca Vernengo F, et al. Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat Commun 2018; 9(1): 1628.
[http://dx.doi.org/10.1038/s41467-018-04063-5] [PMID: 29691398]
[90]
Kozikowska M, Luboń W, Kucharz EJ, Mrukwa-Kominek E. Ocular manifestations in patients with systemic sclerosis. Reumatologia 2020; 58(6): 401-6.
[http://dx.doi.org/10.5114/reum.2020.102004] [PMID: 33456083]
[91]
Croci DO, Cerliani JP, Dalotto-Moreno T, et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 2014; 156(4): 744-58.
[http://dx.doi.org/10.1016/j.cell.2014.01.043] [PMID: 24529377]
[92]
Elola MT, Ferragut F, Méndez-Huergo SP, Croci DO, Bracalente C, Rabinovich GA. Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell Immunol 2018; 333: 34-45.
[http://dx.doi.org/10.1016/j.cellimm.2018.03.008] [PMID: 29602445]
[93]
Yanaba K, Asano Y, Akamata K, et al. Circulating galectin-1 concentrations in systemic sclerosis: potential contribution to digital vasculopathy. Int J Rheum Dis 2016; 19(6): 622-7.
[http://dx.doi.org/10.1111/1756-185X.12288] [PMID: 24517166]
[94]
Ayers NB, Sun CM, Chen SY. Transforming growth factor-β signaling in systemic sclerosis. J Biomed Res 2018; 32(1): 3-12.
[PMID: 29353817]
[95]
Toscano MA, Martínez Allo VC, Cutine AM, Rabinovich GA, Mariño KV. Untangling galectin-driven regulatory circuits in autoimmune inflammation. Trends Mol Med 2018; 24(4): 348-63.
[http://dx.doi.org/10.1016/j.molmed.2018.02.008] [PMID: 29555188]
[96]
Taniguchi T, Asano Y, Akamata K, et al. Serum levels of galectin-3: possible association with fibrosis, aberrant angiogenesis, and immune activation in patients with systemic sclerosis. J Rheumatol 2012; 39(3): 539-44.
[http://dx.doi.org/10.3899/jrheum.110755] [PMID: 22247367]
[97]
Koca SS, Akbas F, Ozgen M, et al. Serum galectin-3 level in systemic sclerosis. Clin Rheumatol 2014; 33(2): 215-20.
[http://dx.doi.org/10.1007/s10067-013-2346-8] [PMID: 23912642]
[98]
Dragomir AC, Sun R, Mishin V, Hall LB, Laskin JD, Laskin DL. Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production. Toxicol Sci 2012; 127(2): 609-19.
[http://dx.doi.org/10.1093/toxsci/kfs117] [PMID: 22461450]
[99]
Okamura DM, Pasichnyk K, Lopez-Guisa JM, et al. Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 2011; 300(1): F245-53.
[http://dx.doi.org/10.1152/ajprenal.00326.2010] [PMID: 20962111]
[100]
Calvier L, Miana M, Reboul P, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol 2013; 33(1): 67-75.
[http://dx.doi.org/10.1161/ATVBAHA.112.300569] [PMID: 23117656]
[101]
Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 2006; 103(13): 5060-5.
[http://dx.doi.org/10.1073/pnas.0511167103] [PMID: 16549783]
[102]
Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 2012; 185(5): 537-46.
[http://dx.doi.org/10.1164/rccm.201106-0965OC] [PMID: 22095546]
[103]
Faludi R, Nagy G, Tőkés-Füzesi M, Kovács K, Czirják L, Komócsi A. Galectin-3 is an independent predictor of survival in systemic sclerosis. Int J Cardiol 2017; 233: 118-24.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.140] [PMID: 28043664]
[104]
Mora GF, Zubieta MR. Galectin-1 and galectin-3 expression in lesional skin of patients with systemic sclerosis-association with disease severity. J Clin Rheumatol 2020. (Epub ahead of print).
[http://dx.doi.org/10.1097/RHU.0000000000001367] [PMID: 32501939]
[105]
Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 2000; 156(3): 899-909.
[http://dx.doi.org/10.1016/S0002-9440(10)64959-0] [PMID: 10702407]
[106]
Markowska AI, Liu FT, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 2010; 207(9): 1981-93.
[http://dx.doi.org/10.1084/jem.20090121] [PMID: 20713592]
[107]
Guiducci S, Distler O, Distler JH, Matucci-Cerinic M. Mechanisms of vascular damage in SSc--implications for vascular treatment strategies. Rheumatology (Oxford) 2008; 47(Suppl. 5): v18-20.
[http://dx.doi.org/10.1093/rheumatology/ken267] [PMID: 18784130]
[108]
Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers 2017; 3: 17016.
[http://dx.doi.org/10.1038/nrdp.2017.16] [PMID: 28358037]
[109]
Perone MJ, Bertera S, Shufesky WJ, et al. Suppression of autoimmune diabetes by soluble galectin-1. J Immunol 2009; 182(5): 2641-53.
[http://dx.doi.org/10.4049/jimmunol.0800839] [PMID: 19234158]
[110]
Gómez-Touriño I, Sánchez-Espinel C, Hernández-Fernández A, et al. Galectin-1 synthesis in type 1 diabetes by different immune cell types: reduced synthesis by monocytes and Th1 cells. Cell Immunol 2011; 271(2): 319-28.
[http://dx.doi.org/10.1016/j.cellimm.2011.07.010] [PMID: 21807362]
[111]
Al-Obaidi N, Mohan S, Liang S, et al. Galectin-1 is a new fibrosis protein in type 1 and type 2 diabetes. FASEB J 2019; 33(1): 373-87.
[http://dx.doi.org/10.1096/fj.201800555RR] [PMID: 29975570]
[112]
Karlsen AE, Størling ZM, Sparre T, et al. Immune-mediated beta-cell destruction in vitro and in vivo-A pivotal role for galectin-3. Biochem Biophys Res Commun 2006; 344(1): 406-15.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.105] [PMID: 16600178]
[113]
Saksida T, Nikolic I, Vujicic M, et al. Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro. J Cell Physiol 2013; 228(7): 1568-76.
[http://dx.doi.org/10.1002/jcp.24318] [PMID: 23280610]
[114]
Mensah-Brown EP, Al Rabesi Z, Shahin A, et al. Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol 2009; 130(1): 83-8.
[http://dx.doi.org/10.1016/j.clim.2008.08.024] [PMID: 18845486]
[115]
Rabinovich GA, Daly G, Dreja H, et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 1999; 190(3): 385-98.
[http://dx.doi.org/10.1084/jem.190.3.385] [PMID: 10430627]
[116]
Wang CR, Shiau AL, Chen SY, et al. Intra-articular lentivirus-mediated delivery of galectin-3 shRNA and galectin-1 gene ameliorates collagen-induced arthritis. Gene Ther 2010; 17(10): 1225-33.
[http://dx.doi.org/10.1038/gt.2010.78] [PMID: 20520649]
[117]
Liu SD, Lee S, La Cava A, Motran CC, Hahn BH, Miceli MC. Galectin-1-induced down-regulation of T lymphocyte activation protects (NZB x NZW) F1 mice from lupus-like disease. Lupus 2011; 20(5): 473-84.
[http://dx.doi.org/10.1177/0961203310388444] [PMID: 21335401]
[118]
Liu YH, D’Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 2009; 296(2): H404-12.
[http://dx.doi.org/10.1152/ajpheart.00747.2008] [PMID: 19098114]
[119]
Traber PG, Chou H, Zomer E, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 2013; 8(10): e75361.
[http://dx.doi.org/10.1371/journal.pone.0075361] [PMID: 24130706]
[120]
Yu L, Ruifrok WP, Meissner M, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail 2013; 6(1): 107-17.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.971168] [PMID: 23230309]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy