Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Herbal Nanoformulations for Asthma Treatment

Author(s): Jing Yang, Bo Song* and Junzi Wu*

Volume 28, Issue 1, 2022

Published on: 29 September, 2021

Page: [46 - 57] Pages: 12

DOI: 10.2174/1381612827666210929113528

Price: $65

Abstract

Background: In recent decades, the prevalence of asthma has substantially increased worldwide. Advances in phytochemistry and phytopharmacology have clarified the active ingredients and biological activities of medicinal plant products for treating asthma, and the role of herbal therapies in asthma treatment has become increasingly evident. However, most plant extracts have low solubility and poor stability of bioactive components, resulting in low bioavailability and loss of efficacy. Owing to these shortcomings, the clinical use of many herbal extracts is limited.

Objective: To summarise and analyse the characteristics of herbal nanoformulations and their application in asthma treatment. The objective of this review article is to address the emerging trends of herbal nanoformulations for an effective treatment of asthma.

Methods: Various research and review articles from reputed international journals were referred to and compiled.

Results: The nano-sized herbal formulations improve the solubility and bioavailability of herbal medicines and contribute to the sustained release of drugs, thus, increasing the therapeutic applications of herbal extracts. The review present different types of herbal nanoformulations, including micelles, nanoparticles, solid lipid nanoparticles, lipid-based liquid crystalline nanoparticles and nanoemulsions, which are potential nanodrugs for asthma treatment.

Conclusions: Herbal nanoformulations have shown great prospects for the treatment of asthma in recent years. More safety and toxicity data are still needed to promote their development and application.

Keywords: Herbal medicine, asthma, herbal nanoformulations, nanoparticles, micelles, nanoemulsions

[1]
Bush A. Pathophysiological mechanisms of asthma. Front Pediatr 2019; 7: 68.
[http://dx.doi.org/10.3389/fped.2019.00068] [PMID: 30941334]
[2]
Fang L, Sun Q, Roth M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. Int J Mol Sci 2020; 21(3): 757.
[http://dx.doi.org/10.3390/ijms21030757] [PMID: 31979396]
[3]
Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity 2019; 50(4): 975-91.
[http://dx.doi.org/10.1016/j.immuni.2019.03.018] [PMID: 30995510]
[4]
Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017; 131(13): 1541-58.
[http://dx.doi.org/10.1042/CS20160487] [PMID: 28659395]
[5]
Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr 2019; 7: 246.
[http://dx.doi.org/10.3389/fped.2019.00246] [PMID: 31275909]
[6]
Castillo JR, Peters SP, Busse WW. Asthma exacerbations: pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 2017; 5(4): 918-27.
[http://dx.doi.org/10.1016/j.jaip.2017.05.001] [PMID: 28689842]
[7]
Ye Q, He XO, D’Urzo A. A review on the safety and efficacy of inhaled corticosteroids in the management of asthma. Pulm Ther 2017; 3: 1-18.
[http://dx.doi.org/10.1007/s41030-017-0043-5]
[8]
Parasuraman S. Herbal drug discovery: challenges and perspectives. Curr Pharmacogenomics Person Med 2018; 16: 63-8.
[http://dx.doi.org/10.2174/1875692116666180419153313]
[9]
Kim JH, Kismali G, Gupta SC. Natural products for the prevention and treatment of chronic inflammatory diseases. Evid Based Complement Alternat Med 2018; 2018: 9837863.
[PMID: 29805468]
[10]
Shergis JL, Wu L, Zhang AL, Guo X, Lu C, Xue CC. Herbal medicine for adults with asthma: A systematic review. J Asthma 2016; 53(6): 650-9.
[http://dx.doi.org/10.3109/02770903.2015.1101473] [PMID: 27172294]
[11]
Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, et al. Use of natural products in asthma treatment. Evid Based Complement Alternat Med 2020; 2020: 1021258.
[http://dx.doi.org/10.1155/2020/1021258] [PMID: 32104188]
[12]
Javadi B, Sahebkar A, Emami SA. Medicinal plants for the treatment of asthma: A traditional Persian medicine perspective. Curr Pharm Des 2017; 23(11): 1623-32.
[http://dx.doi.org/10.2174/1381612822666161021143332] [PMID: 27774904]
[13]
Yue GGL, Chan BCL, Kwok HF, et al. Screening for anti-inflammatory and bronchorelaxant activities of 12 commonly used Chinese herbal medicines. Phytother Res 2012; 26(6): 915-25.
[http://dx.doi.org/10.1002/ptr.3659] [PMID: 22105892]
[14]
Tian C, Asghar S, Wu Y, et al. N-acetyl-L-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: preparation, in vitro and in vivo evaluations. Drug Deliv 2017; 24(1): 1605-16.
[http://dx.doi.org/10.1080/10717544.2017.1391890] [PMID: 29063815]
[15]
Bilia AR, Piazzini V, Guccione C, et al. Improving on nature: the role of nanomedicine in the development of clinical natural drugs. Planta Med 2017; 83(5): 366-81.
[http://dx.doi.org/10.1055/s-0043-102949] [PMID: 28178749]
[16]
Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev 2010; 4(7): 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[17]
Länger R, Stöger E, Kubelka W, Helliwell K. Quality standards for herbal drugs and herbal drug preparations-Appropriate or improvements necessary? Planta Med 2018; 84(6-07): 350-60.
[http://dx.doi.org/10.1055/s-0043-118534] [PMID: 28850958]
[18]
Afrin S, Jahan I, Hasan AHMN, et al. Novel approaches of herbal drug delivery. J Pharm Res Int 2018; 21(5): 1-11.
[http://dx.doi.org/10.9734/JPRI/2018/39143]
[19]
Simona AD, Florina A, Rodica CA, Evelyne O, Maria-Corina S. Nanoscale delivery systems: actual and potential applications in the natural products industry. Curr Pharm Des 2017; 23(17): 2414-21.
[http://dx.doi.org/10.2174/1381612823666170220155540] [PMID: 28228070]
[20]
Sachan AK, Gupta A. A review on nanotized herbal drugs. Int J Pharm Sci Res 2015; 6: 961.
[21]
Aljuffali IA, Fang CL, Chen CH, Fang JY. Nanomedicine as a strategy for natural compound delivery to prevent and treat cancers. Curr Pharm Des 2016; 22(27): 4219-31.
[http://dx.doi.org/10.2174/1381612822666160620072539] [PMID: 27323758]
[22]
Ambwani S, Tandon R, Ambwani TK, et al. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J Exp Biol Agric Sci 2018; 6: 87-107.
[http://dx.doi.org/10.18006/2018.6(1).87.107]
[23]
Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 2013; 334(1): 133-41.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[24]
Peng F, Du Q, Peng C, et al. A review: the pharmacology of isoliquiritigenin. Phytother Res 2015; 29(7): 969-77.
[http://dx.doi.org/10.1002/ptr.5348] [PMID: 25907962]
[25]
Xie YJ, Wang QL, Adu-Frimpong M, et al. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Dev Ind Pharm 2019; 45(8): 1224-32.
[http://dx.doi.org/10.1080/03639045.2019.1574812] [PMID: 30681382]
[26]
Luo D, Zuo Z, Zhao H, Tan Y, Xiao C. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice. Front Med 2019; 13(5): 556-63.
[http://dx.doi.org/10.1007/s11684-018-0649-5] [PMID: 30604167]
[27]
Venkatesha SH, Moudgil KD. Celastrol and its role in controlling chronic diseases. Adv Exp Med Biol 2016; 928: 267-89.
[http://dx.doi.org/10.1007/978-3-319-41334-1_12] [PMID: 27671821]
[28]
Peng X, Wang J, Li X, et al. Targeting mast cells and basophils with anti-FcRI Fab-conjugated celastrol-loaded micelles suppresses allergic inflammation. J Biomed Nanotechnol 2015; 11(12): 2286-99.
[http://dx.doi.org/10.1166/jbn.2015.2163] [PMID: 26510321]
[29]
Zhen L, Wei Q, Wang Q, et al. Preparation and in vitro/in vivo evaluation of 6-Gingerol TPGS/PEG-PCL polymeric micelles. Pharm Dev Technol 2020; 25(1): 1-8.
[http://dx.doi.org/10.1080/10837450.2018.1558239] [PMID: 30557068]
[30]
Shukla SK, Shukla SK, Govender PP, et al. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016; 6: 94325-51.
[http://dx.doi.org/10.1039/C6RA15764E]
[31]
Pan Z, He X, Song N, et al. Albumin-modified cationic nanocarriers to potentially create a new platform for drug delivery systems. ACS Appl Mater Interfaces 2019; 11(18): 16421-9.
[http://dx.doi.org/10.1021/acsami.9b05599] [PMID: 30995005]
[32]
Chakraborty K, Shivakumar A, Ramachandran S. Nano-technology in herbal medicines: a review. Int J Herb Med 2016; 4: 21-7.
[http://dx.doi.org/10.22271/flora.2016.v4.i3.05]
[33]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[34]
Mughees M, Wajid S. Herbal based polymeric nanoparticles as a therapeutic remedy for breast cancer. Anticancer Agents Med Chem 2021; 21(4): 433-44.
[http://dx.doi.org/10.2174/1871520620666200619171616] [PMID: 32560619]
[35]
Alexander A, Ajazuddin , Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241: 110-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.017] [PMID: 27663228]
[36]
Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 2019; 59(sup1): S17-29.
[http://dx.doi.org/10.1080/10408398.2018.1501657] [PMID: 30040451]
[37]
Peng S, Gao J, Liu W, et al. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget 2016; 7(49): 80262-74.
[http://dx.doi.org/10.18632/oncotarget.12918] [PMID: 27793052]
[38]
Chakraborty S, Ehsan I, Mukherjee B, et al. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine 2019; 20: 102006.
[http://dx.doi.org/10.1016/j.nano.2019.04.009] [PMID: 31059793]
[39]
Franova S, Molitorisova M, Kazimierova I, et al. Pharmacodynamic evaluation of dihydroxyflavone derivate chrysin in a guinea pig model of allergic asthma. J Pharm Pharmacol 2021; 73(2): 233-40.
[http://dx.doi.org/10.1093/jpp/rgaa008] [PMID: 33793800]
[40]
Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother 2017; 92: 998-1009.
[http://dx.doi.org/10.1016/j.biopha.2017.06.003] [PMID: 28609844]
[41]
Roy S, Manna K, Jha T, Saha KD. Chrysin-loaded PLGA attenuates OVA-induced allergic asthma by modulating TLR/NF-κB/NLRP3 axis. Nanomedicine 2020; 30: 102292.
[http://dx.doi.org/10.1016/j.nano.2020.102292] [PMID: 32853785]
[42]
Shahid H, Shahzad M, Shabbir A, Saghir G. Immunomodulatory and anti-inflammatory potential of curcumin for the treatment of allergic asthma: effects on expression levels of pro-inflammatory cytokines and aquaporins. Inflammation 2019; 42(6): 2037-47.
[http://dx.doi.org/10.1007/s10753-019-01066-2] [PMID: 31407145]
[43]
Oh SW, Cha JY, Jung JE, et al. Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-κB inhibition. J Ethnopharmacol 2011; 136(3): 414-21.
[http://dx.doi.org/10.1016/j.jep.2010.07.026] [PMID: 20643202]
[44]
Yang X, Lv JN, Li H, et al. Curcumin reduces lung inflammation via Wnt/β-catenin signaling in mouse model of asthma. J Asthma 2017; 54(4): 335-40.
[http://dx.doi.org/10.1080/02770903.2016.1218018] [PMID: 27715343]
[45]
Park JY, Chu GE, Park S, et al. Therapeutic efficacy of curcumin enhanced by microscale discoidal polymeric particles in a murine asthma model. Pharmaceutics 2020; 12(8): 739.
[http://dx.doi.org/10.3390/pharmaceutics12080739] [PMID: 32781576]
[46]
Chen X, Wen T, Wei J, et al. Treatment of allergic inflammation and hyperresponsiveness by a simple compound, Bavachinin, isolated from Chinese herbs. Cell Mol Immunol 2013; 10(6): 497-505.
[http://dx.doi.org/10.1038/cmi.2013.27] [PMID: 24013845]
[47]
Wang K, Feng Y, Li S, et al. Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model. J Biomed Nanotechnol 2018; 14(10): 1806-15.
[http://dx.doi.org/10.1166/jbn.2018.2618] [PMID: 30041726]
[48]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[49]
Sharma S, Parmar A, Kori S, et al. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Analyt Chem 2016; 80: 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[50]
Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol 2015; 20(4): 385-93.
[http://dx.doi.org/10.3109/10837450.2014.882940] [PMID: 24483777]
[51]
Wu F, Jin T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS PharmSciTech 2008; 9(4): 1218-29.
[http://dx.doi.org/10.1208/s12249-008-9148-3] [PMID: 19085110]
[52]
Gu J, Su S, Li Y, He Q, Shi J. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti- cancer drugs. Chem Commun (Camb) 2011; 47(7): 2101-3.
[http://dx.doi.org/10.1039/C0CC04598E] [PMID: 21183990]
[53]
Zhou M, Zhao Q, Wu Y, et al. Mesoporous carbon nanoparticles as multi-functional carriers for cancer therapy compared with mesoporous silica nanoparticles. AAPS PharmSciTech 2020; 21(2): 42.
[http://dx.doi.org/10.1208/s12249-019-1604-8] [PMID: 31897882]
[54]
Mehta P, Pawar A, Mahadik K, Bothiraja C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed Pharmacother 2018; 106: 1282-91.
[http://dx.doi.org/10.1016/j.biopha.2018.07.079] [PMID: 30119198]
[55]
Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 2013; 19(2): 151-62.
[http://dx.doi.org/10.1089/ars.2012.4901] [PMID: 23121441]
[56]
Huang W, Li ML, Xia MY, Shao JY. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway. Int J Mol Med 2018; 42(1): 208-18.
[http://dx.doi.org/10.3892/ijmm.2018.3582] [PMID: 29568921]
[57]
Mitra S, Paul P, Mukherjee K, et al. Mesoporous nano-carbon particle loaded fisetin has a positive therapeutic effect in a murine preclinical model of ovalbumin induced acute allergic asthma. J Nanomedine Biotherapeutic Discov 2015; 5: 2.
[58]
Zhao Q, Lin Y, Han N, et al. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv 2017; 24(sup1): 94-107.
[http://dx.doi.org/10.1080/10717544.2017.1399300] [PMID: 29124979]
[59]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[60]
Sogut O, Sezer UA, Sezer S. Liposomal delivery systems for herbal extracts. J Drug Deliv Sci Technol 2020; 61: 102147.
[61]
Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 2017; 7(1): 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[62]
Ng ZY, Wong JY, Panneerselvam J, et al. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 2018; 172: 51-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.027] [PMID: 30134219]
[63]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[64]
Amit P, Tanwar YS, Rakesh S, et al. Phytosome: Phytolipid drug delivery system for improving bioavailability of herbal drug. J Pharm Sci Biosci Res 2013; 3: 51-7.
[65]
Choudhury A, Verma S, Roy A. Phytosome: A novel dosage form for herbal drug delivery. J Appl Pharm Res 2014; 2: 44-52.
[66]
Semalty A, Semalty M, Rawat MS, Franceschi F. Supramolecular phospholipids-polyphenolics interactions: the PHYTOSOME strategy to improve the bioavailability of phytochemicals. Fitoterapia 2010; 81(5): 306-14.
[http://dx.doi.org/10.1016/j.fitote.2009.11.001] [PMID: 19919847]
[67]
Gangwar AK, Ghosh AK. Medicinal uses and pharmacological activity of Adhatoda vasica. Int J Herb Med 2014; 2: 88-91.
[68]
Nandhini S, Ilango K. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res Pharm Sci 2020; 16(1): 103-17.
[PMID: 33953779]
[69]
Fan J, Dai Y, Shen H, Ju J, Zhao Z. Application of soluplus to improve the flowability and dissolution of baicalein phospholipid complex. Molecules 2017; 22(5): 776.
[http://dx.doi.org/10.3390/molecules22050776] [PMID: 28492487]
[70]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[71]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[72]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[73]
Wang W, Zhu R, Xie Q, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 2012; 7: 3667-77.
[http://dx.doi.org/10.2147/IJN.S30428] [PMID: 22888226]
[74]
Szabo P, Zelko R. Formulation and stability aspects of nanosized solid drug delivery systems. Curr Pharm Des 2015; 21(22): 3148-57.
[http://dx.doi.org/10.2174/1381612821666150531164905] [PMID: 26027571]
[75]
Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[76]
Madheswaran T, Kandasamy M, Bose RJC, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today 2019; 24(7): 1405-12.
[http://dx.doi.org/10.1016/j.drudis.2019.05.004] [PMID: 31102731]
[77]
Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr Opin Colloid Interface Sci 2020; 48: 28-39.
[http://dx.doi.org/10.1016/j.cocis.2020.03.006]
[78]
Chan Y, Ng SW, Chellappan DK, et al. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int J Polym Mater 2020; 70(11): 1-10.
[http://dx.doi.org/10.1080/00914037.2020.1765350]
[79]
Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016; 21(5): 623.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[80]
Yong DOC, Saker SR, Wadhwa R, et al. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J Drug Deliv Sci Technol 2019; 54: 101297.
[http://dx.doi.org/10.1016/j.jddst.2019.101297]
[81]
Chountoulesi M, Pippa N, Pispas S, et al. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int J Pharm 2018; 550(1-2): 57-70.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.003] [PMID: 30121331]
[82]
Zhai J, Fong C, Tran N, Drummond CJ. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 2019; 13(6): 6178-206.
[http://dx.doi.org/10.1021/acsnano.8b07961] [PMID: 31082192]
[83]
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019; 51: 224-33.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[84]
Narang JK, Narang RS, Ali J, et al. Nanoemulsions for improved efficacy of phytotherapeutics-A patent perspective. Recent Pat Nanotechnol 2017; 11(3): 194-213.
[http://dx.doi.org/10.2174/1872210510666161228130220] [PMID: 28031010]
[85]
Rasool ST, Alavala RR, Kulandaivelu U, Sreeharsha N. Non-invasive delivery of nano-emulsified sesame oil-extract of turmeric attenuates lung inflammation. Pharmaceutics 2020; 12(12): 1206.
[http://dx.doi.org/10.3390/pharmaceutics12121206] [PMID: 33322573]
[86]
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12(7): 1121-33.
[http://dx.doi.org/10.1517/17425247.2015.999038] [PMID: 25556987]
[87]
Cao M, Zhan M, Wang Z, Wang Z, Li XM, Miao M. Development of an orally bioavailable isoliquiritigenin self-nanoemulsifying drug delivery system to effectively treat ovalbumin-induced ssthma. Int J Nanomedicine 2020; 15: 8945-61.
[http://dx.doi.org/10.2147/IJN.S269982] [PMID: 33223829]
[88]
Timoszuk M, Bielawska K, Skrzydlewska E. Evening primrose (Oenothera biennis) biological activity dependent on chemical composition. Antioxidants 2018; 7(8): 108.
[http://dx.doi.org/10.3390/antiox7080108] [PMID: 30110920]
[89]
Rodrigues RF, Costa IC, Almeida FB, et al. Development and characterization of evening primrose (Oenothera biennis) oil nanoemulsions. Rev Bras Farmacogn 2015; 25: 422-5.
[http://dx.doi.org/10.1016/j.bjp.2015.07.014]
[90]
Zhang L, Zhang L, Zhang M, et al. Self-emulsifying drug delivery system and the applications in herbal drugs. Drug Deliv 2015; 22(4): 475-86.
[http://dx.doi.org/10.3109/10717544.2013.861659] [PMID: 24321014]
[91]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[92]
Baliga MS, Jimmy R, Thilakchand KR, et al. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer 2013; 65(Suppl. 1): 26-35.
[http://dx.doi.org/10.1080/01635581.2013.785010] [PMID: 23682780]
[93]
Jeyanthy B, Preethi V. Sustainable approach towards developing herbal nano-finished cloth mask to reduce the propensity of asthma. IJRESM 2019; 2: 221-4.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy