Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Pivotal Role of Transient Receptor Potential Channels in Oral Physiology

Author(s): Andreas Chalazias, Grigorios Plemmenos , Evangelos Evangeliou and Christina Piperi*

Volume 29, Issue 8, 2022

Published on: 06 August, 2021

Page: [1408 - 1425] Pages: 18

DOI: 10.2174/0929867328666210806113132

Price: $65

Abstract

Background: Transient Receptor Potential (TRP) Channels constitute a large family of non-selective permeable ion channels involved in the perception of environmental stimuli with a central and continuously expanding role in oral tissue homeostasis. Recent studies indicate the regulatory role of TRPs in pulp physiology, oral mucosa sensation, dental pain nociception and salivary gland secretion. This review provides an update on the diverse functions of TRP channels in the physiology of the oral cavity, with emphasis on their cellular location, the underlying molecular mechanisms and clinical significance.

Methods: A structured search of bibliographic databases (PubMed and MEDLINE) was performed for peer-reviewed studies on the function of TRP channels on oral cavity physiology in the last ten years. A qualitative content analysis was performed of screened papers and a critical discussion on the main findings is provided.

Results: TRPs expression has been detected in major cell types of the oral cavity, including odontoblasts, periodontal ligament, oral epithelial, salivary gland cells, and chondrocytes of temporomandibular joints, where they mediate signal perception and transduction of mechanical, thermal, and osmotic stimuli. They contribute to pulp physiology through dentin formation, mineralization, and periodontal ligament formation, along with alveolar bone remodeling in the dental pulp and periodontal ligament cells. TRPs are also involved in oral mucosa sensation, dental pain nociception, saliva secretion, swallowing reflex and temporomandibular joints' development.

Conclusion: Various TRP channels regulate oral cavity homeostasis, playing an important role in the transduction of external stimuli to intracellular signals in a cell typespecific manner and presenting promising drug targets for the development of pharmacological strategies to manage oral diseases.

Keywords: TRP channels, physiology, dental pulp, PDL, oral mucosa, salivary glands, dental pain.

[1]
Holzer, P. TRP channels in the digestive system. Curr. Pharm. Biotechnol., 2011, 12(1), 24-34.
[http://dx.doi.org/10.2174/138920111793937862] [PMID: 20932260]
[2]
Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol., 2011, 12(3), 218.
[http://dx.doi.org/10.1186/gb-2011-12-3-218] [PMID: 21401968]
[3]
Kaneko, Y.; Szallasi, A. Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol., 2014, 171(10), 2474-2507.
[http://dx.doi.org/10.1111/bph.12414] [PMID: 24102319]
[4]
Hasan, R.; Zhang, X. Ca2+ Regulation of TRP Ion Channels. Int. J. Mol. Sci., 2018, 19(4), 1256.
[5]
Hung, C.Y.; Tan, C.H. TRP Channels in Nociception and Pathological Pain. Adv. Exp. Med. Biol., 2018, 1099, 13-27.
[http://dx.doi.org/10.1007/978-981-13-1756-9_2] [PMID: 30306511]
[6]
Emir, T.L.R. Neurobiology of TRP Channels, 1st ed; CRC Press/Taylor & Francis: Boca Raton, FL, 2017.
[http://dx.doi.org/10.4324/9781315152837]
[7]
Li, H. TRP Channel Classification. Adv. Exp. Med. Biol., 2017, 976, 1-8.
[http://dx.doi.org/10.1007/978-94-024-1088-4_1] [PMID: 28508308]
[8]
Hossain, M.Z.; Bakri, M.M.; Yahya, F.; Ando, H.; Unno, S.; Kitagawa, J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int. J. Mol. Sci., 2019, 20(3), 526.
[http://dx.doi.org/10.3390/ijms20030526] [PMID: 30691193]
[9]
Tsumura, M.; Sobhan, U.; Muramatsu, T.; Sato, M.; Ichikawa, H.; Sahara, Y.; Tazaki, M.; Shibukawa, Y. TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts. Cell Calcium, 2012, 52(2), 124-136.
[http://dx.doi.org/10.1016/j.ceca.2012.05.002] [PMID: 22656960]
[10]
Nelson, P.; Ngoc Tran, T.D.; Zhang, H.; Zolochevska, O.; Figueiredo, M.; Feng, J.M.; Gutierrez, D.L.; Xiao, R.; Yao, S.; Penn, A.; Yang, L.J.; Cheng, H. Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation. Stem Cells, 2013, 31(1), 167-177.
[http://dx.doi.org/10.1002/stem.1264] [PMID: 23081848]
[11]
Son, G.Y.; Hong, J.H.; Chang, I.; Shin, D.M. Induction of IL-6 and IL-8 by activation of thermosensitive TRP channels in human PDL cells. Arch. Oral Biol., 2015, 60(4), 526-532.
[http://dx.doi.org/10.1016/j.archoralbio.2014.12.014] [PMID: 25575297]
[12]
Son, G.Y.; Yang, Y.M.; Park, W.S.; Chang, I.; Shin, D.M. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J. Dent. Res., 2015, 94(3), 473-481.
[http://dx.doi.org/10.1177/0022034514567196] [PMID: 25595364]
[13]
Houghton, J.W.; Carpenter, G.; Hans, J.; Pesaro, M.; Lynham, S.; Proctor, G. Agonists of Orally Expressed TRP Channels Stimulate Salivary Secretion and Modify the Salivary Proteome. Mol. Cell. Proteomics, 2020, 19(10), 1664-1676.
[http://dx.doi.org/10.1074/mcp.RA120.002174] [PMID: 32651226]
[14]
Oztürk, A.; Yildiz, L. Expression of transient receptor potential vanilloid receptor 1 and toll-like receptor 4 in aggressive periodontitis and in chronic periodontitis. J. Periodontal Res., 2011, 46(4), 475-482.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01363.x] [PMID: 21517856]
[15]
Ambudkar, I.S. Calcium signalling in salivary gland physiology and dysfunction. J. Physiol., 2016, 594(11), 2813-2824.
[http://dx.doi.org/10.1113/JP271143] [PMID: 26592972]
[16]
Pushpass, R.G.; Daly, B.; Kelly, C.; Proctor, G.; Carpenter, G.H. Altered Salivary Flow, Protein Composition, and Rheology Following Taste and TRP Stimulation in Older Adults. Front. Physiol., 2019, 10, 652.
[http://dx.doi.org/10.3389/fphys.2019.00652] [PMID: 31214042]
[17]
Wang, B.; Danjo, A.; Kajiya, H.; Okabe, K.; Kido, M.A. Oral epithelial cells are activated via TRP channels. J. Dent. Res., 2011, 90(2), 163-167.
[http://dx.doi.org/10.1177/0022034510385459] [PMID: 21149857]
[18]
Shibukawa, Y.; Tsumura, M.; Sato, M.; Ichikawa, H.; Momose, Y.; Tazaki, M. Ca2+ Channels in Odontoblasts. J. Oral. Biosci, 2010, 52(4), 371-377.
[http://dx.doi.org/10.1016/S1349-0079(10)80019-2]
[19]
Sato, M.; Sobhan, U.; Tsumura, M.; Kuroda, H.; Soya, M.; Masamura, A.; Nishiyama, A.; Katakura, A.; Ichinohe, T.; Tazaki, M.; Shibukawa, Y. Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts. J. Endod., 2013, 39(6), 779-787.
[http://dx.doi.org/10.1016/j.joen.2013.01.012] [PMID: 23683279]
[20]
Kimura, M.; Nishi, K.; Higashikawa, A.; Ohyama, S.; Sakurai, K.; Tazaki, M.; Shibukawa, Y. High pH-Sensitive Store-Operated Ca2+ Entry Mediated by Ca2+ Release-Activated Ca2+ Channels in Rat Odontoblasts. Front. Physiol., 2018, 9, 443.
[http://dx.doi.org/10.3389/fphys.2018.00443] [PMID: 29765331]
[21]
Kimura, M.; Sase, T.; Higashikawa, A.; Sato, M.; Sato, T.; Tazaki, M.; Shibukawa, Y. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization. J. Dent. Res., 2016, 95(9), 1057-1064.
[http://dx.doi.org/10.1177/0022034516644702] [PMID: 27084672]
[22]
Won, J.; Kim, J.H.; Oh, S.B. Molecular expression of Mg2+ regulator TRPM7 and CNNM4 in rat odontoblasts. Arch. Oral Biol., 2018, 96, 182-188.
[http://dx.doi.org/10.1016/j.archoralbio.2018.09.011] [PMID: 30278312]
[23]
Won, J.; Vang, H.; Kim, J.H.; Lee, P.R.; Kang, Y.; Oh, S.B. TRPM7 Mediates Mechanosensitivity in Adult Rat Odontoblasts. J. Dent. Res., 2018, 97(9), 1039-1046.
[http://dx.doi.org/10.1177/0022034518759947] [PMID: 29489440]
[24]
Nakano, Y.; Le, M.H.; Abduweli, D.; Ho, S.P.; Ryazanova, L.V.; Hu, Z.; Ryazanov, A.G.; Den Besten, P.K.; Zhang, Y. A Critical Role of TRPM7 As an Ion Channel Protein in Mediating the Mineralization of the Craniofacial Hard Tissues. Front. Physiol., 2016, 7, 258.
[http://dx.doi.org/10.3389/fphys.2016.00258] [PMID: 27458382]
[25]
Ogata, K.; Tsumuraya, T.; Oka, K.; Shin, M.; Okamoto, F.; Kajiya, H.; Katagiri, C.; Ozaki, M.; Matsushita, M.; Okabe, K. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci. Rep., 2017, 7(1), 18099.
[http://dx.doi.org/10.1038/s41598-017-18291-0] [PMID: 29273814]
[26]
Song, Z.; Chen, L.; Guo, J.; Qin, W.; Wang, R.; Huang, S.; Yang, X.; Tian, Y.; Lin, Z. The Role of Transient Receptor Potential Cation Channel, Subfamily C, Member 1 in the Odontoblast-like Differentiation of Human Dental Pulp Cells. J. Endod., 2017, 43(2), 315-320.
[http://dx.doi.org/10.1016/j.joen.2016.10.021] [PMID: 28041683]
[27]
Yang, X.; Song, Z.; Chen, L.; Wang, R.; Huang, S.; Qin, W.; Guo, J.; Lin, Z. Role of transient receptor potential channel 6 in the odontogenic differentiation of human dental pulp cells. Exp. Ther. Med., 2017, 14(1), 73-78.
[http://dx.doi.org/10.3892/etm.2017.4471] [PMID: 28672895]
[28]
Tsumura, M.; Sobhan, U.; Sato, M.; Shimada, M.; Nishiyama, A.; Kawaguchi, A.; Soya, M.; Kuroda, H.; Tazaki, M.; Shibukawa, Y. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLoS One, 2013, 8(12), e82233.
[http://dx.doi.org/10.1371/journal.pone.0082233] [PMID: 24358160]
[29]
Egbuniwe, O.; Grover, S.; Duggal, A.K.; Mavroudis, A.; Yazdi, M.; Renton, T.; Di Silvio, L.; Grant, A.D. TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J. Dent. Res., 2014, 93(9), 911-917.
[http://dx.doi.org/10.1177/0022034514544507] [PMID: 25062738]
[30]
Shibukawa, Y.; Sato, M.; Kimura, M.; Sobhan, U.; Shimada, M.; Nishiyama, A.; Kawaguchi, A.; Soya, M.; Kuroda, H.; Katakura, A.; Ichinohe, T.; Tazaki, M. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch., 2015, 467(4), 843-863.
[http://dx.doi.org/10.1007/s00424-014-1551-x] [PMID: 24939701]
[31]
Stenholm, E.; Bongenhielm, U.; Ahlquist, M.; Fried, K. VRl- and VRL-l-like immunoreactivity in normal and injured trigeminal dental primary sensory neurons of the rat. Acta Odontol. Scand., 2002, 60(2), 72-79.
[http://dx.doi.org/10.1080/000163502753509455] [PMID: 12020118]
[32]
Ichikawa, H.; Sugimoto, T. Vanilloid receptor 1-like receptor-immunoreactive primary sensory neurons in the rat trigeminal nervous system. Neuroscience, 2000, 101(3), 719-725.
[http://dx.doi.org/10.1016/S0306-4522(00)00427-9] [PMID: 11113320]
[33]
Gibbs, J.L.; Melnyk, J.L.; Basbaum, A.I. Differential TRPV1 and TRPV2 channel expression in dental pulp. J. Dent. Res., 2011, 90(6), 765-770.
[http://dx.doi.org/10.1177/0022034511402206] [PMID: 21406609]
[34]
Tokuda, M.; Tatsuyama, S.; Fujisawa, M.; Morimoto-Yamashita, Y.; Kawakami, Y.; Shibukawa, Y.; Torii, M. Dentin and pulp sense cold stimulus. Med. Hypotheses, 2015, 84(5), 442-444.
[http://dx.doi.org/10.1016/j.mehy.2015.01.039] [PMID: 25665859]
[35]
Tazawa, K.; Ikeda, H.; Kawashima, N.; Okiji, T. Transient receptor potential melastatin (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch. Oral Biol., 2017, 75, 55-61.
[http://dx.doi.org/10.1016/j.archoralbio.2016.12.007] [PMID: 28043013]
[36]
Bernal, L.; Sotelo-Hitschfeld, P.; König, C.; Sinica, V.; Wyatt, A.; Winter, Z.; Hein, A.; Touska, F.; Reinhardt, S.; Tragl, A.; Kusuda, R.; Wartenberg, P.; Sclaroff, A.; Pfeifer, J.D.; Ectors, F.; Dahl, A.; Freichel, M.; Vlachova, V.; Brauchi, S.; Roza, C.; Boehm, U.; Clapham, D.E.; Lennerz, J.K.; Zimmermann, K. Odontoblast TRPC5 channels signal cold pain in teeth. Sci. Adv., 2021, 7(13), eabf5567.
[http://dx.doi.org/10.1126/sciadv.abf5567] [PMID: 33771873]
[37]
Cho, Y.D.; Kim, W.J.; Yoon, W.J.; Woo, K.M.; Baek, J.H.; Lee, G.; Kim, G.S.; Ryoo, H.M. Wnt3a stimulates Mepe, matrix extracellular phosphoglycoprotein, expression directly by the activation of the canonical Wnt signaling pathway and indirectly through the stimulation of autocrine Bmp-2 expression. J. Cell. Physiol., 2012, 227(6), 2287-2296.
[http://dx.doi.org/10.1002/jcp.24038] [PMID: 22213482]
[38]
Yamada, S.; Tomoeda, M.; Ozawa, Y.; Yoneda, S.; Terashima, Y.; Ikezawa, K.; Ikegawa, S.; Saito, M.; Toyosawa, S.; Murakami, S. PLAP-1/asporin, a novel negative regulator of periodontal ligament mineralization. J. Biol. Chem., 2007, 282(32), 23070-23080.
[http://dx.doi.org/10.1074/jbc.M611181200] [PMID: 17522060]
[39]
Cheng, H.; Feng, J.M.; Figueiredo, M.L.; Zhang, H.; Nelson, P.L.; Marigo, V.; Beck, A. Transient receptor potential melastatin type 7 channel is critical for the survival of bone marrow derived mesenchymal stem cells. Stem Cells Dev., 2010, 19(9), 1393-1403.
[http://dx.doi.org/10.1089/scd.2009.0262]
[40]
Lee, K.; Lee, B.M.; Park, C.K.; Kim, Y.H.; Chung, G. Ion Channels Involved in Tooth Pain. Int. J. Mol. Sci., 2019, 20(9), 2266.
[http://dx.doi.org/10.3390/ijms20092266] [PMID: 31071917]
[41]
Kido, M.A.; Yoshimoto, R.U.; Aijima, R.; Cao, A.L.; Gao, W.Q. The oral mucosal membrane and transient receptor potential channels. J. Oral Sci., 2017, 59(2), 189-193.
[http://dx.doi.org/10.2334/josnusd.16-0862] [PMID: 28637977]
[42]
Son, A.; Kang, N.; Kang, J.Y.; Kim, K.W.; Yang, Y.M.; Shin, D.M. TRPM3/TRPV4 regulates Ca2+-mediated RANKL/NFATc1 expression in osteoblasts. J. Mol. Endocrinol., 2018, 61(4), 207-218.
[http://dx.doi.org/10.1530/JME-18-0051] [PMID: 30328352]
[43]
Masuyama, R.; Vriens, J.; Voets, T.; Karashima, Y.; Owsianik, G.; Vennekens, R.; Lieben, L.; Torrekens, S.; Moermans, K.; Vanden Bosch, A.; Bouillon, R.; Nilius, B.; Carmeliet, G. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab., 2008, 8(3), 257-265.
[http://dx.doi.org/10.1016/j.cmet.2008.08.002] [PMID: 18762026]
[44]
Sooampon, S.; Manokawinchoke, J.; Pavasant, P. Transient receptor potential vanilloid-1 regulates osteoprotegerin/RANKL homeostasis in human periodontal ligament cells. J. Periodontal Res., 2013, 48(1), 22-29.
[http://dx.doi.org/10.1111/j.1600-0765.2012.01493.x] [PMID: 22587561]
[45]
Yang, R.; Liu, Y.; Shi, S. Hydrogen Sulfide Regulates Homeostasis of Mesenchymal Stem Cells and Regulatory T Cells. J. Dent. Res., 2016, 95(13), 1445-1451.
[http://dx.doi.org/10.1177/0022034516659041] [PMID: 27432317]
[46]
Katsianou, M.A.; Skondra, F.G.; Gargalionis, A.N.; Piperi, C.; Basdra, E.K. The role of transient receptor potential polycystin channels in bone diseases. Ann. Transl. Med., 2018, 6(12), 246.
[http://dx.doi.org/10.21037/atm.2018.04.10] [PMID: 30069448]
[47]
Dalagiorgou, G.; Piperi, C.; Adamopoulos, C.; Georgopoulou, U.; Gargalionis, A.N.; Spyropoulou, A.; Zoi, I.; Nokhbehsaim, M.; Damanaki, A.; Deschner, J.; Basdra, E.K.; Papavassiliou, A.G. Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis. Cell. Mol. Life Sci., 2017, 74(5), 921-936.
[http://dx.doi.org/10.1007/s00018-016-2394-8] [PMID: 27699453]
[48]
Dalagiorgou, G.; Piperi, C.; Georgopoulou, U.; Adamopoulos, C.; Basdra, E.K.; Papavassiliou, A.G. Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cell. Mol. Life Sci., 2013, 70(1), 167-180.
[http://dx.doi.org/10.1007/s00018-012-1164-5] [PMID: 23014991]
[49]
Gargalionis, A.N.; Basdra, E.K.; Papavassiliou, A.G. Polycystins in disease mechanobiology. J. Cell. Biochem., 2018, 120(5), 6894-6898.
[http://dx.doi.org/10.1002/jcb.28127] [PMID: 30461048]
[50]
Gargalionis, A.N.; Basdra, E.K.; Papavassiliou, A.G. Polycystins and mechanotransduction in bone. Oncotarget, 2017, 8(63), 106159-106160.
[http://dx.doi.org/10.18632/oncotarget.22421] [PMID: 29290931]
[51]
Piperi, C.; Basdra, E.K. Polycystins and mechanotransduction: From physiology to disease. World J. Exp. Med., 2015, 5(4), 200-205.https://dxdoi.org/10.5493/wjem.v5.i4.200
[http://dx.doi.org/10.5493/wjem.v5.i4.200] [PMID: 26618106]
[52]
Katsianou, M.A.; Adamopoulos, C.; Vastardis, H.; Basdra, E.K. Signaling mechanisms implicated in cranial sutures pathophysiology. Craniosynostosis. BBA Clin., 2016, 6, 165-176.
[http://dx.doi.org/10.1016/j.bbacli.2016.04.006] [PMID: 27957430]
[53]
Adamopoulos, C.; Gargalionis, A.N.; Piperi, C.; Papavassiliou, A.G. Recent Advances in Mechanobiology of Osteosarcoma. J. Cell. Biochem., 2017, 118(2), 232-236.
[http://dx.doi.org/10.1002/jcb.25660] [PMID: 27463370]
[54]
Gargalionis, A.N.; Basdra, E.K.; Papavassiliou, A.G. Polycystins and Mechanotransduction in Human Disease. Int. J. Mol. Sci., 2019, 20(9), 2182.https://dxdoi.org/10.3390/ijms20092182
[http://dx.doi.org/10.3390/ijms20092182] [PMID: 31052533]
[55]
Soya, M.; Sato, M.; Sobhan, U.; Tsumura, M.; Ichinohe, T.; Tazaki, M.; Shibukawa, Y. Plasma membrane stretch activates transient receptor potential vanilloid and ankyrin channels in Merkel cells from hamster buccal mucosa. Cell Calcium, 2014, 55(4), 208-218.
[http://dx.doi.org/10.1016/j.ceca.2014.02.015] [PMID: 24642224]
[56]
Higashikawa, A.; Kimura, M.; Shimada, M.; Ohyama, S.; Ofusa, W.; Tazaki, M.; Shibukawa, Y. Merkel Cells Release Glutamate Following Mechanical Stimulation: Implication of Glutamate in the Merkel Cell-Neurite Complex. Front. Cell. Neurosci., 2019, 13, 255.
[http://dx.doi.org/10.3389/fncel.2019.00255] [PMID: 31244612]
[57]
Kichko, T.I.; Neuhuber, W.; Kobal, G.; Reeh, P.W. The roles of TRPV1, TRPA1 and TRPM8 channels in chemical and thermal sensitivity of the mouse oral mucosa. Eur. J. Neurosci., 2018, 47(3), 201-210.
[http://dx.doi.org/10.1111/ejn.13799] [PMID: 29247491]
[58]
Medler, K.F. Multiple roles for TRPs in the taste system: not your typical TRPs. Adv. Exp. Med. Biol., 2011, 704, 831-846.
[http://dx.doi.org/10.1007/978-94-007-0265-3_43] [PMID: 21290329]
[59]
Lyall, V.; Heck, G.L.; Vinnikova, A.K.; Ghosh, S.; Phan, T.H.; Alam, R.I.; Russell, O.F.; Malik, S.A.; Bigbee, J.W.; DeSimone, J.A. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol., 2004, 558(Pt 1), 147-159.
[http://dx.doi.org/10.1113/jphysiol.2004.065656] [PMID: 15146042]
[60]
Dutta Banik, D.; Martin, L.E.; Freichel, M.; Torregrossa, A.M.; Medler, K.F. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc. Natl. Acad. Sci. USA, 2018, 115(4), E772-E781.
[http://dx.doi.org/10.1073/pnas.1718802115] [PMID: 29311301]
[61]
Philippaert, K.; Pironet, A.; Mesuere, M.; Sones, W.; Vermeiren, L.; Kerselaers, S.; Pinto, S.; Segal, A.; Antoine, N.; Gysemans, C.; Laureys, J.; Lemaire, K.; Gilon, P.; Cuypers, E.; Tytgat, J.; Mathieu, C.; Schuit, F.; Rorsman, P.; Talavera, K.; Voets, T.; Vennekens, R. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. Commun., 2017, 8, 14733.
[http://dx.doi.org/10.1038/ncomms14733] [PMID: 28361903]
[62]
Guinamard, R.; Sallé, L.; Simard, C. The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv. Exp. Med. Biol., 2011, 704, 147-171.
[http://dx.doi.org/10.1007/978-94-007-0265-3_8] [PMID: 21290294]
[63]
Horio, N.; Yoshida, R.; Yasumatsu, K.; Yanagawa, Y.; Ishimaru, Y.; Matsunami, H.; Ninomiya, Y. Sour taste responses in mice lacking PKD channels. PLoS One, 2011, 6(5), e20007.
[http://dx.doi.org/10.1371/journal.pone.0020007] [PMID: 21625513]
[64]
Liu, X.; Ong, H.L.; Ambudkar, I. TRP Channel Involvement in Salivary Glands-Some Good, Some Bad. Cells, 2018, 7(7), 74.
[http://dx.doi.org/10.3390/cells7070074] [PMID: 29997338]
[65]
Sukumaran, P.; Sun, Y.; Zangbede, F.Q.; da Conceicao, V.N.; Mishra, B.; Singh, B.B. TRPC1 expression and function inhibit ER stress and cell death in salivary gland cells. FASEB Bioadv., 2019, 1(1), 40-50.
[http://dx.doi.org/10.1096/fba.1021] [PMID: 31111119]
[66]
Pani, B.; Liu, X.; Bollimuntha, S.; Cheng, K.T.; Niesman, I.R.; Zheng, C.; Achen, V.R.; Patel, H.H.; Ambudkar, I.S.; Singh, B.B. Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J. Cell Sci., 2013, 126(Pt 2), 667-675.
[http://dx.doi.org/10.1242/jcs.118943] [PMID: 23203809]
[67]
Sun, Y.; Birnbaumer, L.; Singh, B.B. TRPC1 regulates calcium-activated chloride channels in salivary gland cells. J. Cell. Physiol., 2015, 230(11), 2848-2856.
[http://dx.doi.org/10.1002/jcp.25017] [PMID: 25899321]
[68]
Fujiseki, M.; Yamamoto, M.; Ubaidus, S.; Shinomiya, T.; Abe, S.; Tazaki, M.; Yamamoto, H. Localization and expression patterns of TRP channels in submandibular gland development. Arch. Oral Biol., 2017, 74, 46-50.
[http://dx.doi.org/10.1016/j.archoralbio.2016.09.011] [PMID: 27875791]
[69]
Derouiche, S.; Takayama, Y.; Murakami, M.; Tominaga, M. TRPV4 heats up ANO1-dependent exocrine gland fluid secretion. FASEB J., 2018, 32(4), 1841-1854.
[http://dx.doi.org/10.1096/fj.201700954R] [PMID: 29187363]
[70]
Liu, X.; Bandyopadhyay, B.C.; Nakamoto, T.; Singh, B.; Liedtke, W.; Melvin, J.E.; Ambudkar, I. A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J. Biol. Chem., 2006, 281(22), 15485-15495.
[http://dx.doi.org/10.1074/jbc.M600549200] [PMID: 16571723]
[71]
Kim, J.M.; Choi, S.; Park, K. TRPM7 Is Involved in Volume Regulation in Salivary Glands. J. Dent. Res., 2017, 96(9), 1044-1050.
[http://dx.doi.org/10.1177/0022034517708766] [PMID: 28499095]
[72]
Sobhan, U.; Sato, M.; Shinomiya, T.; Okubo, M.; Tsumura, M.; Muramatsu, T.; Kawaguchi, M.; Tazaki, M.; Shibukawa, Y. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands. Cell Tissue Res., 2013, 354(2), 507-519.
[http://dx.doi.org/10.1007/s00441-013-1691-x] [PMID: 23942896]
[73]
Homann, V.; Kinne-Saffran, E.; Arnold, W.H.; Gaengler, P.; Kinne, R.K. Calcium transport in human salivary glands: a proposed model of calcium secretion into saliva. Histochem. Cell Biol., 2006, 125(5), 583-591.
[http://dx.doi.org/10.1007/s00418-005-0100-2] [PMID: 16270201]
[74]
Karamesinis, K.; Spyropoulou, A.; Dalagiorgou, G.; Katsianou, M.A.; Nokhbehsaim, M.; Memmert, S.; Deschner, J.; Vastardis, H.; Piperi, C. Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2. J. Orofac. Orthop., 2017, 78(1), 21-31.
[http://dx.doi.org/10.1007/s00056-016-0061-1] [PMID: 27909759]
[75]
Chen, Y.; Kanju, P.; Fang, Q.; Lee, S.H.; Parekh, P.K.; Lee, W.; Moore, C.; Brenner, D.; Gereau, R.W., IV; Wang, F.; Liedtke, W. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain, 2014, 155(12), 2662-2672.
[http://dx.doi.org/10.1016/j.pain.2014.09.033] [PMID: 25281928]
[76]
Chen, Y.; Williams, S.H.; McNulty, A.L.; Hong, J.H.; Lee, S.H.; Rothfusz, N.E.; Parekh, P.K.; Moore, C.; Gereau, R.W., IV; Taylor, A.B.; Wang, F.; Guilak, F.; Liedtke, W. Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain, 2013, 154(8), 1295-1304.
[http://dx.doi.org/10.1016/j.pain.2013.04.004] [PMID: 23726674]
[77]
Hossain, M.Z.; Ando, H.; Unno, S.; Kitagawa, J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int. J. Mol. Sci., 2020, 21(17), 6214.
[http://dx.doi.org/10.3390/ijms21176214] [PMID: 32867366]
[78]
Hossain, M.Z.; Ando, H.; Unno, S.; Masuda, Y.; Kitagawa, J. Activation of TRPV1 and TRPM8 Channels in the Larynx and Associated Laryngopharyngeal Regions Facilitates the Swallowing Reflex. Int. J. Mol. Sci., 2018, 19(12), 4113.
[http://dx.doi.org/10.3390/ijms19124113] [PMID: 30567389]
[79]
Kittipanya-Ngam, P.; Benjapornlert, P.; Rattanakanokchai, S.; Wattanapan, P. Effect of TRP-Stimulating Compounds to Reduce Swallowing Response Time in the Elderly: A Systematic Review. Dysphagia, 2021, 36, 614-622.
[http://dx.doi.org/10.1007/s00455-020-10175-2]
[80]
Alvarez-Berdugo, D.; Rofes, L.; Farré, R.; Casamitjana, J.F.; Enrique, A.; Chamizo, J.; Padrón, A.; Navarro, X.; Clavé, P. Localization and expression of TRPV1 and TRPA1 in the human oropharynx and larynx. Neurogastroenterol. Motil., 2016, 28(1), 91-100.
[http://dx.doi.org/10.1111/nmo.12701] [PMID: 26530852]
[81]
Alvarez-Berdugo, D.; Rofes, L.; Arreola, V.; Martin, A.; Molina, L.; Clavé, P. A comparative study on the therapeutic effect of TRPV1, TRPA1, and TRPM8 agonists on swallowing dysfunction associated with aging and neurological diseases. Neurogastroenterol. Motil., 2018, 30(2)
[http://dx.doi.org/10.1111/nmo.13185] [PMID: 28799699]
[82]
El Karim, I.; McCrudden, M.T.; Linden, G.J.; Abdullah, H.; Curtis, T.M.; McGahon, M.; About, I.; Irwin, C.; Lundy, F.T. TNF-α-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells. Am. J. Pathol., 2015, 185(11), 2994-3002.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.020] [PMID: 26358221]
[83]
Kim, H.Y.; Chung, G.; Jo, H.J.; Kim, Y.S.; Bae, Y.C.; Jung, S.J.; Kim, J.S.; Oh, S.B. Characterization of dental nociceptive neurons. J. Dent. Res., 2011, 90(6), 771-776.
[http://dx.doi.org/10.1177/0022034511399906] [PMID: 21364091]
[84]
Chung, G.; Im, S.T.; Kim, Y.H.; Jung, S.J.; Rhyu, M.R.; Oh, S.B. Activation of transient receptor potential ankyrin 1 by eugenol. Neuroscience, 2014, 261, 153-160.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.047] [PMID: 24384226]
[85]
Sherkheli, M.A.; Schreiner, B.; Haq, R.; Werner, M.; Hatt, H. Borneol inhibits TRPA1, a proinflammatory and noxious pain-sensing cation channel. Pak. J. Pharm. Sci., 2015, 28(4), 1357-1363.
[PMID: 26142526]
[86]
Demartini, C.; Greco, R.; Zanaboni, A.M.; Francesconi, O.; Nativi, C.; Tassorelli, C.; Deseure, K. Antagonism of Transient Receptor Potential Ankyrin type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: study in an animal model. Int. J. Mol. Sci., 2018, 19(11), 3320.
[http://dx.doi.org/10.3390/ijms19113320] [PMID: 30366396]
[87]
Melo Júnior, J.M.; Damasceno, M.B.; Santos, S.A.; Barbosa, T.M.; Araújo, J.R.; Vieira-Neto, A.E.; Wong, D.V.; Lima-Júnior, R.C.; Campos, A.R. Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology, 2017, 25(2), 247-254.
[http://dx.doi.org/10.1007/s10787-017-0324-5] [PMID: 28210904]
[88]
Jin, Y. La3+ Alters the response properties of neurons in the mouse primary somatosensory cortex to low-temperature noxious stimulation of the dental pulp. Biochem. Insights, 2015, 8(S1)(Suppl. 1), 9-20.
[http://dx.doi.org/10.4137/BCI.S30752] [PMID: 26604777]
[89]
Zhang, Y.; Cong, X.; Shi, L.; Xiang, B.; Li, Y.M.; Ding, Q.W.; Ding, C.; Wu, L.L.; Yu, G.Y. Activation of transient receptor potential vanilloid subtype 1 increases secretion of the hypofunctional, transplanted submandibular gland. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(1), G54-G62.
[http://dx.doi.org/10.1152/ajpgi.00528.2009] [PMID: 20360133]
[90]
Ebihara, S.; Kohzuki, M.; Sumi, Y.; Ebihara, T. Sensory Stimulation to Improve Swallowing Reflex and Prevent Aspiration Pneumonia in Elderly Dysphagic People. J. Pharmacol. Sci., 2011, 115(2), 99-104.
[http://dx.doi.org/10.1254/jphs.10R05CP]
[91]
Alvarez-Berdugo, D.; Rofes, L.; Casamitjana, J.F.; Enrique, A.; Chamizo, J.; Viña, C.; Pollán, C.M.; Clavé, P. TRPM8, ASIC1, and ASIC3 localization and expression in the human oropharynx. Neurogastroenterol. Motil., 2018, 30(11), e13398.
[http://dx.doi.org/10.1111/nmo.13398] [PMID: 29971861]
[92]
Mikami, R.; Mizutani, K.; Aoki, A.; Tamura, Y.; Aoki, K.; Izumi, Y. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg. Med., 2018, 50(4), 340-352.
[http://dx.doi.org/10.1002/lsm.22775] [PMID: 29214666]
[93]
Pourzarandian, A.; Watanabe, H.; Ruwanpura, S.M.; Aoki, A.; Ishikawa, I. Effect of low-level Er:YAG laser irradiation on cultured human gingival fibroblasts. J. Periodontol., 2005, 76(2), 187-193.
[http://dx.doi.org/10.1902/jop.2005.76.2.187] [PMID: 15974841]
[94]
Schuh, C.M.A.P.; Benso, B.; Aguayo, S. Potential Novel Strategies for the Treatment of Dental Pulp-Derived Pain: Pharmacological Approaches and Beyond. Front. Pharmacol., 2019, 10, 1068.
[http://dx.doi.org/10.3389/fphar.2019.01068] [PMID: 31620000]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy