Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Top 100 Most-Cited Publications on Breast Cancer and Machine Learning Research: A Bibliometric Analysis

Author(s): Tengku Muhammad Hanis, Md Asiful Islam* and Kamarul Imran Musa*

Volume 29, Issue 8, 2022

Published on: 17 January, 2022

Page: [1426 - 1435] Pages: 10

DOI: 10.2174/0929867328666211108110731

Price: $65

Abstract

Background: Rapid advancement in computing technology and digital information leads to the possible use of machine learning on breast cancer.

Objective: This study aimed to evaluate the research output of the top 100 publications and further identify a research theme of breast cancer and machine-learning studies.

Methods: Databases of Scopus and Web of Science were used to extract the top 100 publications. These publications were filtered based on the total citation of each paper. Additionally, a bibliometric analysis was applied to the top 100 publications.

Results: The top 100 publications were published between 1993 and 2019. The most productive author was Giger ML, and the top two institutions were the University of Chicago and the National University of Singapore. The most active countries were the USA, Germany, and China. Ten clusters were identified as both basic and specialised themes of breast cancer and machine learning.

Conclusion: Various countries demonstrated comparable interest in breast cancer and machine-learning research. A few Asian countries, such as China, India and Singapore, were listed in the top 10 countries based on the total citation. Additionally, the use of deep learning and breast imaging data was trending in the past 10 years in the field of breast cancer and machine-learning research.

Keywords: Bibliometrics, breast cancer, machine learning, research trend, research output, research productivity.

[1]
Parks, R.M.; Derks, M.G.M.; Bastiaannet, E.; Cheung, K.L. Breast Cancer Epidemiology.Breast Cancer Management for Surgeons; Springer: Cham, 2018, pp. 5615-5623.
[http://dx.doi.org/10.1007/978-3-319-56673-3_3]
[2]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[3]
Rojas, K.; Stuckey, A. Breast cancer epidemiology and risk factors. Clin. Obstet. Gynecol., 2016, 59(4), 651-672.
[http://dx.doi.org/10.1097/GRF.0000000000000239] [PMID: 27681694]
[4]
Zaheer, S.; Shah, N.; Maqbool, S.A.; Soomro, N.M. Estimates of past and future time trends in age-specific breast cancer incidence among women in Karachi, Pakistan: 2004-2025. BMC Public Health, 2019, 19(1), 1001.
[http://dx.doi.org/10.1186/s12889-019-7330-z] [PMID: 31345204]
[5]
Al-Jarrah, O.Y.; Yoo, P.D.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient machine learning for big data: A review. Big Data Res., 2015, 2(3), 87-93.
[http://dx.doi.org/10.1016/j.bdr.2015.04.001]
[6]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[7]
Zhang, Y.; Wang, S. Detection of Alzheimer’s disease by displacement field and machine learning. PeerJ, 2015, 3(9), e1251.
[http://dx.doi.org/10.7717/peerj.1251] [PMID: 26401461]
[8]
Mark, E.; Goldsman, D.; Gurbaxani, B.; Keskinocak, P.; Sokol, J. Using machine learning and an ensemble of methods to predict kidney transplant survival. PLoS One, 2019, 14(1), e0209068.
[http://dx.doi.org/10.1371/journal.pone.0209068] [PMID: 30625130]
[9]
Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.W.; Kwon, J.Y.; Park, J.T. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One, 2019, 14(8), e0221202.
[http://dx.doi.org/10.1371/journal.pone.0221202] [PMID: 31442238]
[10]
Leha, A.; Hellenkamp, K.; Unsöld, B.; Mushemi-Blake, S.; Shah, A.M.; Hasenfuß, G.; Seidler, T. A machine learning approach for the prediction of pulmonary hypertension. PLoS One, 2019, 14(10), e0224453.
[http://dx.doi.org/10.1371/journal.pone.0224453] [PMID: 31652290]
[11]
Ali, A-R.; Li, J.; Yang, G.; O’Shea, S.J. A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Comput. Sci., 2020, 6, e268.
[http://dx.doi.org/10.7717/peerj-cs.268] [PMID: 33816919]
[12]
Modinos, G.; Mechelli, A.; Pettersson-Yeo, W.; Allen, P.; McGuire, P.; Aleman, A. Pattern classification of brain activation during emotional processing in subclinical depression: Psychosis proneness as potential confounding factor. PeerJ, 2013, 1(1), e42.
[http://dx.doi.org/10.7717/peerj.42] [PMID: 23638379]
[13]
Lei, L.; Wang, Y.; Xue, Q.; Tong, J.; Zhou, C.M.; Yang, J.J. A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection. PeerJ, 2020, 8(2), e8583.
[http://dx.doi.org/10.7717/peerj.8583] [PMID: 32140301]
[14]
Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med., 2001, 23(1), 89-109.
[http://dx.doi.org/10.1016/S0933-3657(01)00077-X] [PMID: 11470218]
[15]
Yves, G. Bibliometrics and Research Evaluation: Uses and Abuses; Buckland, M.; Furner, J; Krajewski, M., Ed.; MIT Press: Cambridge, MA, 2014.
[16]
Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. SAGE Open, 2019, 9(1), 21582440198.
[http://dx.doi.org/10.1177/2158244019829575]
[17]
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available from: https://www.R-project.org/
[18]
Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics, 2017, 11(4), 959-975.
[http://dx.doi.org/10.1016/j.joi.2017.08.007]
[19]
Vickery, B.C. Bradford’s law of scattering. J. Doc., 1948, 4(3), 198-203.
[http://dx.doi.org/10.1108/eb026133]
[20]
Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Informetrics, 2011, 5(1), 146-166.
[http://dx.doi.org/10.1016/j.joi.2010.10.002]
[21]
Ehteshami Bejnordi, B.; Veta, M.; Johannes van Diest, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.A.W.M.; Hermsen, M.; Manson, Q.F.; Balkenhol, M.; Geessink, O.; Stathonikos, N.; van Dijk, M.C.R.F.; Bult, P.; Beca, F.; Beck, A.H.; Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Zhong, A.; Dou, Q.; Li, Q.; Chen, H.; Lin, H-J.; Heng, P-A.; Haß, C.; Bruni, E.; Wong, Q.; Halici, U.; Öner, M.U.; Cetin-Atalay, R.; Berseth, M.; Khvatkov, V.; Vylegzhanin, A.; Kraus, O.; Shaban, M.; Rajpoot, N.; Awan, R.; Sirinukunwattana, K.; Qaiser, T.; Tsang, Y-W.; Tellez, D.; Annuscheit, J.; Hufnagl, P.; Valkonen, M.; Kartasalo, K.; Latonen, L.; Ruusuvuori, P.; Liimatainen, K.; Albarqouni, S.; Mungal, B.; George, A.; Demirci, S.; Navab, N.; Watanabe, S.; Seno, S.; Takenaka, Y.; Matsuda, H.; Ahmady Phoulady, H.; Kovalev, V.; Kalinovsky, A.; Liauchuk, V.; Bueno, G.; Fernandez-Carrobles, M.M.; Serrano, I.; Deniz, O.; Racoceanu, D.; Venâncio, R. Consortium, C. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 2017, 318(22), 2199-2210.
[http://dx.doi.org/10.1001/jama.2017.14585] [PMID: 29234806]
[22]
Schmidt-Kittler, O.; Ragg, T.; Daskalakis, A.; Granzow, M.; Ahr, A.; Blankenstein, T.J.F.; Kaufmann, M.; Diebold, J.; Arnholdt, H.; Müller, P.; Bischoff, J.; Harich, D.; Schlimok, G.; Riethmüller, G.; Eils, R.; Klein, C.A. From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7737-7742.
[http://dx.doi.org/10.1073/pnas.1331931100] [PMID: 12808139]
[23]
Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform., 2007, 2, 59-77.
[http://dx.doi.org/10.1177/117693510600200030] [PMID: 19458758]
[24]
Ganz, P.A.; Hirji, K.; Sim, M-S.; Schag, C.A.C.; Fred, C.; Polinsky, M.L. Predicting psychosocial risk in patients with breast cancer. Med. Care, 1993, 31(5), 419-431.
[http://dx.doi.org/10.1097/00005650-199305000-00004] [PMID: 8501990]
[25]
Kilday, J.; Palmieri, F.; Fox, M.D. Classifying mammographic lesions using computerized image analysis. IEEE Trans. Med. Imaging, 1993, 12(4), 664-669.
[http://dx.doi.org/10.1109/42.251116] [PMID: 18218460]
[26]
Bakator, M.; Radosav, D. Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interact., 2018, 2(3), 47.
[http://dx.doi.org/10.3390/mti2030047]
[27]
Yassin, N.I.R.; Omran, S.; El Houby, E.M.F.; Allam, H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Comput. Methods Programs Biomed., 2018, 156, 25-45.
[http://dx.doi.org/10.1016/j.cmpb.2017.12.012] [PMID: 29428074]
[28]
Litjens, G.; Sánchez, C.I.; Timofeeva, N.; Hermsen, M.; Nagtegaal, I.; Kovacs, I.; Hulsbergen-van de Kaa, C.; Bult, P.; van Ginneken, B.; van der Laak, J. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep., 2016, 6, 26286.
[http://dx.doi.org/10.1038/srep26286] [PMID: 27212078]
[29]
Abdel-Zaher, A.M.; Eldeib, A.M. Breast cancer classification using deep belief networks. Expert Syst. Appl., 2016, 46, 139-144.
[http://dx.doi.org/10.1016/j.eswa.2015.10.015]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy