Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Analytical Methodologies for Determination of Hydroxychloroquine and its Metabolites in Pharmaceutical, Biological and Environmental Samples

Author(s): Sumit Pannu, Md. Jawaid Akhtar and Bhupinder Kumar*

Volume 18, Issue 3, 2022

Published on: 25 June, 2021

Page: [273 - 290] Pages: 18

DOI: 10.2174/1573412917666210625123509

Price: $65

Abstract

Background: Hydroxychloroquine (HCQ) was originally launched as an antimalarial drug, but now it is also used as a slow-acting anti-rheumatic drug. It contains equal proportions of (-)-(R)-hydroxychloroquine and (+)-(S)-hydroxychloroquine.

Introduction: Hydroxychloroquine, a synthetic 4-aminoquinoline derivative, possesses antimalarial, anti-rheumatic activity and also exerts beneficial effects on lupus erythematous disease. Substantial levels of three metabolites of HCQ, which are desethylchloroquine (DCQ), bisdesethylhydroxychloroquine (BDCQ), and desethylhydroxychloroquine (DHCQ), have been determined by various analytical techniques from blood and plasma.

Methods: Various analytical techniques have been reported for asynchronous and simultaneous estimation of HCQ and their metabolites in pharmaceuticals and biological samples like (serum, whole blood, and urine). The analytical techniques are Square-wave voltammetry employed with the cathodically pretreated boron-doped diamond electrode, fast UHPLC–fluorescent method, UV spectrophotometry, UHPLC-UV analysis, RP-HPLC, mass spectrometry, NMR, and CE.

Results: We have complied various analytical methods to detect HCQ with its various metabolites simultaneously or alone in pharmaceutical dosage forms, biological and environmental samples.

Conclusion: The authors believe that the above-mentioned studies compiled in this report will give a choice to readers to select the most appropriate and suitable method for the analysis of HCQ. Further, it is also believed that this study will help the researchers to develop a more sensitive, convenient, and rapid method for these based on literature reports.

Keywords: Hydroxycholorquine, analytical methods, metabolite estimation, RP-HPLC methods, UV methods, pharmaceuticalanalysis.

Graphical Abstract

[1]
Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye (Lond.), 2017, 31(6), 828-845.
[http://dx.doi.org/10.1038/eye.2016.298] [PMID: 28282061]
[2]
Costedoat-Chalumeau, N.; Dunogué, B.; Morel, N.; Le Guern, V.; Guettrot-Imbert, G. Hydroxychloroquine: a multifaceted treatment in lupus. Presse Med., 2014, 43(6 Pt 2), e167-e180.
[http://dx.doi.org/10.1016/j.lpm.2014.03.007] [PMID: 24855048]
[3]
Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23(5), 231-269.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[4]
van der Heijde, D.M.; van Riel, P.L.; Nuver-Zwart, I.H.; Gribnau, F.W. vad de Putte, L.B. Effects of hydroxychloroquine and sulphasalazine on progression of joint damage in rheumatoid arthritis. Lancet, 1989, 1(8646), 1036-1038.
[http://dx.doi.org/10.1016/S0140-6736(89)92442-2] [PMID: 2565997]
[5]
Olsen, N.J.; Schleich, M.A.; Karp, D.R. Multifaceted effects of hydroxychloroquine in human disease.Seminars in Arthritis and Rheumatism; Elsevier, 2013.
[http://dx.doi.org/10.1016/j.semarthrit.2013.01.001]
[6]
Shippey, E.A.; Wagler, V.D.; Collamer, A.N. Hydroxychloroquine: An old drug with new relevance. Cleve. Clin. J. Med., 2018, 85(6), 459-467.
[http://dx.doi.org/10.3949/ccjm.85a.17034] [PMID: 29883308]
[7]
Gilman, A.L.; Chan, K-W.; Mogul, A.; Morris, C.; Goldman, F.D.; Boyer, M.; Cirenza, E.; Mazumder, A.; Gehan, E.; Cahill, R.; Frankel, S.; Schultz, K. Hydroxychloroquine for the treatment of chronic graft-versus-host disease. Biol. Blood Marrow Transplant., 2000, 6(3A), 327-334.
[http://dx.doi.org/10.1016/S1083-8791(00)70058-9] [PMID: 10905770]
[8]
Gilman, A.L.; Schultz, K.R.; Goldman, F.D.; Sale, G.E.; Krailo, M.D.; Chen, Z.; Langholz, B.; Jacobsohn, D.A.; Chan, K-W.; Ryan, R.E.; Kellick, M.; Neudorf, S.M.; Godder, K.; Sandler, E.S.; Sahdev, I.; Grupp, S.A.; Sanders, J.E.; Wall, D.A. Randomized trial of hydroxychloroquine for newly diagnosed chronic graft-versus-host disease in children: a Children’s Oncology Group study. Biol. Blood Marrow Transplant., 2012, 18(1), 84-91.
[http://dx.doi.org/10.1016/j.bbmt.2011.05.016] [PMID: 21689773]
[9]
Kyburz, D.; Brentano, F.; Gay, S.J.N.C.P.R. Mode of action of hydroxychloroquine in RA—evidence of an inhibitory effect on toll-like receptor signaling. Nat. Clin. Pract. Rheumatol., 2006, 2(9), 458-459.
[10]
Schrezenmeier, E.; Dörner, T.J.N.R.R. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x]
[11]
Akhavan, P.S.; Su, J.; Lou, W.; Gladman, D.D.; Urowitz, M.B.; Fortin, P.R.J.T.J.O.R. The early protective effect of hydroxychloroquine on the risk of cumulative damage in patients with systemic lupus erythematosus. J. Rheumatol., 2013, 40(6), 831-841.
[http://dx.doi.org/10.3899/jrheum.120572]
[12]
Mok, C.; Mak, A.; Ma, K.J.L. Bone mineral density in postmenopausal Chinese patients with systemic lupus erythematosus. Lupus, 2005, 14(2), 106-112.
[http://dx.doi.org/10.1191/0961203305lu2039oa]
[13]
Petri, M.J.C.r. Use of hydroxychloroquine to prevent thrombosis in systemic lupus erythematosus and in antiphospholipid antibody–positive patients. Curr. Rheumatol. Rep., 2011, 13(1), 77-80.
[http://dx.doi.org/10.1007/s11926-010-0141-y]
[14]
Kalia, S.; Dutz, J.P.J.D.t. New concepts in antimalarial use and mode of action in dermatology. Dermatol. Ther., 2007, 20(4), 160-174.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00131.x]
[15]
Kim, W.U.; Yoo, S.A.; Min, S.Y.; Park, S.H.; Koh, H.S.; Song, S.W.; Cho, C.S.J.C.; Immunology, E. Hydroxychloroquine potentiates Fas‐mediated apoptosis of rheumatoid synoviocytes. Clin. Exp. Immunol., 2006, 144(3), 503-511.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03070.x]
[16]
Potvin, F.; Petitclerc, E.; Marceau, F.; Poubelle, P.E.J.T.J.O.I. Mechanisms of action of antimalarials in inflammation: induction of apoptosis in human endothelial cells. J. Immunol., 1997, 158(4), 1872-1879.
[17]
Lee, S-J.; Silverman, E.; Bargman, J.M.J.N.R.N. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat. Rev. Nephrol., 2011, 7(12), 718.
[http://dx.doi.org/10.1038/nrneph.2011.150]
[18]
Wallace, D.J.; Linker-Israeli, M.; Metzger, A.L.; Stecher, V.J.J.L. The relevance of antimalarial therapy with regard to thrombosis, hypercholesterolemia and cytokines in SLE. Lupus, 1993, 2(1), 13-15.
[http://dx.doi.org/10.1177/0961203393002001041]
[19]
Toubi, E.; Kessel, A.; Rosner, I.; Rozenbaum, M.; Paran, D.; Shoenfeld, Y.J.S.j.o.i. The reduction of serum B‐lymphocyte activating factor levels following quinacrine add‐on therapy in systemic lupus erythematosus. Scand. J. Immunol., 2006, 63(4), 299-303.
[http://dx.doi.org/10.1111/j.1365-3083.2006.01737.x]
[20]
Borba, E.F.; Bonfá, E.J.T.J.o.r. Longterm beneficial effect of chloroquine diphosphate on lipoprotein profile in lupus patients with and without steroid therapy. J. Rheumatol., 2001, 28(4), 780-785.
[21]
Cardoso, C.R.; Signorelli, F.V.; Papi, J.A.; Salles, G.F.J.R.i. Prevalence and factors associated with dyslipoproteinemias in Brazilian systemic lupus erythematosus patients. Rheumatol. Int., 2008, 28(4), 323-327.
[http://dx.doi.org/10.1007/s00296-007-0447-x]
[22]
Hodis, H.; Quismorio, F., Jr; Wickham, E.; Blankenhorn, D.J.T.J.o.R. The lipid, lipoprotein, and apolipoprotein effects of hydroxychloroquine in patients with systemic lupus erythematosus. J. Rheumatol., 1993, 20(4), 661-665.
[23]
Petri, M.; Lakatta, C.; Magder, L.; Goldman, D.J.T.A.j.o.m. Effect of prednisone and hydroxychloroquine on coronary artery disease risk factors in systemic lupus erythematosus: a longitudinal data analysis. Am. J. Med., 1994, 96(3), 254-259.
[http://dx.doi.org/10.1016/0002-9343(94)90151-1]
[24]
Sachet, J.; Borba, E.; Bonfa, E.; Vinagre, C.; Silva, V.; Maranhao, R.J.L. Chloroquine increases low-density lipoprotein removal from plasma in systemic lupus patients. Lupus, 2007, 16(4), 273-278.
[http://dx.doi.org/10.1177/09612033070160040901]
[25]
Tam, L.; Gladman, D.D.; Hallett, D.C.; Rahman, P.; Urowitz, M.B.J.T.J.O.R. Effect of antimalarial agents on the fasting lipid profile in systemic lupus erythematosus. J. Rheumatol., 2000, 27(9), 2142-2145.
[26]
Wang, C.; Fortin, P.; Li, Y.; Panaritis, T.; Gans, M.; Esdaile, J.J.T.J.O.R. Discontinuation of antimalarial drugs in systemic lupus erythematosus. J. Rheumatol., 1999, 26(4), 808-815.
[27]
Penn, S.K.; Kao, A.H.; Schott, L.L.; Elliott, J.R.; Toledo, F.G.; Kuller, L.; Manzi, S.; Wasko, M.C.M.J.T.J.o.r. Hydroxychloroquine and glycemia in women with rheumatoid arthritis and systemic lupus erythematosus. J. Rheumatol., 2010, 37(6), 1136-1142.
[http://dx.doi.org/10.3899/jrheum.090994]
[28]
Petri, M.J.L. Hydroxychloroquine use in the Baltimore Lupus Cohort: Effects on lipids, glucose and thrombosis. Lupus, 1996, 5(1), 16-22.
[http://dx.doi.org/10.1177/0961203396005001051]
[29]
Rekedal, L.R.; Massarotti, E.; Garg, R.; Bhatia, R.; Gleeson, T.; Lu, B.; Solomon, D.H.J.A. Rheumatism Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum., 2010, 62(12), 3569-3573.
[30]
Lakhanpal, S.; Ginsburg, W.W.; Michet, C.J.; Doyle, J.A.; Moore, S.B. Eosinophilic fasciitis: clinical spectrum and therapeutic response in 52 cases. Semin Arthritis Rheum; Elsevier, 1988.
[http://dx.doi.org/10.1016/0049-0172(88)90008-X]
[31]
Youssef, W.; Yan, A.; Russell, A.J.T.J.O.R. Palindromic rheumatism. a response to chloroquine. J. Rheumatol., 1991, 18(1), 35-37.
[32]
Cannistraci, C.; La Parola, I.L.; Falchi, M.; Picardo, M.J.D. Treatment of generalized granuloma annulare with hydroxychloroquine. Dermatol. Online J., 2005, 211(2), 167-168.
[http://dx.doi.org/10.1159/000086452]
[33]
Woo, T.Y.; Callen, J.P.; Voorhees, J.J.; Bickers, D.R.; Hanno, R.; Hawkins, C.J.J.O.T.A.A.O.D. Cutaneous lesions of dermatomyositis are improved by hydroxychloroquine. JAAD, 1984, 10(4), 592-600.
[http://dx.doi.org/10.1016/S0190-9622(84)80263-7]
[34]
Fox, R.; Dixon, R.; Guarrasi, V.; Krubel, S.J.L. Treatment of primary Sjögren’s syndrome with hydroxychloroquine: a retrospective, open-label study. Lupus, 1996, 5(1), 31-36.
[http://dx.doi.org/10.1177/0961203396005001081]
[35]
Ashton, R.; Hawk, J.; Magnus, I.J.B.J.O.D. Low‐dose oral chloroquine in the treatment of porphyria cutanea tarda. Br. J. Dermatol., 1984, 111(5), 609-613.
[http://dx.doi.org/10.1111/j.1365-2133.1984.tb06632.x]
[36]
Valls, V.; Ena, J.; Enríquez-De-Salamanca, R.J.J.s.o.d. Low-dose oral chloroquine in patients with porphyria cutanea tarda and low-moderate iron overload. J. Dermatol. Sci., 1994, 7(3), 169-175.
[http://dx.doi.org/10.1016/0923-1811(94)90092-2]
[37]
Murphy, G.; Hawk, J.; Magnus, I.J.B.J.O.D. Hydroxychloroquine in polymorphic light eruption: a controlled trial with drug and visual sensitivity monitoring. Br. J. Dermatol., 1987, 116(3), 379-386.
[http://dx.doi.org/10.1111/j.1365-2133.1987.tb05852.x]
[38]
Eisen, D.J.J.o.t.A.A.o.D. Hydroxychloroquine sulfate (Plaquenil) improves oral lichen planus: an open trial. JAAD, 1993, 28(4), 609-612.
[39]
Chung, H.S.; Hann, S.K.J.T.J.o.d. Lupus panniculitis treated by a combination therapy of hydroxychloroquine and quinacrine. Int. J. Dermatol., 1997, 24(9), 569-572.
[http://dx.doi.org/10.1111/j.1346-8138.1997.tb02294.x]
[40]
Fox, R.I. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum; Elsevier, 1993.
[http://dx.doi.org/10.1016/S0049-0172(10)80012-5]
[41]
Kumar, D.; Chauhan, G.; Kalra, S.; Kumar, B.; Gill, M.S. A perspective on potential target proteins of COVID-19: Comparison with SARS-CoV for designing new small molecules. Bioorg. Chem., 2020, 104104326
[http://dx.doi.org/10.1016/j.bioorg.2020.104326] [PMID: 33142431]
[42]
Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[43]
Horby, P.; Mafham, M.; Linsell, L.; Bell, J.L.; Staplin, N.; Emberson, J.R.; Wiselka, M.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Whitehouse, T.; Felton, T.; Williams, J.; Faccenda, J.; Underwood, J.; Baillie, J.K.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Lim, W.S.; Montgomery, A.; Rowan, K.; Tarning, J.; Watson, J.A.; White, N.J.; Juszczak, E.; Haynes, R.; Landray, M.J. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 2020, 383(21), 2030-2040.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[44]
Skipper, C.P.; Pastick, K.A.; Engen, N.W.; Bangdiwala, A.S.; Abassi, M.; Lofgren, S.M.; Williams, D.A.; Okafor, E.C.; Pullen, M.F.; Nicol, M.R.; Nascene, A.A.; Hullsiek, K.H.; Cheng, M.P.; Luke, D.; Lother, S.A.; MacKenzie, L.J.; Drobot, G.; Kelly, L.E.; Schwartz, I.S.; Zarychanski, R.; McDonald, E.G.; Lee, T.C.; Rajasingham, R.; Boulware, D.R. Hydroxychloroquine in nonhospitalized adults with early COVID-19: A randomized trial. Ann. Intern. Med., 2020, 173(8), 623-631.
[http://dx.doi.org/10.7326/M20-4207] [PMID: 32673060]
[45]
Marmor, M.F.; Kellner, U.; Lai, T.Y.; Melles, R.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 2016, 123(6), 1386-1394.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.058] [PMID: 26992838]
[46]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. in vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[47]
Gautret, P.; Lagier, J-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[48]
Rosendaal, F.R. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial Gautret et al 2010. J. Antimicrob. Agents, 2020, 56(1)106063
[49]
Bertolaccini, M.L.; Contento, G.; Lennen, R.; Sanna, G.; Blower, P.J.; Ma, M.T.; Sunassee, K.; Girardi, G. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J. Autoimmun., 2016, 75, 30-38.
[http://dx.doi.org/10.1016/j.jaut.2016.04.008]
[50]
Lim, H-S. Im, J.S.; Cho, J.Y.; Bae, K.S.; Klein, T.A.; Yeom, J.S.; Kim, T.S.; Choi, J.S.; Jang, I.J.; Park, J.W. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob. Agents Chemother., 2009, 53(4), 1468-1475.
[http://dx.doi.org/10.1128/AAC.00339-08] [PMID: 19188392]
[51]
Ponticelli, C.; Moroni, G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin. Drug Saf., 2017, 16(3), 411-419.
[http://dx.doi.org/10.1080/14740338.2017.1269168] [PMID: 27927040]
[52]
Kaufmann, A.M.; Krise, J.P. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J. Pharm. Sci., 2007, 96(4), 729-746.
[http://dx.doi.org/10.1002/jps.20792] [PMID: 17117426]
[53]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[54]
Ramachandra, B. Development of impurity profiling methods using modern analytical techniques. Crit. Rev. Anal. Chem., 2017, 47(1), 24-36.
[http://dx.doi.org/10.1080/10408347.2016.1169913] [PMID: 27070830]
[55]
Warhurst, D.C.; Steele, J.C.; Adagu, I.S.; Craig, J.C.; Cullander, C. Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J. Antimicrob. Chemother., 2003, 52(2), 188-193.
[http://dx.doi.org/10.1093/jac/dkg319] [PMID: 12837731]
[56]
Somer, M.; Kallio, J.; Pesonen, U.; Pyykkö, K.; Huupponen, R.; Scheinin, M. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br. J. Clin. Pharmacol., 2000, 49(6), 549-554.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00197.x] [PMID: 10848718]
[57]
Derendorf, H. Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin. Int. J. Antimicrob. Agents, 2020, 55(6)106007
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106007] [PMID: 32389720]
[58]
Nicol, M.R.; Joshi, A.; Rizk, M.L.; Sabato, P.E.; Savic, R.M.; Wesche, D.; Zheng, J.H.; Cook, J. Pharmacokinetics and pharmacological properties of chloroquine and hydroxychloroquine in the context of COVID-19 Infection. Clin. Pharmacol. Ther., 2020, 108(6), 1135-1149.
[http://dx.doi.org/10.1002/cpt.1993] [PMID: 32687630]
[59]
Browning, D.J. Pharmacology of chloroquine and hydroxychloroquine. Hydroxychloroquine and Chloroquine retinopathy; Springer, 2014, pp. 35-63.
[http://dx.doi.org/10.1007/978-1-4939-0597-3_2]
[60]
Hache, G.; Rolain, J.; Gautret, P.; Deharo, C.; Brouqui, P.; Raoult, D. Combination of hydroxychloroquine plus azithromycin as potential treatment for COVID 19 patients: pharmacology, safety profile, drug interactions and management of toxicity., 2020. 22
[61]
White, N.J.; Watson, J.A.; Hoglund, R.M.; Chan, X.H.S.; Cheah, P.Y.; Tarning, J. COVID-19 prevention and treatment: A critical analysis of chloroquine and hydroxychloroquine clinical pharmacology. PLoS Med., 2020, 17(9)e1003252
[http://dx.doi.org/10.1371/journal.pmed.1003252] [PMID: 32881895]
[62]
McLachlan, A.; Cutler, D.; Tett, S.J.E.j.o.c.p Plasma protein binding of the enantiomers of hydroxychloroquine and metabolites. Eur. J. Pharmacol., 1993, 17(9)
[http://dx.doi.org/10.1007/BF00315548]
[63]
Kyburz, D.; Brentano, F.; Gay, S. Mode of action of hydroxychloroquine in RA-evidence of an inhibitory effect on toll-like receptor signaling. Nat. Clin. Pract. Rheumatol., 2006, 2(9), 458-459.
[http://dx.doi.org/10.1038/ncprheum0292] [PMID: 16951696]
[64]
Sinha, N.; Balayla, G. Hydroxychloroquine and COVID-19. Postgrad. Med. J., 2020, 96(1139), 550-555.
[http://dx.doi.org/10.1136/postgradmedj-2020-137785] [PMID: 32295814]
[65]
Casian, A.; Sangle, S.R.; D’Cruz, D.P. New use for an old treatment: Hydroxychloroquine as a potential treatment for systemic vasculitis. Autoimmun. Rev., 2018, 17(7), 660-664.
[http://dx.doi.org/10.1016/j.autrev.2018.01.016] [PMID: 29729450]
[66]
Chhonker, Y.S.; Sleightholm, R.L.; Li, J.; Oupický, D.; Murry, D.J. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC–ESI–MS/MS: An application for pharmacokinetic studies. J. Chromatogr. , 2018, 1072, 320-327.
[67]
Wang, L-Z.; Ong, R.Y-L.; Chin, T-M.; Thuya, W-L.; Wan, S-C.; Wong, A.L-A.; Chan, S-Y.; Ho, P.C.; Goh, B-C. Method development and validation for rapid quantification of hydroxychloroquine in human blood using liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal., 2012, 61, 86-92.
[http://dx.doi.org/10.1016/j.jpba.2011.11.034]
[68]
Soichot, M.; Mégarbane, B.; Houzé, P.; Chevillard, L.; Fonsart, J.; Baud, F.J.; Laprévote, O.; Bourgogne, E. Development, validation and clinical application of a LC-MS/MS method for the simultaneous quantification of hydroxychloroquine and its active metabolites in human whole blood. J. Pharm. Biomed. Anal., 2014, 100, 131-137.
[69]
Fan, H.W.; Ma, Z.X.; Chen, J.; Yang, X.Y.; Cheng, J.L.; Li, Y.B. Pharmacokinetics and bioequivalence study of hydroxychloroquine sulfate tablets in Chinese healthy volunteers by LC–MS/MS. Rheumatol. Ther., 2015, 2(2), 183-195.
[http://dx.doi.org/10.1007/s40744-015-0012-0] [PMID: 27747530]
[70]
Füzéry, A.K.; Breaud, A.R.; Emezienna, N.; Schools, S.; Clarke, W.A. A rapid and reliable method for the quantitation of hydroxychloroquine in serum using turbulent flow liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta, 2013, 421, 79-84.
[71]
Saini, B.; Bansal, G. Characterization of four new photodegradation products of hydroxychloroquine through LC-PDA, ESI-MSn and LC-MS-TOF studies. J. Pharm. Biomed. Anal., 2013, 84, 224-231.
[72]
Armstrong, N.; Richez, M.; Raoult, D.; Chabriere, E. Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple’s disease. J. Chromatogr. B Biomed. Appl., 2017, 1060, 166-172.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.011]
[73]
Qu, Y.; Noe, G.; Breaud, A.R.; Vidal, M.; Clarke, W.A.; Zahr, N.; Dervieux, T.; Costedoat-Chalumeau, N.; Blanchet, B. Development and validation of a clinical HPLC method for the quantification of hydroxychloroquine and its metabolites in whole blood. Future Sci. OA, 2015, 1(3), FSO26.
[http://dx.doi.org/10.4155/fso.15.24] [PMID: 28031899]
[74]
Iredale, J.; Wainer, I.W. Determination of hydroxychloroquine and its major metabolites in plasma using sequential achiral-chiral high-performance liquid chromatography. J. Chromatogr. A, 1992, 573(2), 253-258.
[http://dx.doi.org/10.1016/0378-4347(92)80126-B] [PMID: 1601957]
[75]
Volin, P. Simple and specific reversed-phase liquid chromatographic method with diode-array detection for simultaneous determination of serum hydroxychloroquine, chloroquine and some corticosteroids. J. Chromatogr. B Biomed. Appl., 1995, 666(2), 347-353.
[http://dx.doi.org/10.1016/0378-4347(94)00584-R] [PMID: 7633613]
[76]
Noé, G.; Amoura, Z.; Combarel, D.; Lori, L.; Tissot, N.; Seycha, A.; Funck-Brentano, C.; Zahr, N. Development and Validation of a Fast Ultra-High Performance Liquid Chromatography-Fluorescent Method for the Quantification of Hydroxychloroquine and Its Metabolites in Patients With Lupus. Ther. Drug Monit., 2019, 41(4), 476-482.
[http://dx.doi.org/10.1097/FTD.0000000000000614] [PMID: 30807538]
[77]
Luo, X.; Peng, Y.; Ge, W. A Sensitive and Optimized HPLC-FLD Method for the Simultaneous Quantification of Hydroxychloroquine and Its Two Metabolites in Blood of Systemic Lupus Erythematosus Patients. J. Chromatogr. Sci., 2020, 58(7), 600-605.
[http://dx.doi.org/10.1093/chromsci/bmaa023] [PMID: 32476003]
[78]
Charlier, B.; Pingeon, M.; Dal Piaz, F.; Conti, V.; Valentini, G.; Filippelli, A.; Izzo, V. Development of a novel ion-pairing HPLC-FL method for the separation and quantification of hydroxychloroquine and its metabolites in whole blood. Biomed. Chromatogr., 2018, 32(8)e4258
[http://dx.doi.org/10.1002/bmc.4258] [PMID: 29669398]
[79]
Tett, S.; Cutler, D.; Brown, K. High-performance liquid chromatographic assay for hydroxychloroquine and metabolites in blood and plasma, using a stationary phase of poly (styrene divinylbenzene) and a mobile phase at pH 11, with fluorimetric detection. J. Chromatogr. B Biomed. Appl., 1985, 344, 241-248.
[80]
Singh, A.; Roopkishora, C.; Singh, C.L.; Gupta, R.; Kumar, S.; Kumar, M. Development and validation of reversed-phase high performance liquid chromatographic method for hydroxychloroquine sulphate. Indian J. Pharm. Sci., 2015, 77(5), 586-591.
[http://dx.doi.org/10.4103/0250-474X.169038] [PMID: 26798174]
[81]
Emami, J.; Kazemi, M.; Salehi, A. in vitro and in vivo Evaluation of Two Hydroxychloroquine Tablet Formulations: HPLC Assay Development. J. Chromatogr. Sci., 2020.
[http://dx.doi.org/10.1093/chromsci/bmaa079] [PMID: 33089870]
[82]
Moraes de Oliveira, A.R.; Sueli Bonato, P. Stereoselective determination of hydroxychloro-quine and its major metabolites in human urine by solid-phase microextraction and HPLC. J. Sep. Sci., 2007, 30(15), 2351-2359.
[http://dx.doi.org/10.1002/jssc.200700121] [PMID: 17722190]
[83]
Chen, Y.; Xiong, X.; Wang, K.; Tang, T.; Fang, J. Development of a chiral HPLC method for the separation and quantification of hydroxychloroquine enantiomers.Research Square, Sci. Rep., 2020.
[84]
Peng, W.; Liu, R.; Zhang, L.; Fu, Q.; Mei, D.; Du, X. Breast milk concentration of hydroxychloroquine in Chinese lactating women with connective tissue diseases. Eur. J. Clin. Pharmacol., 2019, 75(11), 1547-1553.
[http://dx.doi.org/10.1007/s00228-019-02723-z] [PMID: 31375884]
[85]
Cardoso, C.D.; Bonato, P.S. Enantioselective analysis of the metabolites of hydroxychloroquine and application to an in vitro metabolic study. J. Pharm. Biomed. Anal., 2005, 37(4), 703-708.
[http://dx.doi.org/10.1016/j.jpba.2004.11.048] [PMID: 15797791]
[86]
Wei, Y.; Nygard, G.A.; Khalil, S.K. A HPLC method for the separation and quantification of the enantiomers of hydroxychloroquine and its three major metabolites. J. Liq. Chromatogr., 1994, 17(16), 3479-3490.
[http://dx.doi.org/10.1080/10826079408013525]
[88]
Dongala, T.; Katari, N.K.; Palakurthi, A.K.; Katakam, L.N.R.; Marisetti, V.M. Stability Indicating LC Method Development for Hydroxychloroquine Sulfate Impurities as Available for Treatment of COVID-19 and Evaluation of Risk Assessment Prior to Method Validation by Quality by Design Approach. Chromatographia, 2020, 83(10), 1-13.
[http://dx.doi.org/10.1007/s10337-020-03945-5] [PMID: 32863397]
[89]
Munster, T.; Gibbs, J.P.; Shen, D.; Baethge, B.A.; Botstein, G.R.; Caldwell, J.; Dietz, F.; Ettlinger, R.; Golden, H.E.; Lindsley, H.; McLaughlin, G.E.; Moreland, L.W.; Roberts, W.N.; Rooney, T.W.; Rothschild, B.; Sack, M.; Sebba, A.I.; Weisman, M.; Welch, K.E.; Yocum, D.; Furst, D.E. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum., 2002, 46(6), 1460-1469.
[http://dx.doi.org/10.1002/art.10307] [PMID: 12115175]
[90]
Dabić, D.; Babić, S.; Škorić, I. The role of photodegradation in the environmental fate of hydroxychloroquine. Chemosphere, 2019, 230, 268-277.
[91]
Singh, A.; Sharma, P.K.; Gupta, R.; Mondal, N.; Kumar, S.; Kumar, M. Development and validation of UV-spectrophotometric method for the estimation of hydroxychloroquine sulphate. Indian J. Chem. Technol., 2016, 23, 237-239.
[92]
Ferraz, L.R.; Santos, F.L.; Ferreira, P.A.; Maia-Junior, R.T.; Rosa, T.A.; Costa, S.P.; Melo, C.M.; Rolim, L.A.; Rolim-Neto, P.J. Quality by design in the development and validation of analytical method by ultraviolet-visible spectrophotometry for quantification of hydroxychloroquineSULFATE. Int. J. Pharm. Sci. Res., 2014, 5(11), 4666.
[93]
Shravani, P.; Snigdha, D. Method development and validation for estimation hydroxy chloroquine sulphate by UV-spectrometry. International Journal of Trends in Pharmacy and Life Sciences. 2(6), 1007-1017.
[94]
Dickow Cardoso, C.; Polisel Jabor, V.A.; Sueli Bonato, P. Capillary electrophoretic chiral separation of hydroxychloroquine and its metabolites in the microsomal fraction of liver homogenates. Electrophoresis, 2006, 27(5-6), 1248-1254.
[http://dx.doi.org/10.1002/elps.200500752] [PMID: 16440402]
[95]
Arguelho, M.L.P.; Andrade, J.F.; Stradiotto, N.R. Electrochemical study of hydroxychloroquine and its determination in plaquenil by differential pulse voltammetry. J. Pharm. Biomed. Anal., 2003, 32(2), 269-275.
[http://dx.doi.org/10.1016/S0731-7085(02)00669-6] [PMID: 12763536]
[96]
Deroco, P.B.; Vicentini, F.C.; Oliveira, G.G.; Rocha-Filho, R.C.; Fatibello-Filho, O. Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode. J. Electroanal. Chem. , 2014, 719, 19-23.
[http://dx.doi.org/10.1016/j.jelechem.2014.01.037]
[97]
Ghoreishi, S.M.; Behpour, M.; Khoobi, A.; Salavati-Niasari, M. Electrochemical study of a self-assembled monolayer of N, N′-bis [(E)-(1-pyridyl) methylidene]-1, 3-propanediamine formed on glassy carbon electrode: preparation, characterization and application. Anal. Methods, 2013, 5(23), 6727-6733.
[http://dx.doi.org/10.1039/c3ay41480a]

© 2025 Bentham Science Publishers | Privacy Policy