Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Disruption of Wnt/β-catenin Pathway Elevates the Sensitivity of Gastric Cancer Cells to PD-1 Antibody

Author(s): Jian Li, Hui Zhang, Songhua Bei, Xiaohong Zhang, Huanqing Li, Li Ye* and Li Feng*

Volume 15, Issue 3, 2022

Published on: 17 June, 2021

Article ID: e170621194155 Pages: 13

DOI: 10.2174/1874467214666210617163821

Abstract

Background: Gastric Cancer (GC) is the fifth most common malignancy tumor and the third cause of cancer-related death around the world. Immune checkpoint inhibitors (ICIs) such as programmed cell death-1 (PD-1) antibodies play an active role in tumor therapy. A recent study reveals that Wnt/β-catenin signaling pathway is negatively correlated with T-cell infiltration in tumor microenvironment (TME), thereby influencing the therapeutic efficacy of PD-1 antibody.

Objective: In this study, we aimed to uncover the relationship of Wnt/β-catenin pathway to CD8+ T cell activity as well as its effect on anti-PD-1 therapeutic efficacy in GC.

Methods and Results: We first collected clinical samples and went through an immunohistochemical analysis and found that a high β-catenin expression in GC tissues was often associated with a significant absence of CD8+ T-cell infiltration. In addition, our data further indicated that disruption of the Wnt/β-catenin pathway in GC cells inhibited their migratory and invasive ability. Meanwhile, enhanced sensitivity of GC cells to PD-1 blockade therapy was evident by decreased Jurkat cell apoptosis rate and increased GC cell apoptosis rate in a tumor and Jurkat cells co-culture system with the presence of Wnt/β-catenin pathway inhibition.

Conclusion: Collectively, these findings indicated Wnt/β-catenin pathway may play a significant role in modulating the activity of Jurkat cells and downregulation of Wnt/β-catenin may enhance the sensitivity of GC cells to PD-1 antibody in vitro. This result further indicated that β-catenin and PD-1 targeted inhibition might become a potential and effective therapy for GC patients.

Keywords: Gastric cancer, β-catenin, T-cell infiltration, immune checkpoint blockade, immunotherapy, malignant tumor.

Graphical Abstract

[1]
Choi, Y.J.; Kim, N. Gastric cancer and family history. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2016, 31(6), 1042-1053.
[http://dx.doi.org/10.3904/kjim.2016.147] [PMID: 27809451]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Zong, L.; Abe, M.; Seto, Y.; Ji, J. The challenge of screening for early gastric cancer in China. Lancet, 2016, 388(10060), 2606.
[http://dx.doi.org/10.1016/S0140-6736(16)32226-7] [PMID: 27894662]
[4]
Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; Lieto, E.; Ciardiello, F.; De Vita, F. Treatment of gastric cancer. World J. Gastroenterol., 2014, 20(7), 1635-1649.
[http://dx.doi.org/10.3748/wjg.v20.i7.1635] [PMID: 24587643]
[5]
Wagner, A.D.; Syn, N.L.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.C.; Ho, J.; Unverzagt, S. Chemotherapy for advanced gastric cancer. Cochrane Database Syst. Rev., 2017, 8, CD004064.
[http://dx.doi.org/10.1002/14651858.CD004064.pub4] [PMID: 28850174]
[6]
Bilgin, B.; Sendur, M.A.; Bülent Akıncı, M.; Şener Dede, D.; Yalçın, B. Targeting the PD-1 pathway: A new hope for gastrointestinal cancers. Curr. Med. Res. Opin., 2017, 33(4), 749-759.
[http://dx.doi.org/10.1080/03007995.2017.1279132] [PMID: 28055269]
[7]
Feng, X.; Xu, W.; Li, Z.; Song, W.; Ding, J.; Chen, X. Immunomodulatory nanosystems. Adv. Sci., 2019, 6(17), 1900101.
[http://dx.doi.org/10.1002/advs.201900101] [PMID: 31508270]
[8]
Rangel-Sosa, M.M.; Aguilar-Córdova, E.; Rojas-Martínez, A. Immunotherapy and gene therapy as novel treatments for cancer. Colomb Med., 2017, 48(3), 138-147.
[PMID: 29213157]
[9]
Liu, J.; Huang, X.; Ding, J. Identification of MSA-2: An oral antitumor non-nucleotide STING agonist. Signal Transduct. Target. Ther., 2021, 6(1), 18.
[http://dx.doi.org/10.1038/s41392-020-00459-2] [PMID: 33436539]
[10]
Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science, 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[11]
Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer, 2018, 6(1), 8.
[http://dx.doi.org/10.1186/s40425-018-0316-z] [PMID: 29357948]
[12]
Tang, H.; Wang, Y.; Chlewicki, L.K.; Zhang, Y.; Guo, J.; Liang, W.; Wang, J.; Wang, X.; Fu, Y.X. Facilitating t cell infiltration in tumor microenvironment overcomes resistance to pd-l1 blockade. Cancer Cell, 2016, 29(3), 285-296.
[http://dx.doi.org/10.1016/j.ccell.2016.02.004] [PMID: 26977880]
[13]
Tang, J.; Yu, J.X.; Hubbard-Lucey, V.M.; Neftelinov, S.T.; Hodge, J.P.; Lin, Y. Trial watch: The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug Discov., 2018, 17(12), 854-855.
[http://dx.doi.org/10.1038/nrd.2018.210] [PMID: 30482962]
[14]
Shergold, A.L.; Millar, R.; Nibbs, R.J.B. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol. Res., 2019, 145, 104258.
[http://dx.doi.org/10.1016/j.phrs.2019.104258] [PMID: 31063806]
[15]
Grasso, C.S.; Giannakis, M.; Wells, D.K.; Hamada, T.; Mu, X.J.; Quist, M.; Nowak, J.A.; Nishihara, R.; Qian, Z.R.; Inamura, K.; Morikawa, T.; Nosho, K.; Abril-Rodriguez, G.; Connolly, C.; Escuin-Ordinas, H.; Geybels, M.S.; Grady, W.M.; Hsu, L.; Hu-Lieskovan, S.; Huyghe, J.R.; Kim, Y.J.; Krystofinski, P.; Leiserson, M.D.M.; Montoya, D.J.; Nadel, B.B.; Pellegrini, M.; Pritchard, C.C.; Puig-Saus, C.; Quist, E.H.; Raphael, B.J.; Salipante, S.J.; Shin, D.S.; Shinbrot, E.; Shirts, B.; Shukla, S.; Stanford, J.L.; Sun, W.; Tsoi, J.; Upfill-Brown, A.; Wheeler, D.A.; Wu, C.J.; Yu, M.; Zaidi, S.H.; Zaretsky, J.M.; Gabriel, S.B.; Lander, E.S.; Garraway, L.A.; Hudson, T.J.; Fuchs, C.S.; Ribas, A.; Ogino, S.; Peters, U. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov., 2018, 8(6), 730-749.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1327] [PMID: 29510987]
[16]
Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β- catenin signalling prevents anti-tumour immunity. Nature, 2015, 523(7559), 231-235.
[http://dx.doi.org/10.1038/nature14404] [PMID: 25970248]
[17]
Linch, M.; Attard, G. Prostate cancers that ‘Wnt’ respond to abiraterone. Ann. Oncol., 2018, 29(2), 290-292.
[http://dx.doi.org/10.1093/annonc/mdx785] [PMID: 29240904]
[18]
Jiménez-Sánchez, A.; Memon, D.; Pourpe, S.; Veeraraghavan, H.; Li, Y.; Vargas, H.A.; Gill, M.B.; Park, K.J.; Zivanovic, O.; Konner, J.; Ricca, J.; Zamarin, D.; Walther, T.; Aghajanian, C.; Wolchok, J.D.; Sala, E.; Merghoub, T.; Snyder, A.; Miller, M.L. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell, 2017, 170(5), 927-938.e20.
[http://dx.doi.org/10.1016/j.cell.2017.07.025] [PMID: 28841418]
[19]
Xue, J. Intrinsic beta-catenin signaling suppresses CD8(+) T-cell infiltration in colorectal cancer. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 2019, 115, 108921.
[20]
Liu, W.; Chen, Y.; Xie, H.; Guo, Y.; Ren, D.; Li, Y.; Jing, X.; Li, D.; Wang, X.; Zhao, M.; Zhu, T.; Wang, Z.; Wei, X.; Gao, F.; Wang, X.; Liu, S.; Zhang, Y.; Yi, F. TIPE1 suppresses invasion and migration through down-regulating Wnt/β-catenin pathway in gastric cancer. J. Cell. Mol. Med., 2018, 22(2), 1103-1117.
[http://dx.doi.org/10.1111/jcmm.13362] [PMID: 28994231]
[21]
Kim, E.; Lisby, A.; Ma, C.; Lo, N.; Ehmer, U.; Hayer, K.E.; Furth, E.E.; Viatour, P. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat. Commun., 2019, 10(1), 1909.
[http://dx.doi.org/10.1038/s41467-019-09780-z] [PMID: 31015417]
[22]
Zhang, Q. A novel mtorc1/2 inhibitor (mti-31) inhibits tumor growth, epithelial-mesenchymal transition, metastases, and improves antitumor immunity in preclinical models of lung cancer. Clinical cancer research : An official journal of the American Association for Cancer Research, 2019, 25, 3630-3642.
[23]
Feng, X.; Liu, J.; Xu, W.; Li, G.; Ding, J. Tackling autoimmunity with nanomedicines. Nanomedicine, 2020, 15(16), 1585-1597.
[http://dx.doi.org/10.2217/nnm-2020-0102] [PMID: 32669025]
[24]
Ganesh, S. RNAi-mediated beta-catenin inhibition promotes t cell infiltration and antitumor activity in combination with immune checkpoint blockade. Molecular therapy : The journal of the american society of gene therapy, 2018, 26, 2567-2579.
[25]
Xu, F.; Feng, G.; Zhao, H.; Liu, F.; Xu, L.; Wang, Q.; An, G. Clinicopathologic significance and prognostic value of b7 homolog 1 in gastric cancer: A systematic review and meta-analysis. Medicine (Baltimore), 2015, 94(43), e1911.
[http://dx.doi.org/10.1097/MD.0000000000001911] [PMID: 26512615]
[26]
Kim, J.W.; Nam, K.H.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, S.H.; Chang, H.; Lee, J.O.; Kim, Y.J.; Lee, H.S.; Kim, J.H.; Bang, S.M.; Lee, J.S.; Lee, K.W. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer, 2016, 19(1), 42-52.
[http://dx.doi.org/10.1007/s10120-014-0440-5] [PMID: 25424150]
[27]
Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982, 31(1), 99-109.
[http://dx.doi.org/10.1016/0092-8674(82)90409-3] [PMID: 6297757]
[28]
Duncan, A.W.; Rattis, F.M.; DiMascio, L.N.; Congdon, K.L.; Pazianos, G.; Zhao, C.; Yoon, K.; Cook, J.M.; Willert, K.; Gaiano, N.; Reya, T. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol., 2005, 6(3), 314-322.
[http://dx.doi.org/10.1038/ni1164] [PMID: 15665828]
[29]
Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; Wang, C.Y.; He, X.; MacDougald, O.A.; You, M.; Williams, B.O.; Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126(5), 955-968.
[http://dx.doi.org/10.1016/j.cell.2006.06.055] [PMID: 16959574]
[30]
Klaus, A.; Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer, 2008, 8(5), 387-398.
[http://dx.doi.org/10.1038/nrc2389] [PMID: 18432252]
[31]
Fleming, H.E.; Janzen, V.; Lo Celso, C.; Guo, J.; Leahy, K.M.; Kronenberg, H.M.; Scadden, D.T. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2008, 2(3), 274-283.
[http://dx.doi.org/10.1016/j.stem.2008.01.003] [PMID: 18371452]
[32]
Waisberg, J.; Saba, G.T. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J. Hepatol., 2015, 7(26), 2631-2635.
[http://dx.doi.org/10.4254/wjh.v7.i26.2631] [PMID: 26609340]
[33]
Song, J.L.; Nigam, P.; Tektas, S.S.; Selva, E. microRNA regulation of Wnt signaling pathways in development and disease. Cell. Signal., 2015, 27(7), 1380-1391.
[http://dx.doi.org/10.1016/j.cellsig.2015.03.018] [PMID: 25843779]
[34]
Ooi, C.H.; Ivanova, T.; Wu, J.; Lee, M.; Tan, I.B.; Tao, J.; Ward, L.; Koo, J.H.; Gopalakrishnan, V.; Zhu, Y.; Cheng, L.L.; Lee, J.; Rha, S.Y.; Chung, H.C.; Ganesan, K.; So, J.; Soo, K.C.; Lim, D.; Chan, W.H.; Wong, W.K.; Bowtell, D.; Yeoh, K.G.; Grabsch, H.; Boussioutas, A.; Tan, P. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet., 2009, 5(10), e1000676.
[http://dx.doi.org/10.1371/journal.pgen.1000676] [PMID: 19798449]
[35]
Cheng, C.; Qin, Y.; Zhi, Q.; Wang, J.; Qin, C. Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/β-catenin signaling pathways by up-regulating miR-34a. Int. J. Biol. Macromol., 2018, 107(Pt B), 2620-2629.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.154] [PMID: 29080815]
[36]
Schmalhofer, O.; Brabletz, S.; Brabletz, T. E-cadherin, beta- catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev., 2009, 28(1-2), 151-166.
[http://dx.doi.org/10.1007/s10555-008-9179-y] [PMID: 19153669]
[37]
Song, B.; Lin, H.X.; Dong, L.L.; Ma, J.J.; Jiang, Z.G. MicroRNA-338 inhibits proliferation, migration, and invasion of gastric cancer cells by the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1290-1296.
[http://dx.doi.org/10.26355/eurrev_201803_14470] [PMID: 29565486]
[38]
Sheng, L.; Wei, R. Long non-coding rna-casc15 promotes cell proliferation, migration, and invasion by activating wnt/beta-catenin signaling pathway in melanoma. Pathobiology, 2019, 1-10.
[http://dx.doi.org/10.1159/000502803] [PMID: 31838468]
[39]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[40]
Ribas, A.; Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359, 1350.
[http://dx.doi.org/10.1126/science.aar4060]
[41]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[42]
Nowicki, T.S.; Hu-Lieskovan, S.; Ribas, A. Mechanisms of resistance to pd-1 and pd-l1 blockade. Cancer J., 2018, 24(1), 47-53.
[http://dx.doi.org/10.1097/PPO.0000000000000303] [PMID: 29360728]
[43]
Liu, J. Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. Mater. Des., 2021, 202
[http://dx.doi.org/10.1016/j.matdes.2021.109465]
[44]
Feng, X. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci. Bull., 2021, 66, 362-373.
[http://dx.doi.org/10.1016/j.scib.2020.07.013]
[45]
Spranger, S.; Dai, D.; Horton, B.; Gajewski, T. F. Tumor-residing batf3 dendritic cells are required for effector t cell trafficking and adoptive t cell therapy. Cancer Cell, 2017, 31, 711-723 e714.
[http://dx.doi.org/10.1016/j.ccell.2017.04.003]
[46]
Wong, C.; Chen, C.; Wu, Q.; Liu, Y.; Zheng, P. A critical role for the regulated wnt-myc pathway in naive T cell survival. J. Immunol., 2015, 194(1), 158-167.
[http://dx.doi.org/10.4049/jimmunol.1401238] [PMID: 25429066]
[47]
Lecarpentier, Y.; Schussler, O.; Hébert, J.L.; Vallée, A. Multiple targets of the canonical wnt/β-catenin signaling in cancers. Front. Oncol., 2019, 9, 1248.
[http://dx.doi.org/10.3389/fonc.2019.01248] [PMID: 31803621]
[48]
Zheng, P.; Ding, B.; Jiang, Z.; Xu, W.; Li, G.; Ding, J.; Chen, X. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett., 2021, 21(5), 2088-2093.
[http://dx.doi.org/10.1021/acs.nanolett.0c04778] [PMID: 33596078]
[49]
Zheng, Z. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu, 2014, 26, 104-111.
[50]
Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand., 1965, 64, 31-49.
[http://dx.doi.org/10.1111/apm.1965.64.1.31] [PMID: 14320675]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy