Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Selenium as a Versatile Reagent in Organic Synthesis: More than Allylic Oxidation

Author(s): Samuel Thurow*, Laura Abenante, João Marcos Anghinoni and Eder João Lenardão*

Volume 19, Issue 3, 2022

Published on: 25 May, 2021

Page: [331 - 365] Pages: 35

DOI: 10.2174/1570179418666210525152001

Price: $65

Abstract

For many years since its discovery, Selenium has played the role of a bad boy who became a hero in organic transformations. Selenium dioxide, for instance, is one of the most remembered reagents in allylic oxidations, having been applied in the synthesis of several naturally occurring products. The main goal of this review is to show the recent advances in the use of classical and new selenium reagents in organic synthesis. As demonstrated through the around 60 references discussed here, selenium can go even forward as a versatile reagent. We bring a collection of selenium reagents and their transformations that still asleep in the eyes of most synthetic organic chemists.

Keywords: Selenium, organochalcogen, catalysis, redox, functionalization, selenium dioxide.

Graphical Abstract

[1]
Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon: Oxford, 1986, Vol. 4, .
Hatfield, D.L.; Berry, M.J.; Gladyshev, V.N., Eds.Selenium: Its molecular biology and role in human health; 3rd ed; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-1-4614-1025-6]
[2]
Santi, C.; Santoro, S.; Battiste, B. Organoselenium compounds as catalysts in nature and laboratory. Curr. Org. Chem., 2010, 14, 2442-2462.
[http://dx.doi.org/10.2174/138527210793358231]
[3]
Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4, 31521-31535.
[http://dx.doi.org/10.1039/C4RA04493B]
[4]
Santi, C.; Tidei, C.; Scalera, C.; Piroddi, M.; Galli, F. Selenium containing compounds: from poison to drug candidates (a review on the GPx-like activity). Curr. Chem. Biol., 2013, 7, 25-36.
[http://dx.doi.org/10.2174/2212796811307010003]
[5]
Quell, T.; Mirion, M.; Schollmeyer, D.; Dyballa, K.M.; Franke, R.; Waldvogel, S.R. Solvent-dependent facile synthesis of diaryl selenides and biphenols employing selenium dioxide. ChemistryOpen, 2015, 5(2), 115-119.
[http://dx.doi.org/10.1002/open.201500206] [PMID: 27308222]
[6]
Haynes, C.G.; Turner, A.H.; Waters, W.A. The oxidation of monohydric phenols by alkaline ferric yunide. J. Chem. Soc., 1956, 2823-2831.
[http://dx.doi.org/10.1039/jr9560002823]
[7]
Filkale, A.E.; Pathak, C. Dinuclear cobalt complexes supported by biphenol and binaphthol-derived bis(salicylaldimine) ligands: Synthesis, characterization and catalytic application in β-enaminone synthesis from 1,3-dicarbonyl compounds and aliphatic amines. New J. Chem., 2020, 44, 15109-15121.
[http://dx.doi.org/10.1039/D0NJ00052C]
[8]
Mayer, H.A.; Kaska, W.C.; Leis, W. Cycloheptatrienyl, alkyl and aryl PCP-pincer complexes: Ligand backbone effects and metal reactivity. Coord. Chem. Rev., 2008, 252, 1787-1797.
[http://dx.doi.org/10.1016/j.ccr.2008.02.002]
[9]
Quell, T.; Beiser, N.; Dyballa, K.M.; Franke, R.; Waldvogel, S.R. Facile and selective cross-coupling of phenols using selenium dioxide. Eur. J. Org. Chem., 2016, 4307-4310.
[http://dx.doi.org/10.1002/ejoc.201600886]
[10]
Boualy, B.; El Houssame, S.; Sancineto, L.; Santi, C.; Ali, M.A.; Stoeckli-Evans, H.; El Firdoussic, L. A mild and efficient method for the synthesis of a new optically active diallyl selenide and its catalytic activity in the allylic chlorination of natural terpene. New J. Chem., 2016, 40, 3395-3399.
[http://dx.doi.org/10.1039/C5NJ02797G]
[11]
Boualy, B.; El Firdoussi, L.; Ali, M.A.; Karim, A. Allylic chlorination of terpenic olefins using a combination of MoCl5 and NaOCl. J. Braz. Chem. Soc., 2011, 22, 1259-1262.
[http://dx.doi.org/10.1590/S0103-50532011000700010]
[12]
Silva, M.S.; Andrade, L.H. (77)Se and (125)Te NMR spectroscopy on a selectivity study of organochalcogenanes with L-amino acids. Org. Biomol. Chem., 2015, 13(21), 5924-5929.
[http://dx.doi.org/10.1039/C5OB00373C] [PMID: 25923042]
[13]
Meena, S.; Singh, R.; Vishwakarma, R.A.; Aga, M.A.; Jain, S.K. SeO2 mediated efficient synthesis of amides and α-ketoamides of secondary amines with wide substrate scope. Tetrahedron Lett., 2016, 57, 3715-3717.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.129]
[14]
Shangpliang, O.R.; Kshiar, B.; Wanniang, K.; Marpna, I.D.; Lipon, T.M.L.; Laloo, B.M.; Myrboh, B. Selenium dioxide as an alternative reagent for the direct α-selenoamidation of aryl methyl ketones. J. Org. Chem., 2018, 83(10), 5829-5835.
[http://dx.doi.org/10.1021/acs.joc.8b00558] [PMID: 29699390]
[15]
Padala, A.K.; Kumar, R.R.; Athimoolam, S.; Ahmed, Q.N. Divergent reactivity of amino acid alkyl ester hydrochlorides with 2-oxoaldehydes: Role of selenium dioxide to promote regioselective synthesis of imidazoles. Org. Lett., 2016, 18(1), 96-99.
[http://dx.doi.org/10.1021/acs.orglett.5b03321] [PMID: 26671247]
[16]
(a)Yaylayan, V.A.; Haffenden, L.J.W. Mechanism of imidazole and oxazole formation in [13C-2]-labelled glycine and alanine model systems. Food Chem., 2003, 81, 403-409.
[http://dx.doi.org/10.1016/S0308-8146(02)00470-3]
(b)Martins, S.I.F.S.; Jongen, W.M.F.; van Boekel, M.A.J.S. A review of Maillard reaction in food in implications to kinetic modelling. Trends Food Sci. Technol., 2000, 11, 364-373.
[http://dx.doi.org/10.1016/S0924-2244(01)00022-X]
[17]
Foley, C.; Shaw, A.; Hulme, C. Aza-Riley oxidation of Ugi-azide and Ugi-3CR products toward vicinal tricarbonyl amides: two-step MCR-oxidation metholodogy acessing funcionalized α,β-diketoamides and α,β-diketotetrazoles. Org. Lett., 2018, 20(5), 1275-1278.
[http://dx.doi.org/10.1021/acs.orglett.7b03977] [PMID: 29466017]
[18]
Khan, D.; Ahmed, N.; Alsharif, M.A.; Alahmdi, M.I.; Mukhtar, S. SeO2 mediated synthesis of selected heterocycles by oxidative C-C bond cleavage of acetophenone derivatives. ChemistrySelect, 2019, 4, 7585-7590.
[http://dx.doi.org/10.1002/slct.201901216]
[19]
(a)Ravi, O.; Shaikh, A.; Upare, A.; Singarapu, K.K.; Bathula, S.R. Benzimidazoles from aryl alkyl ketones and 2-amino anilines by an iodine catalyzed oxidative C(CO)-C(alkyl) bond cleavage. J. Org. Chem., 2017, 82(8), 4422-4428.
[http://dx.doi.org/10.1021/acs.joc.7b00165] [PMID: 28378580 ]
(b)Tiwari, A.R.; Bhanage, B.M. Chemoselective cleavage of C(CO) bond: molecular iodine catalyzed synthesis of quinazolines through sp3 C-H bond functionalization of aryl methyl ketones. Asian J. Org. Chem., 2017, 6, 831-836.
[http://dx.doi.org/10.1002/ajoc.201700217]
(c)Mohammed, S.; Vishwakarma, R.A.; Bharate, S.B. Iodine catalyzed oxidative synthesis of quinazolin-4(3H)-ones and pyrazolo [4,3-d]pyrimidin-7(6H)-ones via amination of sp3 C-H bond. J. Org. Chem., 2015, 80(13), 6915-6921.
[http://dx.doi.org/10.1021/acs.joc.5b00989] [PMID: 26067767]
[20]
Morita, S.; Yoshimura, T.; Matsuo, J-I. Intramolecular Büchner reaction and oxidative aromatization with SeO2 or O2. Chem. Pharm. Bull. (Tokyo), 2019, 67(7), 729-732.
[http://dx.doi.org/10.1248/cpb.c19-00243] [PMID: 31257328]
[21]
He, X.; Zhuo, X-T.; Gao, Y.; Bai, R.; Ye, X-Y.; Xie, T. β-Elemene derivatives produced from SeO2-mediated oxidation reaction. R. Soc. Open Sci., 2020, 7(5), 200038.
[http://dx.doi.org/10.1098/rsos.200038] [PMID: 32537215]
[22]
(a)Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; Xie, T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomedicine, 2018, 13, 6279-6296.
[http://dx.doi.org/10.2147/IJN.S174527] [PMID: 30349250]
(b)Zhu, T.; Zhao, Y.; Zhang, J.; Li, L.; Zou, L.; Yao, Y.; Xu, Y. ß-Elemene inhibits proliferation of human glioblastoma cells and causes cell-cycle G0/G1 arrest via mutually compensatory activation of MKK3 and MKK6. Int. J. Oncol., 2011, 38(2), 419-426.
[PMID: 21132268]
(c)Li, Q.Q.; Wang, G.; Zhang, M.; Cuff, C.F.; Huang, L.; Reed, E. β-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncol. Rep., 2009, 22(1), 161-170.
[http://dx.doi.org/10.3892/or_00000420] [PMID: 19513519]
[23]
Huang, L. Synthesis of (-)-β-elemene, (-)-β-elemenal, (-)-β-elemenol, (-)-β- elemene fluoride and their analogs for use in anticancer pharmaceutical compositions. Patent WO2006016912A2, 2006.
[24]
Shaaban, S.; Arafat, M.A.; Hamama, W.S. Vistas in the domain of organoselenocyanates. ARKIVOC, 2014, 2014, 470-505.
[http://dx.doi.org/10.3998/ark.5550190.p008.763]
[25]
Heredia, A.A.; Peñéñory, A.B. Stereoselective synthesis of alkyl styryl selenides in one-pot: a straightforward approach by in situ dialkyl diselenide formation under transition metal-free conditions. RSC Advances, 2015, 5, 105699-105706.
[http://dx.doi.org/10.1039/C5RA20883A]
[26]
Heredia, A.A.; Peñéñory, A.B. Transition-metal-free one-pot synthesis of alkynyl selenides from terminal alkynes under aerobic and sustainable conditions. Beilstein J. Org. Chem., 2017, 13, 910-918.
[http://dx.doi.org/10.3762/bjoc.13.92] [PMID: 28684972]
[27]
Guan, Y.; Townsend, S.D. Metal-free synthesis of unsymmetrical organoselenides and selenoglycosides. Org. Lett., 2017, 19(19), 5252-5255.
[http://dx.doi.org/10.1021/acs.orglett.7b02526] [PMID: 28926266]
[28]
Yavari, I.; Mosaferi, S. Synthesis of 1,3,5-triazepineselone derivatives from acyl isoselenocyanates and benzene-1,2-diamine. Helv. Chim. Acta, 2016, 99, 130-132.
[http://dx.doi.org/10.1002/hlca.201500158]
[29]
Douglas, I.B. Acylselenoureas. J. Am. Chem. Soc., 1937, 59, 740-742.
[http://dx.doi.org/10.1021/ja01283a041]
[30]
Heimgartner, H.; Zhou, Y.; Atanassov, P.K.; Sommen, G.L. Isoselenocyanates as building blocks for selenium-containing heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 840-855.
[http://dx.doi.org/10.1080/10426500801898135]
[31]
Maity, P.; Ranu, B. Iodine catalyzed synthesis of chalcogenophenes by the reaction of 1,3-dienyl bromides and KSeCN/K2S. Adv. Synth. Catal., 2017, 359(24), 4369-4378.
[http://dx.doi.org/10.1002/adsc.201701232]
[32]
Wang, T.; Chen, J.; Wang, J.; Xu, S.; Lin, A.; Yao, H.; Jiang, S.; Xu, J. Cobalt-catalyzed carbon-sulfur/selenium bond formation: synthesis of benzo[b]thio/selenophene-fused imidazo[1,2-a]pyridines. Org. Biomol. Chem., 2018, 16(20), 3721-3725.
[http://dx.doi.org/10.1039/C8OB00743H] [PMID: 29737996]
[33]
Siroos, Z.; Hassanabadi, A.; Mosslemim, M.H. Synthesis of highly functionalized selenophenes via a three-component condensation. Phosphorus. Sulfur. Relat. Elem, 2020, 195, 877-880.
[http://dx.doi.org/10.1080/10426507.2020.1762192]
[34]
Zhu, J.; Xu, B.; Yu, J.; Ren, Y.; Wang, J.; Xie, P.; Pittman, C.U., Jr; Zhou, A. Copper-catalyzed generation of flavone selenide and thioether derivatives using KSeCN and KSCN via C-H functionalization. Org. Biomol. Chem., 2018, 16(33), 5999-6005.
[http://dx.doi.org/10.1039/C8OB01398E] [PMID: 30083694]
[35]
Ghosh, P.; Chhetri, G.; Nandi, A.K.; Sarkar, S.; Saha, T.; Das, S. Creation of thio and selenocyanate derivatives of 4-quinolone via regioselective C–H bond functionalization under ambient conditions. New J. Chem., 2019, 43, 10959-10964.
[http://dx.doi.org/10.1039/C9NJ01922G]
[36]
Sorabad, G.S.; Maddani, M.R. Facile, regioselective oxidative selenocyanation of N-aryl enaminones under transition-metal-free conditions. New J. Chem., 2020, 2222-2227.
[http://dx.doi.org/10.1039/C9NJ05845A]
[37]
(a)Besset, T.; Jubault, P.; Pannecoucke, X.; Poisson, T. New entries toward the synthesis of OCF3-containing molecules. Org. Chem. Front., 2016, 3, 1004-1010.
[http://dx.doi.org/10.1039/C6QO00164E]
(b)Chachignon, H.; Cahard, D. State of the art in electrophilic trifluoromethylthiolation reagents. Chin. J. Chem., 2016, 34, 445-454.
[http://dx.doi.org/10.1002/cjoc.201500890]
[38]
(a) Tlili, A.; Ismalaj, E.; Glenadel, Q.; Ghiazza, C.; Billard, T. Synthetic approaches to trifluoromethylselenolated compounds. Chemistry, 2018, 24(15), 3659-3670.
[http://dx.doi.org/10.1002/chem.201704637] [PMID: 29072337]
(b)Monnereau, C.; Ghiazza, C.; Monnereau, C.; Khrouz, L.; Médebielle, M.; Billard, T.; Tlili, A. New avenues in radical trifluoromethylselenylation with trifluoromethyl tolueneselenosulfonate. Synlett, 2019, 30, 777-782.
[http://dx.doi.org/10.1055/s-0037-1610347]
(c)Zhang, C. Recent progress toward trifluoromethylselenolation reactions. J. Chin. Chem. Soc. (Taipei), 2017, 64, 457-463.
[http://dx.doi.org/10.1002/jccs.201600861]
[39]
(a)Wang, Y.; You, Y.; Weng, Z. Alkynyl trifluoromethyl selenides synthesis via oxidative trifluoromethylselenolation of terminal alkynes. Org. Chem. Front., 2015, 2, 574-577.
[http://dx.doi.org/10.1039/C5QO00045A]
[40]
Wu, C.; Huang, Y.; Chen, Z.; Weng, Z. Synthesis of vinyl trifluoromethyl selenoethers. Tetrahedron Lett., 2015, 56, 3838-3841.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.088]
[41]
Tian, Q.; Weng, Z. A convenient process for the preparation of heteroaryl trifluoromethyl selenoethers. Chin. J. Chem., 2016, 34, 505-510.
[http://dx.doi.org/10.1002/cjoc.201600052]
[42]
Hou, C.; Lin, X.; Huang, Y.; Chen, Z.; Weng, Z. Synthesis of β-trifluoromethylseleno-α,β-unsaturared ketones through copper-mediated trifluoromethylthio(seleno)lation. Synthesis, 2015, 47, 969-975.
[http://dx.doi.org/10.1055/s-0034-1379972]
[43]
Zhang, Y.; Yang, D-Y.; Weng, Z. Synthesis of trifluoromethylthiolated and trifluoromethylselenolated pyrones. Tetrahedron, 2017, 73, 3853-3859.
[http://dx.doi.org/10.1016/j.tet.2017.05.051]
[44]
Chen, T.; You, Y.; Weng, Z. Copper-mediated synthesis of α-trifluoromethylselenolated ester. J. Fluor. Chem., 2018, 216, 43-46.
[http://dx.doi.org/10.1016/j.jfluchem.2018.10.002]
[45]
Wang, J.; Zhang, M.; Weng, Z. A general method for synthesis of Se-trifluoromethyl esters through iron-catalyzed trifluoromethylselenolation of acid chlorides. J. Fluor. Chem., 2017, 193, 24-32.
[http://dx.doi.org/10.1016/j.jfluchem.2016.11.006]
[46]
Modak, A.; Pinter, E.N.; Cook, S.P. Copper-catalyzed, N-direct Csp3-H trifluoromethylthiolation (-SCF3) and trifluoromethylselenation (-SeCF3). J. Am. Chem. Soc., 2019, 141(46), 18405-18410.
[http://dx.doi.org/10.1021/jacs.9b10316] [PMID: 31697070]
[47]
Ghiazza, C.; Billard, T.; Tlili, A. Trifluoromethyl- and fluoroalkylselenolations of alkynyl copper (I) compounds. Chemistry, 2017, 23(42), 10013-10016.
[http://dx.doi.org/10.1002/chem.201702028] [PMID: 28635038]
[48]
Han, Q-Y.; Tan, K-L.; Wang, H-N.; Zhang, C-P. Organic photoredox-catalyzed decarboxylative trifluoromethylselenolation of aliphatic carboxylic acids with. Org. Lett., 2019, 21(24), 10013-10017. [Me4N]. [SeCF3]
[http://dx.doi.org/10.1021/acs.orglett.9b03941] [PMID: 31808702]
[49]
Tan, K-L.; Dong, T.; Zhang, X-Q.; Zhang, C-P. Oxidative trifluoromethylselenolation of 1,3-dicarbonyls with. Org. Biomol. Chem., 2020, 18(9), 1769-1779. [Me4N]. [SeCF3]
[http://dx.doi.org/10.1039/D0OB00108B] [PMID: 32073107]
[50]
Wu, S.; Jiang, T-H.; Zhang, C-P. CaCl2-Promoted dehydroxytrifluoromethylselenolation of alcohols with. Org. Lett., 2020, 22(15), 6016-6020. [Me4N] [SeCF3]
[http://dx.doi.org/10.1021/acs.orglett.0c02109] [PMID: 32644812]
[51]
(a)Glenadel, Q.; Ghiazza, C.; Tlili, A.; Billard, T. Copper-catalyzed direct trifluoro- and perfluoroalkylselenolations of boronic acids with a shelf stable family of reagents. Adv. Synth. Catal., 2017, 359, 3414-3420.
[http://dx.doi.org/10.1002/adsc.201700904]
(b)Ghiazza, C.; Debrauwer, V.; Billard, T.; Tlili, A. Exploring the reactivity of trifluoromethyl tolueneselenosulfonate with alkynes under copper catalysis. Chemistry, 2018, 24(1), 97-100.
[http://dx.doi.org/10.1002/chem.201705231] [PMID: 29152790]
[52]
Ghiazza, C.; Tlili, A.; Billard, T. Electrophilic trifluoromethylselenolation of terminal alkynes with Se-(trifluoromethyl) 4-methylbenzenesulfonoselenoate. Beilstein J. Org. Chem., 2017, 13, 2626-2630.
[http://dx.doi.org/10.3762/bjoc.13.260] [PMID: 29259673]
[53]
Ghiazza, C.; Debrauwer, V.; Monnereau, C.; Khrouz, L.; Médebielle, M.; Billard, T.; Tlili, A. Visible-light-mediated metal-free synthesis of trifluoromethylselenolated arenes. Angew. Chem. Int. Ed. Engl., 2018, 57(36), 11781-11785.
[http://dx.doi.org/10.1002/anie.201806165] [PMID: 29985549]
[54]
Ghiazza, C.; Khrouz, L.; Monnereau, C.; Billard, T.; Tlili, A. Visible-light promoted fluoroalkylselenolation: toward the reactivity of unsaturated compounds. Chem. Commun. (Camb.), 2018, 54(71), 9909-9912.
[http://dx.doi.org/10.1039/C8CC05256E] [PMID: 30105319]
[55]
Lei, Y.; Yang, J.; Wang, Y.; Wang, H.; Zhan, Y.; Jiang, X.; Xu, Z. Metal-free fluoroalkylfluoroalkylselenolation of unactivated alkenes: incorporation of two photoinduced processes. Green Chem., 2020, 22, 4878-4883.
[http://dx.doi.org/10.1039/C9GC03936H]
[56]
Zhao, X.; Wei, X.; Tian, M.; Zheng, X.; Ji, L.; Li, Q.; Lin, Y.; Lu, X. Ferric chloride-promoted direct trifluoromethylselenolation of nitrogen-containing heterocyclic compounds by Se-(trifluoromethyl)4-methylbenzenesulfonoselenoate in water. Tetrahedron Lett., 2019, 60, 1796-1799.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.002]
[57]
Lu, K.; Li, Q.; Xi, X.; Zhou, T.; Zhao, X. Metal-free difluoromethylselenolation of arylamines under visible-light photocatalysis. J. Org. Chem., 2020, 85(2), 1224-1231.
[http://dx.doi.org/10.1021/acs.joc.9b02535] [PMID: 31814407]
[58]
Lu, K.; Xi, X.; Zhou, T.; Lei, L.; Li, Q.; Zhao, X. Copper-catalysed direct difluoromethylselenolation of aryl boronic acids with Se-(difluoromethyl) 4-methylbenzene sulfonoselenoate. Tetrahedron Lett., 2021, 67, 152897.
[http://dx.doi.org/10.1016/j.tetlet.2021.152897]
[59]
Jin, W.; Zheng, P.; Wong, W-T.; Law, G-L. Efficient selenium-catalysed selective C(sp3)-H oxidation of benzylpyridines with molecular sieves. Adv. Synth. Catal., 2017, 359, 1-7.
[http://dx.doi.org/10.1002/adsc.201601065]
[60]
Zeng, Y.; Ji, W-W. Lv, Chen, Y.; Tan, D.-H.; Li, Q.; Wang, H. Stereoselective direct chlorination of alkenyl MIDA boronates: Divergent synthesis of E and Z-α-chloro alkenyl boronates. Angew. Chem. Int. Ed., 2017, 13, 14707-14711.
[http://dx.doi.org/10.1002/anie.201709070]
[61]
Yan, D.; Wang, G.; Xiong, F.; Sun, W-Y.; Shi, Z.; Lu, Y.; Li, S.; Zhao, J. A selenium-catalysed para-amination of phenols. Nat. Commun., 2018, 9(1), 4293-4302.
[http://dx.doi.org/10.1038/s41467-018-06763-4] [PMID: 30327477]
[62]
Fang, Y.; Zhu, Z-L.; Xu, P.; Wang, S-Y.; Ji, S-J. Aerobic radical-cascade cycloaddition of isocyanides, selenium and imidamides: facile access to 1,2,4-selenadiazoles under metal-free conditions. Green Chem., 2017, 19, 1613-1618.
[http://dx.doi.org/10.1039/C6GC03521C]
[63]
Perin, G.; Barcellos, A.M.; Luz, E.Q.; Borges, E.L.; Jacob, R.G.; Lenardão, E.J.; Sancineto, L.; Santi, C. Green hydroselenation of aryl alkynes: divinyl selenides as a precursor of resveratrol. Molecules, 2017, 22(2), 327.
[http://dx.doi.org/10.3390/molecules22020327] [PMID: 28230754]
[64]
Lara-Ochoa, F.; Sandoval-Minero, L.C.; Espinosa-Pérez, G. A new synthesis of resveratrol. Tetrahedron Lett., 2015, 56, 5977-5979.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy