Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

A Review on the Role of Transition Metals in Selenylation Reactions

Author(s): Rasmi V. Morajkar, Adarsh P. Fatrekar, Abhijeet Mohanty and Amit A. Vernekar*

Volume 19, Issue 3, 2022

Published on: 06 December, 2021

Page: [366 - 392] Pages: 27

DOI: 10.2174/1570179418666210920150142

Price: $65

Abstract

Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds, which are useful in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Furthermore, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.

Keywords: Selenylation, organoselenium, diselenides, C-H functionalization, transition metals, C-Se bonds.

Graphical Abstract

[1]
Breder, A.; Ortgies, S. Recent developments in sulfur- and selenium-catalyzed oxidative and isohypsic functionalization reactions of alkenes. Tetrahedron Lett., 2015, 56(22), 2843-2852.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.045]
[2]
Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863]
[3]
Luo, J.; Liu, X.; Zhao, X. Development of chalcogenide catalysts towards trifluoromethylthiolation. Synlett, 2017, 13(04), 397-401.
[4]
Tan, C.K.; Yeung, Y-Y. Recent advances in stereoselective bromofunctionalization of alkenes using N-bromoamide reagents. Chem. Commun. (Camb.), 2013, 49(73), 7985-7996.
[http://dx.doi.org/10.1039/c3cc43950j] [PMID: 23903206]
[5]
Zhang, X.; Guo, R.; Zhao, X. Organoselenium-catalyzed synthesis of indoles through intramolecular C–H amination. Org. Chem. Front., 2015, 2(10), 1334-1337.
[http://dx.doi.org/10.1039/C5QO00179J]
[6]
Chen, F.; Tan, C.K.; Yeung, Y-Y. C2-symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J. Am. Chem. Soc., 2013, 135(4), 1232-1235.
[http://dx.doi.org/10.1021/ja311202e] [PMID: 23312005]
[7]
Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140]
[8]
Ortgies, S.; Rieger, R.; Rode, K.; Koszinowski, K.; Kind, J.; Thiele, C.M.; Rehbein, J.; Breder, A. Mechanistic and synthetic investigations on the dual selenium-π-acid/photoredox catalysis in the context of the aerobic dehydrogenative lactonization of alkenoic acids. ACS Catal., 2017, 7(11), 7578-7586.
[http://dx.doi.org/10.1021/acscatal.7b02729]
[9]
Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated tetrahydronaphthalenes by merging desymmetrization and trifluoromethylthiolation. Nat. Commun., 2018, 9(1), 527.
[http://dx.doi.org/10.1038/s41467-018-02955-0] [PMID: 29410415]
[10]
Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Enantioselective trifluoromethylthiolating lactonization catalyzed by an indane-based chiral sulfide. Angew. Chem. Int. Ed. Engl., 2016, 55(19), 5846-5850.
[http://dx.doi.org/10.1002/anie.201601713] [PMID: 27027644]
[11]
Denmark, S.E.; Hartmann, E.; Kornfilt, D.J.P.; Wang, H. Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulfenofunctionalization of alkenes. Nat. Chem., 2014, 6(12), 1056-1064.
[http://dx.doi.org/10.1038/nchem.2109] [PMID: 25411883]
[12]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[13]
Satheeshkumar, K.; Raju, S.; Singh, H.B.; Butcher, R.J. Reactivity of selenocystine and tellurocystine: Structure and antioxidant activity of the derivatives. Chemistry, 2018, 24(66), 17513-17522.
[http://dx.doi.org/10.1002/chem.201803776] [PMID: 30225936]
[14]
Jesse, C.R.; Savegnago, L.; Nogueira, C.W. Mechanisms involved in the antinociceptive and anti-inflammatory effects of bis selenide in mice. J. Pharm. Pharmacol., 2009, 61(5), 623-630.
[http://dx.doi.org/10.1211/jpp.61.05.0011] [PMID: 19406001]
[15]
Sancineto, L.; Piccioni, M.; De Marco, S.; Pagiotti, R.; Nascimento, V.; Braga, A.L.; Santi, C.; Pietrella, D. Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol., 2016, 16(1), 220.
[http://dx.doi.org/10.1186/s12866-016-0837-x] [PMID: 27654924]
[16]
Álvarez-Pérez, M.; Ali, W.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and diselenides: A review of their anticancer and chemopreventive activity. Molecules, 2018, 23(3), 628.
[http://dx.doi.org/10.3390/molecules23030628] [PMID: 29534447]
[17]
Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke, 1998, 29(1), 12-17.
[http://dx.doi.org/10.1161/01.STR.29.1.12] [PMID: 9445321]
[18]
Lieberman, O.J.; Orr, M.W.; Wang, Y.; Lee, V.T. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem. Biol., 2014, 9(1), 183-192.
[http://dx.doi.org/10.1021/cb400485k] [PMID: 24134695]
[19]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[20]
Neto, J.S.S.; Back, D.F.; Zeni, G. Nucleophilic cyclization of O-alkynylbenzamides promoted by iron(III) chloride and diorganyl dichalcogenides: synthesis of 4-organochalcogenyl-1H-isochromen-1-imines. Eur. J. Org. Chem., 2015, 2015(7), 1583-1590.
[http://dx.doi.org/10.1002/ejoc.201403534]
[21]
Bilheri, F.N.; Stein, A.L.; Zeni, G. Synthesis of chalcogenophenes via cyclization of 1,3-diynes promoted by iron(III) chloride and dialkyl dichalcogenides. Adv. Synth. Catal., 2015, 357(6), 1221-1228.
[http://dx.doi.org/10.1002/adsc.201401159]
[22]
Kazmierczak, J.; Recchi, A.; Gritzenco, F.; Balbom, É.; Barcellos, T.; Sperança, A.; Godoi, B. Copper-iodide- and diorganyl-diselenide-promoted cyclization of 2-alkynylphenols: Alternative approach to 3-organoselanylbenzo[b]furans. J. Org. Chem., 2017, 2017
[http://dx.doi.org/10.1002/ejoc.201701205]
[23]
Ren, K.; Wang, M.; Wang, L. Lewis acid InBr3-catalyzed arylation of diorgano diselenides and ditellurides with arylboronic acids. Org. Biomol. Chem., 2009, 7(23), 4858-4861.
[http://dx.doi.org/10.1039/b914533h] [PMID: 19907775]
[24]
Zhang, Q-B.; Ban, Y-L.; Yuan, P-F.; Peng, S-J.; Fang, J-G.; Wu, L-Z.; Liu, Q. Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. Green Chem., 2017, 19(23), 5559-5563.
[http://dx.doi.org/10.1039/C7GC02803B]
[25]
Freitas, C.S.; Barcellos, A.M.; Ricordi, V.G.; Pena, J.M.; Perin, G.; Jacob, R.G.; Lenardão, E.J.; Alves, D. Synthesis of diaryl selenides using electrophilic selenium species and nucleophilic boron reagents in ionic liquids. Green Chem., 2011, 13(10), 2931-2938.
[http://dx.doi.org/10.1039/c1gc15725f]
[26]
Wang, X-L.; Li, H-J.; Yan, J. Iodine-mediated regioselective hydroxyselenenylation of alkenes: Facile access to β-hydroxy selenides. Chin. Chem. Lett., 2018, 29(3), 479-481.
[http://dx.doi.org/10.1016/j.cclet.2017.06.023]
[27]
Yoshida, M.; Sasage, S.; Kawamura, K.; Suzuki, T.; Kamigata, N. Oxidative cleavage of diselenide by M-nitrobenzenesulfonyl peroxide. Novel method for the electrophilic benzeneselenenylations of olefins and aromatic rings. Bull. Chem. Soc. Jpn., 1991, 64(2), 416-422.
[http://dx.doi.org/10.1246/bcsj.64.416]
[28]
Meirinho, A.G.; Pereira, V.F.; Martins, G.M.; Saba, S.; Rafique, J.; Braga, A.L.; Mendes, S.R. Electrochemical oxidative C(Sp2)–H bond selenylation of activated arenes. Eur. J. Org. Chem., 2019, 2019(38), 6465-6469.
[http://dx.doi.org/10.1002/ejoc.201900992]
[29]
Zhou, Q-L. Transition-metal catalysis and organocatalysis: Where can progress be expected? Angew. Chem. Int. Ed. Engl., 2016, 55(18), 5352-5353.
[http://dx.doi.org/10.1002/anie.201509164] [PMID: 26662619]
[30]
Wang, M.; Ren, K.; Wang, L. Iron-catalyzed ligand-free carbon-selenium (or tellurium) coupling of arylboronic acids with diselenides and ditellurides. Adv. Synth. Catal., 2009, 351(10), 1586-1594.
[http://dx.doi.org/10.1002/adsc.200900095]
[31]
Goldani, B.; Ricordi, V.G.; Seus, N.; Lenardão, E.J.; Schumacher, R.F.; Alves, D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J. Org. Chem., 2016, 81(22), 11472-11476.
[http://dx.doi.org/10.1021/acs.joc.6b02108] [PMID: 27731643]
[32]
Alves, D.; Santos, C.G.; Paixão, M.W.; Soares, L.C.; de Souza, D.; Rodrigues, O.E.D.; Braga, A.L. CuO nanoparticles: An efficient and recyclable catalyst for cross-coupling reactions of organic diselenides with aryl boronic acids. Tetrahedron Lett., 2009, 50(48), 6635-6638.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.052]
[33]
Ricordi, V.G.; Freitas, C.S.; Perin, G.; Lenardão, E.J.; Jacob, R.G.; Savegnago, L.; Alves, D. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem., 2012, 14(4), 1030-1034.
[http://dx.doi.org/10.1039/c2gc16427b]
[34]
Zhu, L.; Qiu, R.; Cao, X.; Xiao, S.; Xu, X.; Au, C-T.; Yin, S-F. Copper-mediated remote C-H bond chalcogenation of quinolines on the C5 position. Org. Lett., 2015, 17(22), 5528-5531.
[http://dx.doi.org/10.1021/acs.orglett.5b02511] [PMID: 26562356]
[35]
Mandal, A.; Sahoo, H.; Baidya, M. Copper-catalyzed 8-aminoquinoline-directed selenylation of arene and heteroarene C-H bonds. Org. Lett., 2016, 18(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.6b01420] [PMID: 27309343]
[36]
Stein, A.L.; Alves, D.; da Rocha, J.T.; Nogueira, C.W.; Zeni, G. Copper iodide-catalyzed cyclization of (Z)-chalcogenoenynes. Org. Lett., 2008, 10(21), 4983-4986.
[http://dx.doi.org/10.1021/ol802060f] [PMID: 18826235]
[37]
Santos, K.; Sandagorda, E.; Cargnelutti, R.; Barcellos, T.; Jacob, R.; Schumacher, R. Copper-catalyzed selective synthesis of 5-selanyl-imidazo[2,1- b ]thiazoles. ChemistrySelect, 2017, 2, 10793-10797.
[http://dx.doi.org/10.1002/slct.201702371]
[38]
Lai, M.; Zhai, K.; Cheng, C.; Wu, Z.; Zhao, M. Direct thiolation of aza-heteroaromatic N-oxides with disulfides via copper-catalyzed regioselective C–H bond activation. Org. Chem. Front., 2018, 5(20), 2986-2991.
[http://dx.doi.org/10.1039/C8QO00840J]
[39]
Rafique, J.; Saba, S.; Frizon, T.E.A.; Braga, A.L. Fe3O4 nanoparticles: A robust and magnetically recoverable catalyst for direct C-H bond selenylation and sulfenylation of benzothiazoles. ChemistrySelect, 2018, 3(1), 328-334.
[http://dx.doi.org/10.1002/slct.201702623]
[40]
Glaser, C. Untersuchungen Über Einige Derivate Der Zimmtsäure. Justus Liebigs Ann. Chem., 1867, 143(3), 325-346.
[http://dx.doi.org/10.1002/jlac.18671430315]
[41]
Gao, C.; Wu, G.; Min, L.; Liu, M.; Gao, W.; Ding, J.; Chen, J.; Huang, X.; Wu, H. Copper-catalyzed three-component coupling reaction of azoles, se powder, and aryl iodides. J. Org. Chem., 2017, 82(1), 250-255.
[http://dx.doi.org/10.1021/acs.joc.6b02388] [PMID: 27966941]
[42]
Sun, P.; Jiang, M.; Wei, W.; Min, Y.; Zhang, W.; Li, W.; Yang, D.; Wang, H. Copper-catalyzed selenylation of imidazo[1,2-a]pyridines with selenium powder via a radical pathway. J. Org. Chem., 2017, 82(6), 2906-2913.
[http://dx.doi.org/10.1021/acs.joc.6b02865] [PMID: 28220698]
[43]
Taniguchi, N. Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst. J. Org. Chem., 2007, 72(4), 1241-1245.
[http://dx.doi.org/10.1021/jo062131+] [PMID: 17288374]
[44]
Zheng, B.; Gong, Y.; Xu, H-J. ChemInform abstract: Copper-catalyzed C-Se coupling of diphenyl diselenide with arylboronic acids at room temperature. Tetrahedron, 2013, 69, 5342-5347.
[http://dx.doi.org/10.1016/j.tet.2013.04.124]
[45]
Shibahara, F.; Kanai, T.; Yamaguchi, E.; Kamei, A.; Yamauchi, T.; Murai, T. Copper-catalyzed C-H bond direct chalcogenation of aromatic compounds leading to diaryl sulfides, selenides, and diselenides by using elemental sulfur and selenium as chalcogen sources under oxidative conditions. Chem. Asian J., 2014, 9(1), 237-244.
[http://dx.doi.org/10.1002/asia.201300882] [PMID: 24347073]
[46]
Goulart, T. Copper‐catalyzed carbon‐nitrogen/carbon‐selenium bonds formation: Synthesis of 2‐(organochalcogenyl)‐indolizines. Adv. Synth. Catal., 2017, 359, 1901-1911.
[47]
Fürstner, A. Iron catalysis in organic synthesis: A critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci., 2016, 2(11), 778-789.
[http://dx.doi.org/10.1021/acscentsci.6b00272] [PMID: 27981231]
[48]
Neto, J.S.S.; Iglesias, B.A.; Back, D.F.; Zeni, G. Iron-promoted tandem cyclization of 1,3-diynyl chalcogen derivatives with diorganyl dichalcogenides for the synthesis of benzo[b]furan-fused selenophenes. Adv. Synth. Catal., 2016, 358(22), 3572-3585.
[http://dx.doi.org/10.1002/adsc.201600759]
[49]
Recchi, A.M.S.; Back, D.F.; Zeni, G. Sequential carbon-carbon/carbon-selenium bond formation mediated by iron(III) chloride and diorganyl diselenides: Synthesis and reactivity of 2-organoselenyl-naphthalenes. J. Org. Chem., 2017, 82(5), 2713-2723.
[http://dx.doi.org/10.1021/acs.joc.7b00050] [PMID: 28195467]
[50]
Casola, K.K.; Back, D.F.; Zeni, G. Iron-catalyzed cyclization of alkynols with diorganyl diselenides: Synthesis of 2,5-dihydrofuran, 3,6-dihydro-2H-pyran, and 2,5-dihydro-1H-pyrrole organoselanyl derivatives. J. Org. Chem., 2015, 80(15), 7702-7712.
[http://dx.doi.org/10.1021/acs.joc.5b01448] [PMID: 26158240]
[51]
Fang, X-L.; Tang, R-Y.; Zhong, P.; Li, J-H. Iron-catalyzed sulfenylation of indoles with disulfides promoted by a catalytic amount of iodine. Synthesis (Stuttg), 2009, 2009(24), 4183-4189.
[52]
Komeyama, K.; Aihara, K.; Kashihara, T.; Takaki, K. FeCl3-mediated direct chalcogenation of phenols. Chem. Lett., 2011, 40(11), 1254-1256.
[http://dx.doi.org/10.1246/cl.2011.1254]
[53]
Xu, M.; Zhang, X.H.; Zhong, P. Iron-catalyzed direct sulfenylation and selenylations of phenylpyrazoles: Synthesis of fipronil derivatives with disulfides promoted by a catalytic amount of iodine. Synth. Commun., 2012, 42(23), 3472-3481.
[http://dx.doi.org/10.1080/00397911.2011.584262]
[54]
Li, S-S.; Qin, L.; Dong, L. Rhodium-catalyzed C-C coupling reactions via double C-H activation. Org. Biomol. Chem., 2016, 14(20), 4554-4570.
[http://dx.doi.org/10.1039/C6OB00209A] [PMID: 27099126]
[55]
Yu, S.; Wan, B.; Li, X. Rh(III)-catalyzed selenylation of arenes with selenenyl chlorides/diselenides via C-H activation. Org. Lett., 2015, 17(1), 58-61.
[http://dx.doi.org/10.1021/ol503231p] [PMID: 25515149]
[56]
Xie, W.; Li, B.; Wang, B. Rh(III)-catalyzed C7-thiolation and selenation of indolines. J. Org. Chem., 2016, 81(2), 396-403.
[http://dx.doi.org/10.1021/acs.joc.5b01943] [PMID: 26686383]
[57]
Nareddy, P.; Jordan, F.; Szostak, M. Recent developments in ruthenium-catalyzed C–H arylation: Array of mechanistic manifolds. ACS Catal., 2017, 7(9), 5721-5745.
[http://dx.doi.org/10.1021/acscatal.7b01645]
[58]
Duarah, G.; Kaishap, P.P.; Begum, T.; Gogoi, S. Recent advances in ruthenium(II)-catalyzed C−H bond activation and alkyne annulation reactions. Adv. Synth. Catal., 2019, 361(4), 654-672.
[http://dx.doi.org/10.1002/adsc.201800755]
[59]
Shu, S.; Fan, Z.; Yao, Q.; Zhang, A. Ru(II)-catalyzed direct C(sp(2))-H activation/selenylation of arenes with selenyl chlorides. J. Org. Chem., 2016, 81(13), 5263-5269.
[http://dx.doi.org/10.1021/acs.joc.6b00634] [PMID: 27104776]
[60]
Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Ru(II)-catalyzed C-H functionalization on maleimides with electrophiles: A demonstration of umpolung strategy. Org. Lett., 2017, 19(7), 1902-1905.
[http://dx.doi.org/10.1021/acs.orglett.7b00674] [PMID: 28358203]
[61]
Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G.S.; Baidya, M. Ruthenium(II)-catalyzed ortho-C-H chalcogenation of benzoic acids via weak O-coordination: Synthesis of chalcogenoxanthones. Org. Lett., 2017, 19(9), 2430-2433.
[http://dx.doi.org/10.1021/acs.orglett.7b00996] [PMID: 28429594]
[62]
Zheng, Q-Z.; Jiao, N. Ag-catalyzed C-H/C-C bond functionalization. Chem. Soc. Rev., 2016, 45(16), 4590-4627.
[http://dx.doi.org/10.1039/C6CS00107F] [PMID: 27056573]
[63]
Yan, G.; Borah, A.J.; Wang, L. Efficient silver-catalyzed direct sulfenylation and selenylation of rich arenes. Org. Biomol. Chem., 2014, 12(47), 9557-9561.
[http://dx.doi.org/10.1039/C4OB01992J] [PMID: 25333205]
[64]
Zhu, Y-Q.; He, J-L.; Niu, Y-X.; Kang, H-Y.; Han, T-F.; Li, H-Y. AgSbF6-mediated selective thiolation and selenylation at C-4 position of isoquinolin-1(2 H)-ones. J. Org. Chem., 2018, 83(17), 9958-9967.
[http://dx.doi.org/10.1021/acs.joc.8b01361] [PMID: 29993245]
[65]
Lee, D.H.; Kim, Y.H. Regioselective phenylselenenylation at the 5-position of pyrimidine nucleosides mediated by manganese(III) acetate. Synlett, 1995, 1995(04), 349-350.
[http://dx.doi.org/10.1055/s-1995-4978]
[66]
Chen, M.S.; White, M.C.A. A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J. Am. Chem. Soc., 2004, 126(5), 1346-1347.
[http://dx.doi.org/10.1021/ja039107n] [PMID: 14759185]
[67]
Li, H.; Li, B-J.; Shi, Z-J. Challenge and progress: Palladium-catalyzed Sp3 C–H activation. Catal. Sci. Technol., 2011, 1(2), 191-206.
[http://dx.doi.org/10.1039/c0cy00076k]
[68]
Qiu, R.; Reddy, V.P.; Iwasaki, T.; Kambe, N. The palladium-catalyzed intermolecular C-H chalcogenation of arenes. J. Org. Chem., 2015, 80(1), 367-374.
[http://dx.doi.org/10.1021/jo502402d] [PMID: 25437148]
[69]
Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Heterogeneously catalyzed direct C-H thiolation of heteroarenes. Angew. Chem. Int. Ed. Engl., 2015, 54(19), 5772-5776.
[http://dx.doi.org/10.1002/anie.201411997] [PMID: 25783208]
[70]
Jin, W.; Zheng, P.; Wong, W-T.; Law, G-L. Efficient palladium-catalyzed direct C−H phenylselenylation of (hetero)arenes in water. Asian J. Org. Chem., 2015, 4(9), 875-878.
[http://dx.doi.org/10.1002/ajoc.201500192]
[71]
Ghiazza, C.; Ndiaye, M.; Hamdi, A.; Tlili, A.; Billard, T. Regioselective remote CH fluoroalkylselenolation of 8-aminoquinolines. Tetrahedron, 2018, 74(45), 6521-6526.
[http://dx.doi.org/10.1016/j.tet.2018.09.048]
[72]
Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Recent advances in homogeneous nickel catalysis. Nature, 2014, 509(7500), 299-309.
[http://dx.doi.org/10.1038/nature13274] [PMID: 24828188]
[73]
Castro, L.C.M.; Chatani, N. Nickel catalysts/N,N¢-bidentate directing groups: An excellent partnership in directed C–H activation reactions. Chem. Lett., 2015, 44(4), 410-421.
[http://dx.doi.org/10.1246/cl.150024]
[74]
Lin, C.; Li, D.; Wang, B.; Yao, J.; Zhang, Y. Direct ortho-thiolation of arenes and alkenes by nickel catalysis. Org. Lett., 2015, 17(5), 1328-1331.
[http://dx.doi.org/10.1021/acs.orglett.5b00337] [PMID: 25714854]
[75]
Gao, F.; Zhu, W.; Zhang, D.; Li, S.; Wang, J.; Liu, H. Nickel-catalyzed ortho-C-H thiolation of N-benzoyl α-amino acid derivatives. J. Org. Chem., 2016, 81(19), 9122-9130.
[http://dx.doi.org/10.1021/acs.joc.6b01702] [PMID: 27626937]
[76]
Müller, T.; Ackermann, L. Nickel-catalyzed C-H chalcogenation of anilines. Chemistry, 2016, 22(40), 14151-14154.
[http://dx.doi.org/10.1002/chem.201603092] [PMID: 27501081]
[77]
Iwasaki, M.; Miki, N.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Synthesis of benzoisoselenazolone derivatives by nickel-catalyzed dehydrogenative direct selenation of C(sp2)-H bonds with elemental selenium in air. Org. Lett., 2017, 19(5), 1092-1095.
[http://dx.doi.org/10.1021/acs.orglett.7b00116] [PMID: 28211695]
[78]
Zhu, J.; Zhu, W.; Xie, P.; Pittman, C.; Zhou, A.; Nickel-Catalyzed, C. Sp2)-H selenation of imidazo[1,2-α]pyridines with arylboronic acids or alkyl reagents using selenium powder. Tetrahedron, 2018, 74.
[http://dx.doi.org/10.1016/j.tet.2018.09.037]
[79]
Ravi, C.; Reddy, N.N.K.; Pappula, V.; Samanta, S.; Adimurthy, S. Copper-catalyzed three-component system for arylsulfenylation of imidazopyridines with elemental sulfur. J. Org. Chem., 2016, 81(20), 9964-9972.
[http://dx.doi.org/10.1021/acs.joc.6b01715] [PMID: 27661444]
[80]
Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Wang, L.; Meng, G.; Wang, H. Metal-free I2O5-mediated direct construction of sulfonamides from thiols and amines. Org. Biomol. Chem., 2017, 15(22), 4789-4793.
[http://dx.doi.org/10.1039/C7OB00668C] [PMID: 28530762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy