Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Ethnopharmacology, Phytochemistry and Biological Activities of Native Chilean Plants

Author(s): Bahare Salehi, Javad Sharifi-Rad*, Jesús Herrera-Bravo, Luis A. Salazar, Carla Delporte, Gabriela Valenzuela Barra, Maria-Elena Cazar Ramirez, Maria Dolores López, Karina Ramírez-Alarcón, Natália Cruz-Martins and Miquel Martorell*

Volume 27, Issue 7, 2021

Published on: 23 November, 2020

Page: [953 - 970] Pages: 18

DOI: 10.2174/1381612826666201124105623

Price: $65

Abstract

The native flora of Chile has unique characteristics due to the geographical situation of the country, with the vast desert in the North, Patagonia in the South, the Andean Mountains on the east and the Pacific Ocean on the west. This exclusivity is reflected in high concentrations of phytochemicals in the fruits and leaves of its native plants. Some examples are Aristotelia chilensis (Molina), Stuntz (maqui), Berberis microphylla G. Forst. (calafate), Peumus boldus Molina (boldo), Ribes magellanicum Poir. (Magellan currant), Ugni molinae Turcz. (murtilla), Rubus geoides Sm. (miñe miñe), Drimys winteri J.R.Forst. & G.Forst. (canelo), Luma apiculata (DC.) Burret (arrayán) distributed throughout the entire Chilean territory. Some of these Chilean plants have been used for centuries in the country's traditional medicine. The most recent studies of phytochemical characterization of parts of Chilean plants show a wide spectrum of antioxidant compounds, phenolic components, terpenoids and alkaloids, which have shown biological activity in both in vitro and in vivo studies. This manuscript covers the entire Chilean territory characterizing the phytochemical profile and reporting some of its biological properties, focusing mainly on antioxidant, anti-inflammatory, antimicrobial, chemopreventive and cytotoxic activity, and potential against diabetes, metabolic syndrome and gastrointestinal disorders.

Keywords: Phytotherapy, maqui, calafate, boldo, murtilla, Chilean plant.

[1]
Scherson RA, Albornoz AA, Moreira-Muñoz AS, Urbina-Casanova R. Endemicity and evolutionary value: a study of Chilean endemic vascular plant genera. Ecol Evol 2014; 4(6): 806-16.
[http://dx.doi.org/10.1002/ece3.960] [PMID: 24683462]
[2]
Marticorena C. Contribucion a la estadistica de la flora vascular de Chile (Contribution to the statistics of the vascular flora of Chile.). Gayana Bot 1990; 47: 85-113.
[3]
Niemeyer H. Quantitative screening for alkaloids of native vascular plant species from Chile: Biogeographical considerations. Bol Latinoam Caribe Plantas Med Aromat 2014; 13: 109-16.
[4]
Rodriguez R, Marticorena C, Alarcón D, et al. Catálogo de las plantas vasculares de Chile. Gayana Bot 2018; 75: 1-430.
[http://dx.doi.org/10.4067/S0717-66432018000100001]
[5]
Schmithüsen J. Die räumliche Ordnung der chilenischen Vegetation. Stollfuss 1956.
[6]
Donoso C. Reseña Ecológica de los Bosques Mediterráneos de Chile. Bosque (Valdivia) 1982; 4: 117-46.
[http://dx.doi.org/10.4206/bosque.1982.v4n2-04]
[7]
Veblen T, Schlegel F. Reseña ecológica de los bosques del sur de Chile. Bosque (Valdivia) 1982; 4: 73-115.
[http://dx.doi.org/10.4206/bosque.1982.v4n2-03]
[8]
Gajardo R. La vegetación Natural de Chile, Clasificación y Distribución Geográfica Editorial Universitaria 1994; 1-165.
[9]
Vila J, Balderrama L, Bravo JL, et al. Prenylisoflavanones from Geoffroea decorticans. Phytochemistry 1998; 49: 2525-8.
[http://dx.doi.org/10.1016/S0031-9422(98)00277-5]
[10]
Wickens GE. Llareta (Azorella Compacta, Umbelliferae): A review. Econ Bot 1995; 49: 207-12.
[http://dx.doi.org/10.1007/BF02862926]
[11]
Araya JE, Neira I, da Silva S, et al. Diterpenoids from Azorella compacta (Umbelliferae) active on Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2003; 98(3): 413-8.
[http://dx.doi.org/10.1590/S0074-02762003000300022] [PMID: 12886426]
[12]
Loyola LA, Bórquez J, Morales G, et al. Mulinane-type diterpenoids from Azorella compacta display antiplasmodial activity. Phytochemistry 2004; 65(13): 1931-5.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.011] [PMID: 15280000]
[13]
Fuentes NL, Sagua H, Morales G, et al. Experimental antihyperglycemic effect of diterpenoids of llareta Azorella compacta (Umbelliferae) Phil in rats. Phytother Res 2005; 19(8): 713-6.
[http://dx.doi.org/10.1002/ptr.1740] [PMID: 16177976]
[14]
De Feo V, Urrunaga Soria E, Urrunaga Soria R, Senatore F. Chemical composition of essential oils of Senecio nutans Sch.-Bip. (Asteraceae). Flavour Fragrance J 2003; 18: 234-6.
[http://dx.doi.org/10.1002/ffj.1204]
[15]
Belaunde AJ, Sandoval JG, Martino LD, Senatore F, Feo VD. Chemical composition and antibacterial activity of senecio nutans essential oil. J Essent Oil Bear Plants 2007; 10: 332-8.
[http://dx.doi.org/10.1080/0972060X.2007.10643564]
[16]
Vogel H, Doll U, Razmilic I, San Martín J. Domestication studies of matico (Buddleja Globosa Hope). Acta Hortic 2002; 203-6.
[http://dx.doi.org/10.17660/ActaHortic.2002.576.29]
[17]
Backhouse N, Rosales L, Apablaza C, et al. Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Ethnopharmacol 2008; 116(2): 263-9.
[http://dx.doi.org/10.1016/j.jep.2007.11.025] [PMID: 18164566]
[18]
Houghton PJ, Hikino H. Anti-hepatotoxic activity of extracts and constituents of Buddleja species. Planta Med 1989; 55(2): 123-6.
[http://dx.doi.org/10.1055/s-2006-961903] [PMID: 2748726]
[19]
Pardo F, Perich F, Torres R. Un nuevo glicosido de Buddleja globosa con actividad bactericida. BolSocQuim 1997; 42: 101-4.
[20]
Mensah AY, Houghton PJ, Bloomfield S, Vlietinck A, Vanden Berghe D. Known and novel terpenes from Buddleja globosa displaying selective antifungal activity against dermatophytes. J Nat Prod 2000; 63(9): 1210-3.
[http://dx.doi.org/10.1021/np0001023] [PMID: 11000021]
[21]
Mensah AY, Sampson J, Houghton PJ, et al. Effects of Buddleja globosa leaf and its constituents relevant to wound healing. J Ethnopharmacol 2001; 77(2-3): 219-26.
[http://dx.doi.org/10.1016/S0378-8741(01)00297-5] [PMID: 11535367]
[22]
Houghton PJ, Hylands PJ, Mensah AY, Hensel A, Deters AM. In vitro tests and ethnopharmacological investigations: wound healing as an example. J Ethnopharmacol 2005; 100(1-2): 100-7.
[http://dx.doi.org/10.1016/j.jep.2005.07.001] [PMID: 16040217]
[23]
Vogel H, Jeldres P, Razmilic I, Doll U. Morphological characters, yields and active principles in wild and cultivated accessions of the Chilean medicinal plant Buddleja globosa Hope. Ind Crops Prod 2011; 34: 1322-6.
[http://dx.doi.org/10.1016/j.indcrop.2010.12.004]
[24]
Roner MR, Sprayberry J, Spinks M, Dhanji S. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). J Gen Virol 2007; 88(Pt 1): 275-85.
[http://dx.doi.org/10.1099/vir.0.82321-0] [PMID: 17170461]
[25]
Arrau S, Delporte C, Cartagena C, et al. Antinociceptive activity of Quillaja saponaria Mol. saponin extract, quillaic acid and derivatives in mice. J Ethnopharmacol 2011; 133(1): 164-7.
[http://dx.doi.org/10.1016/j.jep.2010.09.016] [PMID: 20951193]
[26]
Schmeda-Hirschmann G, Rodriguez JA, Theoduloz C, Astudillo SL, Feresin GE, Tapia A. Free-radical scavengers and antioxidants from Peumus boldus Mol. (“Boldo”). Free Radic Res 2003; 37(4): 447-52.
[http://dx.doi.org/10.1080/1071576031000090000] [PMID: 12747739]
[27]
Lanhers MC, Joyeux M, Soulimani R, et al. Hepatoprotective and anti-inflammatory effects of a traditional medicinal plant of Chile, Peumus boldus. Planta Med 1991; 57(2): 110-5.
[http://dx.doi.org/10.1055/s-2006-960043] [PMID: 1891491]
[28]
Schmeda-Hirschmann G, Astudillo L, Bastida J, et al. Cryptofolione derivatives from Cryptocarya alba fruits. J Pharm Pharmacol 2001; 53(4): 563-7.
[http://dx.doi.org/10.1211/0022357011775686] [PMID: 11341375]
[29]
Chamorro MF, Ladio A. Native and exotic plants with edible fleshy fruits utilized in Patagonia and their role as sources of local functional foods. BMC Complement Med Ther 2020; 20(1): 155.
[http://dx.doi.org/10.1186/s12906-020-02952-1] [PMID: 32448223]
[30]
Schmeda-Hirschmann G, Jiménez-Aspee F, Theoduloz C, Ladio A. Patagonian berries as native food and medicine. J Ethnopharmacol 2019; 241111979
[http://dx.doi.org/10.1016/j.jep.2019.111979] [PMID: 31153864]
[31]
Montenegro G. Chile nuestra flora útil Guía de uso apícola, alimentario, medicinal folclórico, artesanal y ornamental. Santiago, Chile: Ediciones Universidad Católica de Chile 2000.
[32]
Rubilar M, Jara C, Poo Y, et al. Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): sources of antioxidant compounds and α-Glucosidase/α-Amylase inhibitors. J Agric Food Chem 2011; 59(5): 1630-7.
[http://dx.doi.org/10.1021/jf103461k] [PMID: 21294510]
[33]
Arancibia-Radich J, Peña-Cerda M, Jara D, et al. Comparative study of the anti-inflammatory activity and qualiand quantitative composition of triterpenoids between Ugni molinae leaves from ten genotypes. Bol Latinoam Caribe Plantas Med Aromat 2016; 15: 244-87.
[34]
Peña-Cerda M, Arancibia-Radich J, Valenzuela-Bustamante P, et al. Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem 2017; 215: 219-27.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.159] [PMID: 27542470]
[35]
Simirgiotis MJ, Bórquez J, Schmeda-Hirschmann G. Antioxidant capacity, polyphenolic content and tandem HPLC-DAD-ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén. Food Chem 2013; 139(1-4): 289-99.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.089] [PMID: 23561108]
[36]
Ramirez JE, Zambrano R, Sepúlveda B, Kennelly EJ, Simirgiotis MJ. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC-HR-ESI-ToF-MS. Food Chem 2015; 176: 106-14.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.039] [PMID: 25624212]
[37]
Bhakuni DS, Bittner M, Marticorena C, Silva M, Weldt E, Hoeneisen M. Screening of Chilean plants for anticancer activity. I. Lloydia 1976; 39(4): 225-43.
[PMID: 957912]
[38]
Escribano-Bailón MT, Alcalde-Eon C, Muñoz O, Rivas-Gonzalo JC, Santos-Buelga C. Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem Anal 2006; 17(1): 8-14.
[http://dx.doi.org/10.1002/pca.872] [PMID: 16454470]
[39]
Céspedes CL, Valdez-Morales M, Avila JG, El-Hafidi M, Alarcón J, Paredes-López O. Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem 2010; 119: 886-95.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.045]
[40]
Romero-González J, Shun Ah-Hen K, Lemus-Mondaca R, Muñoz-Fariña O. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem 2020; 313126115
[http://dx.doi.org/10.1016/j.foodchem.2019.126115] [PMID: 31927206]
[41]
Céspedes CL, El-Hafidi M, Pavon N, Alarcon J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae). Maqui Food Chem 2008; 107: 820-9.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.092]
[42]
Issis QF, Antonio VG, Elsa U, Valeria V, Nicole C, Jacqueline P. Vacuum drying application to maqui (Aristotelia chilensis [Mol] Stuntz) berry: Weibull distribution for process modelling and quality parameters. J Food Sci Technol 2019; 56(4): 1899-908.
[http://dx.doi.org/10.1007/s13197-019-03653-5] [PMID: 30996425]
[43]
Rojo LE, Ribnicky D, Logendra S, et al. In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem 2012; 131(2): 387-96.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.066] [PMID: 26279603]
[44]
Landrum LR. Revision of berberis (berberidaceae) in Chile and adjacent southern Argentina. Ann Mo Bot Gard 1999; 86: 793-834.
[http://dx.doi.org/10.2307/2666170]
[45]
Ruiz A, Hermosín-Gutiérrez I, Mardones C, et al. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J Agric Food Chem 2010; 58(10): 6081-9.
[http://dx.doi.org/10.1021/jf100173x] [PMID: 20438111]
[46]
Arena ME, Pastur GM, Lencinas MV, Soler R, Bustamante G. Changes in the leaf nutrient and pigment contents of Berberis microphylla G. Forst. in relation to irradiance and fertilization. Heliyon 2020; 6(1)e03264
[http://dx.doi.org/10.1016/j.heliyon.2020.e03264] [PMID: 31993526]
[47]
Simirgiotis MJ, Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J Food Compos Anal 2010; 23: 545-53.
[http://dx.doi.org/10.1016/j.jfca.2009.08.020]
[48]
Genskowsky E, Puente LA, Pérez-Álvarez JA, Fernández-López J, Muñoz LA, Viuda-Martos M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J Sci Food Agric 2016; 96(12): 4235-42.
[http://dx.doi.org/10.1002/jsfa.7628] [PMID: 26781384]
[49]
Fredes C, Yousef GG, Robert P, et al. Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J Sci Food Agric 2014; 94(13): 2639-48.
[http://dx.doi.org/10.1002/jsfa.6602] [PMID: 24497378]
[50]
Ruiz A, Pastene E, Vergara C, Von Baer D, Avello M, Mardones C. Hydoxycinnamic acid derivatives and flavonol profiles of maqui (Aristotelia chilensis) fruits. J Chil Chem Soc 2016; 61: 2792-6.
[http://dx.doi.org/10.4067/S0717-97072016000100010]
[51]
Mariangel E, Reyes-Díaz M, Lobos W, Bensch E, Schalchli H, Ibarra P. The antioxidant properties of calafate (Berberis microphylla) fruits from four different locations in southern Chile. Cienc Investig Agrar 2013; 40: 161-70.
[http://dx.doi.org/10.4067/S0718-16202013000100014]
[52]
EMA Boldo leaf: Peumus Boldus Molina, folium European Medicines Agengy (EMA). Science Medicines Health 2016.
[53]
Boeing T, Mariano LNB, Dos Santos AC, et al. Gastroprotective effect of the alkaloid boldine: Involvement of non-protein sulfhydryl groups, prostanoids and reduction on oxidative stress. Chem Biol Interact 2020; 327109166
[http://dx.doi.org/10.1016/j.cbi.2020.109166] [PMID: 32531310]
[54]
Fuentes-Barros G, Castro-Saavedra S, Liberona L, et al. Variation of the alkaloid content of Peumus boldus (boldo). Fitoterapia 2018; 127: 179-85.
[http://dx.doi.org/10.1016/j.fitote.2018.02.020] [PMID: 29454020]
[55]
Simirgiotis MJ, Schmeda-Hirschmann G. Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. J Chromatogr A 2010; 1217(4): 443-9.
[http://dx.doi.org/10.1016/j.chroma.2009.11.014] [PMID: 20022332]
[56]
Jiménez-Aspee F, Thomas-Valdés S, Schulz A, Ladio A, Theoduloz C, Schmeda-Hirschmann G. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci Nutr 2015; 4(4): 595-610.
[http://dx.doi.org/10.1002/fsn3.323] [PMID: 27386109]
[57]
Burgos-Edwards A, Jiménez-Aspee F, Thomas-Valdés S, Schmeda-Hirschmann G, Theoduloz C. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chem 2017; 237: 1073-82.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.060] [PMID: 28763953]
[58]
Theoduloz C, Burgos-Edwards A, Schmeda-Hirschmann G, Jiménez-Aspee F. Effect of polyphenols from wild Chilean currants (Ribes spp.) on the activity of intracellular antioxidant enzymes in human gastric AGS cells. Food Biosci 2018; 24: 80-8.
[http://dx.doi.org/10.1016/j.fbio.2018.06.003]
[59]
Burgos-Edwards A, Jiménez-Aspee F, Theoduloz C, Schmeda-Hirschmann G. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes. Food Chem 2018; 258: 144-55.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.053] [PMID: 29655716]
[60]
Pastene E, Marcia A. Actividad antioxidante de infusos de Ugni molinae Turcz. (Murtilla). Bol Latinoam Caribe Plantas Med Aromat 2005; 4.
[61]
López J, Vega-Gálvez A, Rodríguez A, Uribe E, Bilbao-Sainz C. Murta (Ugni molinae Turcz.): a review on chemical composition, functional components and biological activities of leaves and fruits. Chil J Agric Anim Sci 2018; 34: 43-56.
[http://dx.doi.org/10.4067/S0719-38902018005000205]
[62]
Junqueira-Gonçalves MP, Yáñez L, Morales C, Navarro MA, Contreras R, Zúñiga GE. Isolation and characterization of phenolic compounds and anthocyanins from Murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity. Molecules 2015; 20(4): 5698-713.
[http://dx.doi.org/10.3390/molecules20045698] [PMID: 25838172]
[63]
Jiménez-Aspee F, Theoduloz C, Ávila F, et al. The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells. Food Chem 2016; 194: 908-19.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.117] [PMID: 26471634]
[64]
Ruiz A, Hermosín-Gutiérrez I, Vergara C, et al. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res Int 2013; 51: 706-13.
[http://dx.doi.org/10.1016/j.foodres.2013.01.043]
[65]
Ruiz A, Bustamante L, Vergara C, et al. Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chem 2015; 167: 84-90.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.052] [PMID: 25148963]
[66]
Cechinel Filho V, Schlemper V, Santos AR, et al. Isolation and identification of active compounds from Drimys winteri barks. J Ethnopharmacol 1998; 62(3): 223-7.
[http://dx.doi.org/10.1016/S0378-8741(98)00069-5] [PMID: 9849632]
[67]
Muñoz-Concha D, Vogel H, Yunes R, Razmilic I, Bresciani L, Malheiros A. Presence of polygodial and drimenol in Drimys populations from Chile. Biochem Syst Ecol 2007; 35: 434-8.
[http://dx.doi.org/10.1016/j.bse.2006.10.019]
[68]
Bombaça ACS, Dossow DV, Barbosa JMC, Paz C, Burgos V, Menna-Barreto RFS. Trypanocidal activity of natural sesquiterpenoids involves mitochondrial dysfunction, ROS production and autophagic phenotype in trypanosomacruzi. Molecules 2018; 23(11): 23.
[http://dx.doi.org/10.3390/molecules23112800] [PMID: 30373326]
[69]
Simirgiotis MJ, Silva M, Becerra J, Schmeda-Hirschmann G. Direct characterisation of phenolic antioxidants in infusions from four Mapuche medicinal plants by liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS). Food Chem 2012; 131: 318-27.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.118]
[70]
Simirgiotis MJ, Ramirez JE, Schmeda Hirschmann G, Kennelly EJ. Bioactive coumarins and HPLC-PDA-ESI-ToF-MS metabolic profiling of edible queule fruits (Gomortega keule), an endangered endemic Chilean species. Food Res Int 2013; 54: 532-43.
[http://dx.doi.org/10.1016/j.foodres.2013.07.022]
[71]
Cheel J, Theoduloz C, Rodríguez J, Saud G, Caligari PD, Schmeda-Hirschmann G. E-cinnamic acid derivatives and phenolics from Chilean strawberry fruits, Fragaria chiloensis ssp. chiloensis. J Agric Food Chem 2005; 53(22): 8512-8.
[http://dx.doi.org/10.1021/jf051294g] [PMID: 16248546]
[72]
Simirgiotis MJ, Theoduloz C, Caligari PDS, Schmeda-Hirschmann G. Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes. Food Chem 2009; 113: 377-85.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.043]
[73]
Jiménez-González A, Quispe C, Bórquez J, et al. UHPLC-ESI-ORBITRAP-MS analysis of the native Mapuche medicinal plant palo negro (Leptocarpha rivularis DC. - Asteraceae) and evaluation of its antioxidant and cholinesterase inhibitory properties. J Enzyme Inhib Med Chem 2018; 33(1): 936-44.
[http://dx.doi.org/10.1080/14756366.2018.1466880] [PMID: 29734888]
[74]
Simirgiotis MJ. Antioxidant capacity and HPLC-DAD-MS profiling of Chilean peumo (Cryptocarya alba) fruits and comparison with German peumo (Crataegus monogyna) from southern Chile. Molecules 2013; 18(2): 2061-80.
[http://dx.doi.org/10.3390/molecules18022061] [PMID: 23385342]
[75]
Simirgiotis MJ, Quispe C, Areche C, Sepúlveda B. Phenolic compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) analyzed by UHPLC-Q/Orbitrap/MS/MS and its antioxidant properties. Molecules 2016; 21(3): 245.
[http://dx.doi.org/10.3390/molecules21030245] [PMID: 26907248]
[76]
Romanucci V, D’Alonzo D, Guaragna A, et al. Bioactive compounds of Aristotelia chilensis Stuntz and their pharmacological effects. Curr Pharm Biotechnol 2016; 17(6): 513-23.
[http://dx.doi.org/10.2174/1389201017666160114095246] [PMID: 26778456]
[77]
Ulloa-Inostroza EM, Ulloa-Inostroza EG, Alberdi M, et al. Native Chilean fruits and the effects of their functional compounds on human health Superfood and functional food - an overview of their processing and utilization. Intech 2017.
[http://dx.doi.org/10.5772/67067]
[78]
Brauch JE, Buchweitz M, Schweiggert RM, Carle R. Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem 2016; 190: 308-16.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.097] [PMID: 26212975]
[79]
Brito A, Areche C, Sepúlveda B, Kennelly EJ, Simirgiotis MJ. Anthocyanin characterization, total phenolic quantification and antioxidant features of some Chilean edible berry extracts. Molecules 2014; 19(8): 10936-55.
[http://dx.doi.org/10.3390/molecules190810936] [PMID: 25072199]
[80]
Parra-Palma C, Fuentes E, Palomo I, Torres C, Moya-León M, Ramos P. Linking the platelet antiaggregation effect of different strawberries species with antioxidants: Metabolomic and transcript profiling of polyphenols. Bol Latinoam Caribe Plantas Med Aromat 2018; 17: 36-52.
[81]
Schmeda-Hirschmann G, Quispe C, González B. Phenolic profiling of the South American “Baylahuen” tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS. Molecules 2015; 20(1): 913-28.
[http://dx.doi.org/10.3390/molecules20010913] [PMID: 25580687]
[82]
Simirgiotis MJ, Quispe C, Bórquez J, Mocan A, Sepúlveda B. High resolution metabolite fingerprinting of the resin of Baccharis tola Phil. from the Atacama Desert and its antioxidant capacities. Ind Crops Prod 2016; 94: 368-75.
[http://dx.doi.org/10.1016/j.indcrop.2016.08.037]
[83]
López de Dicastillo C, Bustos F, Valenzuela X, López-Carballo G, Vilariño JM, Galotto MJ. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Res Int 2017; 102: 119-28.
[http://dx.doi.org/10.1016/j.foodres.2017.09.073] [PMID: 29195930]
[84]
Salehi B, Azzini E, Zucca P, et al. Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci (Basel) 2020; 10.
[85]
Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol 2020; 11: 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[86]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6): 20.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[87]
Sharifi-Rad M, Mnayer D, Morais-Braga MFB, et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother Res 2018; 32(9): 1653-63.
[http://dx.doi.org/10.1002/ptr.6101] [PMID: 29749084]
[88]
Salehi B, Albayrak S, Antolak H, et al. Aloe genus plants: from farm to food applications and phytopharmacotherapy. Int J Mol Sci 2018; 19(9): 19.
[http://dx.doi.org/10.3390/ijms19092843] [PMID: 30235891]
[89]
Salehi B, Zakaria ZA, Gyawali R, et al. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules 2019; 24(7): 24.
[http://dx.doi.org/10.3390/molecules24071364] [PMID: 30959974]
[90]
Egea I, Sánchez-Bel P, Romojaro F, Pretel MT. Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Foods Hum Nutr 2010; 65(2): 121-9.
[http://dx.doi.org/10.1007/s11130-010-0159-3] [PMID: 20198440]
[91]
Sharifi-Rad M, Ozcelik B, Altın G, et al. Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci Technol 2018; 80: 242-63.
[http://dx.doi.org/10.1016/j.tifs.2018.08.008]
[92]
Sharifi-Rad J, Ayatollahi SA, Varoni EM, et al. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia 2017; 65: 802-12.
[93]
Salehi B, Martorell M, Arbiser JL, et al. Antioxidants: positive or negative actors? Biomolecules 2018; 8(4): 8.
[http://dx.doi.org/10.3390/biom8040124] [PMID: 30366441]
[94]
Thimóteo NSB, Iryioda TMV, Alfieri DF, et al. Cranberry juice decreases disease activity in women with rheumatoid arthritis. Nutrition 2019; 60: 112-7.
[http://dx.doi.org/10.1016/j.nut.2018.10.010] [PMID: 30553231]
[95]
Adeoso A, Atinmo T. Comparative analysis of dietary pattern, anthropometry and serum ascorbate status of persons living with or without non-Hodgkin’s lymphoma. J Public Health Africa 2018; 9(2): 768.
[http://dx.doi.org/10.4081/jphia.2018.768] [PMID: 30687475]
[96]
Martorell M, Lucas X, Alarcón-Zapata P, et al. Targeting xanthine oxidase by natural products as a therapeutic approach for mental disorders. Curr Pharm Des 2021; 27(3): 367-82.
[http://dx.doi.org/10.2174/1381612826666200621165839] [PMID: 32564744]
[97]
Adachi S, Sawada N, Yuki K, et al. Intake of vegetables and fruits and the risk of cataract incidence in a Japanese population: the Japan public health center-based prospective study. J Epidemiol 2019; 31(1): 21-9.
[http://dx.doi.org/10.2188/jea.JE20190116] [PMID: 31839643]
[98]
Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 2000; 48(2): 140-6.
[http://dx.doi.org/10.1021/jf9908345] [PMID: 10691606]
[99]
Speisky H, López-Alarcón C, Gómez M, Fuentes J, Sandoval-Acuña C. First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the south Andes region of South America. J Agric Food Chem 2012; 60(36): 8851-9.
[http://dx.doi.org/10.1021/jf205167k] [PMID: 22512599]
[100]
Falé PL, Amaral F, Amorim Madeira PJ, et al. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines. Food Chem Toxicol 2012; 50(8): 2656-62.
[http://dx.doi.org/10.1016/j.fct.2012.04.049] [PMID: 22617353]
[101]
Vogel H, González M, Faini F, et al. Antioxidant properties and TLC characterization of four Chilean Haplopappus-species known as bailahuén. J Ethnopharmacol 2005; 97(1): 97-100.
[http://dx.doi.org/10.1016/j.jep.2004.10.027] [PMID: 15652282]
[102]
Jiménez-Aspee F, Theoduloz C, Gómez-Alonso S, Hermosín-Gutiérrez I, Reyes M, Schmeda-Hirschmann G. Polyphenolic profile and antioxidant activity of meristem and leaves from “chagual” (Puya chilensis Mol.), a salad from central Chile. Food Res Int 2018; 114: 90-6.
[http://dx.doi.org/10.1016/j.foodres.2018.07.051] [PMID: 30361031]
[103]
Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem 2002; 50(21): 5844-9.
[http://dx.doi.org/10.1021/jf0202234] [PMID: 12358448]
[104]
Céspedes CL, Alarcón J, Avila JG, Nieto A. Anti-inflammatory Activity of Aristotelia chilensis Mol. (Stuntz) (Elaeocarpaceae). Bol Latinoam Caribe Plantas Med Aromat 2010; 9: 91-9.
[105]
Morikawa K, Nonaka M, Narahara M, et al. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci 2003; 74(6): 709-21.
[http://dx.doi.org/10.1016/j.lfs.2003.06.036] [PMID: 14654164]
[106]
Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res 2008; 7(3): 1089-99.
[107]
Tadić VM, Dobrić S, Marković GM, et al. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J Agric Food Chem 2008; 56(17): 7700-9.
[http://dx.doi.org/10.1021/jf801668c] [PMID: 18698794]
[108]
Wang H, Nair MG, Strasburg GM, et al. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 1999; 62(2): 294-6.
[http://dx.doi.org/10.1021/np980501m] [PMID: 10075763]
[109]
Odontuya G, Hoult JR, Houghton PJ. Structure-activity relationship for antiinflammatory effect of luteolin and its derived glycosides. Phytother Res 2005; 19(9): 782-6.
[http://dx.doi.org/10.1002/ptr.1723] [PMID: 16220571]
[110]
Reyes-Farias M, Vasquez K, Ovalle-Marin A, et al. Chilean native fruit extracts inhibit inflammation linked to the pathogenic interaction between adipocytes and macrophages. J Med Food 2015; 18(5): 601-8.
[http://dx.doi.org/10.1089/jmf.2014.0031] [PMID: 25302660]
[111]
Morales G, Paredes A, Olivares A, Bravo J. Acute oral toxicity and anti-inflammatory activity of hydroalcoholic extract from Lampaya medicinalis Phil in rats. Biol Res 2014; 47: 6.
[http://dx.doi.org/10.1186/0717-6287-47-6] [PMID: 25027298]
[112]
Backhouse N, Delporte C, Givernau M, Cassels BK, Valenzuela A, Speisky H. Anti-inflammatory and antipyretic effects of boldine. Agents Actions 1994; 42(3-4): 114-7.
[http://dx.doi.org/10.1007/BF01983475] [PMID: 7879695]
[113]
Costamagna MS, Zampini IC, Alberto MR, et al. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem 2016; 190: 392-402.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.068] [PMID: 26212988]
[114]
Quiroga EN, Sampietro DA, Sgariglia MA, Soberón JR, Vattuone MA. Antimycotic activity of 5′-prenylisoflavanones of the plant Geoffroea decorticans, against Aspergillus species. Int J Food Microbiol 2009; 132(1): 42-6.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.013] [PMID: 19375811]
[115]
Costamagna MS, Ordoñez RM, Zampini IC, Sayago JE, Isla MI. Nutritional and antioxidant properties of Geoffroea decorticans, an Argentinean fruit, and derived products (flour, arrope, decoction and hydroalcoholic beverage). Food Res Int 2013; 54: 160-8.
[http://dx.doi.org/10.1016/j.foodres.2013.05.038]
[116]
Reynoso MA, Vera N, Aristimuño ME, Daud A, Sánchez Riera A. Antinociceptive activity of fruits extracts and “arrope” of Geoffroea decorticans (chañar). J Ethnopharmacol 2013; 145(1): 355-62.
[http://dx.doi.org/10.1016/j.jep.2012.11.022] [PMID: 23195128]
[117]
Seeram NP. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 2008; 56(3): 627-9.
[http://dx.doi.org/10.1021/jf071988k] [PMID: 18211023]
[118]
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, et al. Natural products and synthetic analogs as a source of antitumor Drugs. Biomolecules 2019; 9(11): 9.
[http://dx.doi.org/10.3390/biom9110679] [PMID: 31683894]
[119]
Stoner GD, Wang LS, Casto BC. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 2008; 29(9): 1665-74.
[http://dx.doi.org/10.1093/carcin/bgn142] [PMID: 18544560]
[120]
Stoner GD, Wang LS, Seguin C, et al. Multiple berry types prevent N-nitrosomethylbenzylamine-induced esophageal cancer in rats. Pharm Res 2010; 27(6): 1138-45.
[http://dx.doi.org/10.1007/s11095-010-0102-1] [PMID: 20232121]
[121]
Li J, Yuan C, Pan L, et al. Bioassay-guided isolation of antioxidant and cytoprotective constituents from a maqui berry (aristotelia chilensis) dietary supplement ingredient as markers for qualitative and quantitative analysis. J Agric Food Chem 2017; 65(39): 8634-42.
[http://dx.doi.org/10.1021/acs.jafc.7b03261] [PMID: 28910091]
[122]
Carmona ER, Reyes-Díaz M, Parodi J, Inostroza-Blancheteau C. Antimutagenic evaluation of traditional medicinal plants from South America Peumus boldus and Cryptocarya alba using Drosophila melanogaster. J Toxicol Environ Health A 2017; 80(4): 208-17.
[http://dx.doi.org/10.1080/15287394.2017.1279574] [PMID: 28304234]
[123]
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415-28.
[http://dx.doi.org/10.1016/S0140-6736(05)66378-7] [PMID: 15836891]
[124]
Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. National Heart, Lung, and Blood Institute; American Heart Association. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 2004; 24(2): e13-8.
[PMID: 14766739]
[125]
Sharifi-Rad M, Tayeboon GS, Sharifi-Rad J, Iriti M, Varoni EM, Razazi S. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts. Cell Mol Biol 2016; 62(6): 80-5.
[PMID: 27262808]
[126]
Salehi B, Ata A, Kumar NVA, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019; 9(10)
[127]
Miranda-Rottmann S, Aspillaga AA, Pérez DD, Vasquez L, Martinez AL, Leighton F. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J Agric Food Chem 2002; 50(26): 7542-7.
[http://dx.doi.org/10.1021/jf025797n] [PMID: 12475268]
[128]
Albrecht C, Pellarin G, Rojas MJ, Albesa I, Eraso AF. Beneficial effect of Berberis buxifolia Lam, Ziziphus mistol Griseb and Prosopis alba extracts on oxidative stress induced by chloramphenicol. Medicina (B Aires) 2010; 70(1): 65-70.
[PMID: 20228027]
[129]
Schreckinger ME, Wang J, Yousef G, Lila MA, Gonzalez de Mejia E. Antioxidant capacity and in vitro inhibition of adipogenesis and inflammation by phenolic extracts of Vaccinium floribundum and Aristotelia chilensis. J Agric Food Chem 2010; 58(16): 8966-76.
[http://dx.doi.org/10.1021/jf100975m] [PMID: 23654232]
[130]
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26(8): 1001-43.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[131]
Fredes C, Montenegro G, Zoffoli JP, Santander F, Robert P. Comparison of the total phenolic content, total anthocyanin content and antioxidant activity of polyphenol-rich fruits grown in Chile. Cienc Investig Agrar 2014; 41: 49-60.
[http://dx.doi.org/10.4067/S0718-16202014000100005]
[132]
Hidalgo J, Flores C, Hidalgo MA, et al. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med 2014; 56(2)(Suppl. 3): 1-7.
[PMID: 24861886]
[133]
Davinelli S, Bertoglio JC, Zarrelli A, Pina R, Scapagnini G. A randomized clinical trial evaluating the efficacy of an anthocyanin-maqui berry extract (delphinol®) on oxidative stress biomarkers. J Am Coll Nutr 2015; 34(Suppl. 1): 28-33.
[http://dx.doi.org/10.1080/07315724.2015.1080108] [PMID: 26400431]
[134]
Fuentes L, Valdenegro M, Gómez MG, et al. Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of South America. Food Chem 2016; 196: 1239-47.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.003] [PMID: 26593612]
[135]
Falkenberg SS, Tarnow I, Guzman A, Mølgaard P, Simonsen HT. Mapuche herbal medicine inhibits blood platelet aggregation. Evid Based Complement Alternat Med 2012; 2012647620
[http://dx.doi.org/10.1155/2012/647620] [PMID: 22028732]
[136]
Jofré I, Pezoa C, Cuevas M, et al. Antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla) and its modulatory mechanism in hypotensive response. Oxid Med Cell Longev 2016; 20166513416
[http://dx.doi.org/10.1155/2016/6513416] [PMID: 27688827]
[137]
Villiger A, Sala F, Suter A, Butterweck V. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome. Phytomedicine 2015; 22(1): 138-44.
[http://dx.doi.org/10.1016/j.phymed.2014.11.015] [PMID: 25636882]
[138]
Fuentes O, Alarcón J. Bauhinia candicans stimulation of glucose uptake in isolated gastric glands of normal and diabetic rabbits. Fitoterapia 2006; 77(4): 271-5.
[http://dx.doi.org/10.1016/j.fitote.2006.03.006] [PMID: 16690222]
[139]
Lemus I, García R, Delvillar E, Knop G. Hypoglycaemic activity of four plants used in Chilean popular medicine. Phytother Res 1999; 13(2): 91-4.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199903)13:2<91:AID-PTR350>3.0.CO;2-8] [PMID: 10190178]
[140]
Luo J, Nordenvall C, Nyrén O, Adami HO, Permert J, Ye W. The risk of pancreatic cancer in patients with gastric or duodenal ulcer disease. Int J Cancer 2007; 120(2): 368-72.
[http://dx.doi.org/10.1002/ijc.22123] [PMID: 17044024]
[141]
Bahmanyar S, Ye W, Dickman PW, Nyrén O. Long-term risk of gastric cancer by subsite in operated and unoperated patients hospitalized for peptic ulcer. Am J Gastroenterol 2007; 102(6): 1185-91.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01161.x] [PMID: 17355418]
[142]
Sharifi-Rad M, Fokou PVT, Sharopov F, et al. Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules 2018; 23(7): 23.
[http://dx.doi.org/10.3390/molecules23071751] [PMID: 30018251]
[143]
Martín MJ, La-Casa C, Alarcón-de-la-Lastra C, Cabeza J, Villegas I, Motilva V. Anti-oxidant mechanisms involved in gastroprotective effects of quercetin. Z Natforsch C J Biosci 1998; 53(1-2): 82-8.
[http://dx.doi.org/10.1515/znc-1998-1-215] [PMID: 9528125]
[144]
Burgos-Edwards A, Fernández-Romero A, Carmona M, Thuissard-Vasallo I, Schmeda-Hirschmann G, Larrosa M. Effects of gastrointestinal digested polyphenolic enriched extracts of Chilean currants (Ribes magellanicum and Ribes punctatum) on in vitro fecal microbiota. Food Res Int 2020; 129108848
[http://dx.doi.org/10.1016/j.foodres.2019.108848] [PMID: 32036928]
[145]
Areche C, Sepulveda B, San Martin A, Garcia-Beltrán O, Simirgiotis M, Cañete A. An unusual mulinane diterpenoid from the Chilean plant Azorella trifurcata (Gaertn) Pers. Org Biomol Chem 2014; 12(33): 6406-13.
[http://dx.doi.org/10.1039/C4OB00966E] [PMID: 25008488]
[146]
Areche C, Schmeda-Hirschmann G, Theoduloz C, Rodríguez JA. Gastroprotective effect and cytotoxicity of abietane diterpenes from the Chilean Lamiaceae Sphacele chamaedryoides (Balbis) Briq. J Pharm Pharmacol 2009; 61(12): 1689-97.
[http://dx.doi.org/10.1211/jpp.61.12.0015] [PMID: 19958593]
[147]
Schmeda-Hirschmann G, Astudillo L, Rodríguez J, Theoduloz C, Yáñez T. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents. J Ethnopharmacol 2005; 101(1-3): 271-6.
[http://dx.doi.org/10.1016/j.jep.2005.04.027] [PMID: 15985351]
[148]
Galvez CE, Jimenez CM, Gomez ALA, Lizarraga EF, Sampietro DA. Chemical composition and antifungal activity of essential oils from Senecio nutans, Senecio viridis, Tagetes terniflora and Aloysia gratissima against toxigenic Aspergillus and Fusarium species. Nat Prod Res 2020; 34(10): 1442-5.
[http://dx.doi.org/10.1080/14786419.2018.1511555] [PMID: 30456990]
[149]
Araya-Contreras T, Veas R, Escobar CA, Machuca P, Bittner M. Antibacterial effect of Luma apiculata (DC.) Burret extracts in clinically important bacteria. Int J Microbiol 2019; 20197803726
[http://dx.doi.org/10.1155/2019/7803726] [PMID: 31737073]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy