Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Identifying Underlying Issues Related to the Inactive Excipients of Transfersomes based Drug Delivery System

Author(s): Drashti Patel and Bappaditya Chatterjee*

Volume 27, Issue 7, 2021

Published on: 16 October, 2020

Page: [971 - 980] Pages: 10

DOI: 10.2174/1381612826666201016144354

Price: $65

Abstract

Transfersomes are bilayer vesicles composed of phospholipid and edge activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid, has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one, termed as edge activators or surfactant, has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients, such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.

Keywords: Transfersomes, phospholipid, surfactant, edge activators, vesicle size, drug delivery.

[1]
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS, Grice, Yousuf Mohammed SN. Topical and transdermal drug delivery: From simple potions to smart technologies. Curr Drug Deliv 2019; 16(5): 444-60.
[http://dx.doi.org/10.2174/1567201816666190201143457] [PMID: 30714524]
[2]
Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 2010; 1(1): 109-31.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]
[3]
Roohnikan M, Laszlo E, Babity S, Brambilla D. A snapshot of transdermal and topical drug delivery research in Canada. Pharmaceutics 2019; 11(6): 256.
[http://dx.doi.org/10.3390/pharmaceutics11060256] [PMID: 31159422]
[4]
Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv 2006; 13(3): 175-87.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[5]
More SB, Nandgude TD, Poddar SS. Vesicles as a tool for enhanced topical drug delivery. Asian J Pharm 2016; 10: 196-209.
[6]
Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015; 7(4): 438-70.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[7]
Luís A, Ruela M, Perissinato AG, Esselin M, Lino DS. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci 2016; 52(3): 527-44.
[http://dx.doi.org/10.1590/s1984-82502016000300018]
[8]
Güng S. New formulation strategies in topical antifungal therapy. Journal of Cosmetics Dermatological Sciences and Applications 2013; 3: 56-65.
[http://dx.doi.org/10.4236/jcdsa.2013.31A009]
[9]
Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017; 9(4): 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[10]
Ahad A, Al-Saleh AA, Al-Mohizea AM, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J 2017; 25(7): 1040-6.
[http://dx.doi.org/10.1016/j.jsps.2017.01.006] [PMID: 29158713]
[11]
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int J Nanomedicine 2017; 12: 5087-108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[12]
Pawar AY. Transfersome: A novel technique which improves transdermal permeability. Asian Journal of Pharmaceutics 2016; 10(4): 425-36.
[13]
Barba AA, Bochicchio S, Dalmoro A, Lamberti G. Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications. Pharmaceutics 2019; 11(8): 5-7.
[http://dx.doi.org/10.3390/pharmaceutics11080360] [PMID: 31344836]
[14]
Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev Exp 2017; 8(1): 1325708.
[http://dx.doi.org/10.1080/20022727.2017.1325708] [PMID: 30410704]
[15]
Bhasin B, Londhe VY. An overview of transfersomal drug delivery. Int J Pharm Sci Res 2018; 9(6): 2175-84.
[16]
Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed Res Int 2013; 2013: 616810.
[http://dx.doi.org/10.1155/2013/616810] [PMID: 23936825]
[17]
Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018; 10(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics10010026] [PMID: 29473897]
[18]
Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enharancement and therapeutic effect improvement in vivo . Asian J Pharm Sci 2013; 8(6): 336-45.
[http://dx.doi.org/10.1016/j.ajps.2013.09.005]
[19]
Zhang YT, Xu YM, Zhang SJ, et al. In vivo microdialysis for the evaluation of transfersomes as a novel transdermal delivery vehicle for cinnamic acid. Drug Dev Ind Pharm 2014; 40(3): 301-7.
[http://dx.doi.org/10.3109/03639045.2012.756888] [PMID: 23350690]
[20]
Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J 2012; 20(4): 355-63.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[21]
Vinod KR, Kumar MS, Anbazhagan S, et al. Critical issues related to transfersomes - novel vesicular system. Acta Sci Pol Technol Aliment 2012; 11(1): 67-82.
[PMID: 22230977]
[22]
U.S. Food and Drug Administration. CFR - Code of Federal Regulations Title 21. US Department of Health & Human Services. 2019. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=210.3
[23]
Desai PM, Liew CV, Heng PWS, Heng S. Review of disintegrants and the disintegration phenomena. J Pharm Sci 2016; 105(9): 2545-55.
[http://dx.doi.org/10.1016/j.xphs.2015.12.019] [PMID: 27506604]
[24]
Chaurasiya P, Ganju E, Upmanyu N, Ray SK, Jain P. Transfersomes : A novel technique for transdermal drug delivery. J Drug Deliv Ther 2019; 9(1): 279-85.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[25]
Bharadia P. Transfersomes : New dominants for transdermal drug delivery. Am J Pharm Tech Res 2012; 2(3): 71-91.
[26]
Kulkarni PR, Yadav JD, Vaidya KA, Gandhi PP. Transferosomes: An emerging tool for transdermal drug delivery. Int J Pharm Sci Res 2011; 2(4): 735.
[27]
Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm 2012; 436(1-2): 291-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.003] [PMID: 22796030]
[28]
Ascenso A, Raposo S, Batista C, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine 2015; 10(10): 5837-51.
[http://dx.doi.org/10.2147/IJN.S86186] [PMID: 26425085]
[29]
Srinivas K. Current role of nanomaterials in cosmetics. J Chem Pharm Res 2016; 8(5): 906-14.
[30]
Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: In vitro evaluation. Artif Cells Nanomed Biotechnol 2017; 45(7): 1452-62.
[http://dx.doi.org/10.1080/21691401.2016.1247850] [PMID: 28050929]
[31]
Elkomy MH, El Menshawe SF, Abou-Taleb HA, Elkarmalawy MH. Loratadine bioavailability via buccal transferosomal gel: Formulation, statistical optimization, in vitro / in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv 2017; 24(1): 781-91.
[http://dx.doi.org/10.1080/10717544.2017.1321061] [PMID: 28480758]
[32]
Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015; 10(2): 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[33]
Morilla MJ. Ultradeformable phospholipid vesicles as a drug delivery system : A review. Research and Reports in Transdermal Drug Delivery 2015; 4: 55-69.
[34]
González-Rodríguez ML, Arroyo CM, Cózar-Bernal MJ, et al. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev Ind Pharm 2016; 42(10): 1683-94.
[http://dx.doi.org/10.3109/03639045.2016.1165691] [PMID: 26981839]
[35]
Parkash V, Maan S, Chaudhary V, Jogpal V, Mittal G. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J Bioequiv 2018; 10: 99-106.
[http://dx.doi.org/10.4172/0975-0851.1000385]
[36]
Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv 2012; 19(7): 354-61.
[http://dx.doi.org/10.3109/10717544.2012.724472] [PMID: 23043648]
[37]
Pichot R, Watson RL, Norton IT. Phospholipids at the interface: Current trends and challenges. Int J Mol Sci 2013; 14(6): 11767-94.
[http://dx.doi.org/10.3390/ijms140611767] [PMID: 23736688]
[38]
Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine 2016; 11: 2279-304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[39]
van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 2014; 116(9): 1088-107.
[http://dx.doi.org/10.1002/ejlt.201400219] [PMID: 25400504]
[40]
Yusuf M, Sharma V, Pathak K. Nanovesicles for transdermal delivery of felodipine: Development, characterization, and pharmacokinetics. Int J Pharm Investig 2014; 4(3): 119-30.
[http://dx.doi.org/10.4103/2230-973X.138342] [PMID: 25126525]
[41]
Apsara STO, Thejani, Titapiwatanakun V, Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020; 12(9): 8.
[42]
El Maghraby GM, Williams AC. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv 2009; 6(2): 149-63.
[http://dx.doi.org/10.1517/17425240802691059] [PMID: 19239387]
[43]
Rahmi AD, Pangesti DM. Comparison of the characteristics of transfersomes and protransfersomes containing azelaic acid. J Young Pharmacists 2018; 10(2): 11-5.
[44]
Suriyakala PC, Satheesh Babu N, Senthil Rajan D, Prabakaran L. Phospholipids as versatile polymer in drug delivery systems. Int J Pharm Pharm Sci 2014; 6(1): 8-11.
[45]
Van Hoogevest P, Alfred F, Senthil Rajan D, Prabakaran L. Phospholipids in cosmetic carriers. Nanocosmetics Cham: Springer 2019; pp. 95-140.
[46]
Bhardwaj V, Shukla V, Singh A, Malviya R, Sharma PK. Transfersomes ultra flexible vesicles for transdermal delivery. Int J Pharm Sci Res 2010; 1(3): 12-20.
[47]
Parkash V, Maan S, Chaudhary V, Jogpal V, Mittal G, Jain V. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J Bioequivalence Bioavailab 2018; 10(5): 99-106.
[http://dx.doi.org/10.4172/0975-0851.1000385]
[48]
Liu Daicheng, Ma Fucui. Soybean phospholipids. Recent trends enhancing Divers Qual soybean Prod 2011.
[http://dx.doi.org/10.5772/20986]
[49]
Bnyan R, Khan I, Ehtezazi T, et al. Surfactant effects on lipid-based vesicles properties. J Pharm Sci 2018; 107(5): 1237-46.
[http://dx.doi.org/10.1016/j.xphs.2018.01.005] [PMID: 29336980]
[50]
Shaji J, Lal M. For enhanced transdermal delivery of COX-2 inhibitors. Int J Pharm Pharm Sci 2014; 6(1): 464-77.
[51]
El Maghraby GMM, Williams AC, Barry BW. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm 2004; 276(1-2): 143-61.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.024] [PMID: 15113622]
[52]
Sadarani B, Majumdar A, Paradkar S, et al. Enhanced skin permeation of Methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation. Biomed Pharmacother 2019; 114: 108770.
[http://dx.doi.org/10.1016/j.biopha.2019.108770] [PMID: 30913494]
[53]
Yang S, Liu L, Han J, Tang Y. Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques. Int J Cosmet Sci 2020; 42(1): 16-28.
[http://dx.doi.org/10.1111/ics.12592] [PMID: 31724203]
[54]
Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 2007; 8(4): E107.
[http://dx.doi.org/10.1208/pt0804107] [PMID: 18181528]
[55]
Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci 2012; 4(1): 2-9.
[http://dx.doi.org/10.4103/0975-7406.92724] [PMID: 22368393]
[56]
Al Shuwaili AH, Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm 2016; 102: 101-14.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.013] [PMID: 26925505]
[57]
Jójárt B, Poša M, Fiser B, Szőri M, Farkaš Z, Viskolcz B. Mixed micelles of sodium cholate and sodium dodecylsulphate 1:1 binary mixture at different temperatures--experimental and theoretical investigations. PLoS One 2014; 9(7): e102114.
[http://dx.doi.org/10.1371/journal.pone.0102114] [PMID: 25004142]
[58]
Chuacharoen T, Prasongsuk S, Sabliov CM. Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules 2019; 24(15): 2744.
[http://dx.doi.org/10.3390/molecules24152744] [PMID: 31362362]
[59]
Marwah H, Garg T, Rath G, Goyal AK. Development of transferosomal gel for trans-dermal delivery of insulin using iodine complex. Drug Deliv 2016; 23(5): 1636-44.
[http://dx.doi.org/10.3109/10717544.2016.1155243] [PMID: 27187718]
[60]
Amnuaikit T, Limsuwan T, Khongkow P, Boonme P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J Pharm Sci 2018; 13(5): 472-84.
[http://dx.doi.org/10.1016/j.ajps.2018.02.004] [PMID: 32104421]
[61]
Pitta SK, Dudhipala N, Narala A, Veerabrahma K. Development of zolmitriptan transfersomes by Box-Behnken design for nasal delivery: In vitro and in vivo evaluation. Drug Dev Ind Pharm 2018; 44(3): 484-92.
[http://dx.doi.org/10.1080/03639045.2017.1402918] [PMID: 29124986]
[62]
Bnyan R, Khan I, Ehtezazi T, et al. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J Pharm Pharmacol 2019; 71(10): 1508-19.
[http://dx.doi.org/10.1111/jphp.13149] [PMID: 31373700]
[63]
Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application : Formulation optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol 2019; 54: 101303.
[http://dx.doi.org/10.1016/j.jddst.2019.101303]
[64]
Xu Qingyi, et al. "Soybean-based surfactants and their applications." Soybean-applications and technology 2011; 341-64.
[http://dx.doi.org/10.5772/15261]
[65]
Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta 1998; 1368(2): 201-15.
[http://dx.doi.org/10.1016/S0005-2736(97)00177-6] [PMID: 9459598]
[66]
Grimaldi N, Andrade F, Segovia N, et al. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016; 45(23): 6520-45.
[http://dx.doi.org/10.1039/C6CS00409A] [PMID: 27722570]
[67]
Yuan CL, Xu ZZ, Fan MX, Liu HY, Xie YH, Zhu T. Study on characteristics and harm of surfactants. J Chem Pharm Res 2014; 6(7): 2233-7.
[68]
Morsy SMI. Review article role of surfactants in nanotechnology and their applications. Int J Curr Microbiol Appl Sci 2014; 3(5): 237-60.
[69]
US Food and Drug Administration. Inactive ingredient search for approved drug products. 2017. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm
[70]
Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant limitations. Drug Deliv 2014; 21(2): 87-100.
[http://dx.doi.org/10.3109/10717544.2013.838077] [PMID: 24156390]
[71]
Smart I, Therapy C. Micelles structure development as a strategy to improve smart cancer therapy. cancers 2018; 10(7): 238.
[72]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[73]
Ghai I, Chaudhary H, Ghai S, Kohli K, Kr V. A review of transdermal drug delivery using nano-vesicular carriers: Transfersomes. Recent Pat Nanomed 2012; 2(2): 164-71.
[http://dx.doi.org/10.2174/1877912311202020164]
[74]
Sayyad MK, Zaky AA, Samy AM. Fabrication and characterization of sildenafil citrate loaded transfersomes as a carrier for transdermal drug delivery. Pharm Pharmacol Int J 2017; 5(2): 37-46.
[http://dx.doi.org/10.15406/ppij.2017.05.00113]
[75]
Utami IONORATD, Ramadon D. Transfersomal gel containing Green tea (Camellia sinensis L. kuntze) leaves extract: Increasing in vitro penetration. Asian J Pharm Clin Res 2017; 10(8): 294-8.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i8.19124]
[76]
Lin H, Xie Q, Huang X, et al. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int J Nanomedicine 2018; 13: 831-42.
[http://dx.doi.org/10.2147/IJN.S150086] [PMID: 29467573]
[77]
Mahmood S, Chatterjee B, Uk M. Nano transfersomes vesicles of raloxifene hcl with sorbitan 80 : Formulation and characterization. Bioequiv Bioavailab Int J 2018; 2: 1-7.
[78]
Wu PS, Li YS, Kuo YC, Tsai SJJ, Lin CC. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019; 24(3): 1-12.
[http://dx.doi.org/10.3390/molecules24030600] [PMID: 30743989]
[79]
Omar MM, Hasan OA, El Sisi AM. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int J Nanomedicine 2019; 14: 1551-62.
[http://dx.doi.org/10.2147/IJN.S201356] [PMID: 30880964]
[80]
Kateh Shamshiri M, Momtazi-Borojeni AA, Khodabandeh Shahraky M, Rahimi F. Lecithin soybean phospholipid nano-transfersomes as potential carriers for transdermal delivery of the human growth hormone. J Cell Biochem 2019; 120(6): 9023-33.
[http://dx.doi.org/10.1002/jcb.28176] [PMID: 30506803]
[81]
El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm 2010; 397(1-2): 164-72.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.034] [PMID: 20599487]
[82]
Molinaro R, Gagliardi A, Mancuso A, et al. Development and in vivo evaluation of multidrug ultradeformable vesicles for the treatment of skin inflammation. Pharmaceutics 2019; 11(12): 644.
[http://dx.doi.org/10.3390/pharmaceutics11120644] [PMID: 31816840]
[83]
Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech 2013; 14(1): 133-40.
[http://dx.doi.org/10.1208/s12249-012-9904-2] [PMID: 23242556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy