Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Rotundic Acid Regulates the Effects of Let-7f-5p on Caco2 Cell Proliferation

Author(s): Yuan Feng, Xinran Liu, Yueqing Han, Mantian Chen, Lin Zhang, Yuling Hu, Liya Chen, Gang Chen* and Ning Li*

Volume 21, Issue 7, 2021

Published on: 30 July, 2020

Page: [902 - 909] Pages: 8

DOI: 10.2174/1871520620999200730165829

Price: $65

Abstract

Background & Objective: Nowadays, the interaction between natural products and microRNAs provides a promising field for exploring the chemopreventive agents for various cancers. As a member of microRNAs, the expression of let-7f-5p is universally downregulated in Colorectal Cancer (CRC). The present study aimed to uncover the function of let-7f-5p in the proliferation of human colon cancer cell line Caco2 and explored chemopreventive agents from natural resources that can prevent the development of CRC.

Methods: Herein, Caco2 cells were transfected with let-7f-5p mimic and inhibitor to manipulate let-7f-5p levels, and the expression of let-7f-5p was performed by RT-qPCR. Next, we determined how let-7f-5p regulates Caco2 cell proliferation by using MTT, wound-healing, cell cycle, and colony formation assays. Besides, to further understand the effect of let-7f-5p, we evaluated the protein level of AMER3 and SLC9A9 by using western blotting assays.

Results: The results showed a suppressive function of let-7f-5p on Caco2 cell proliferation and then put forward a triterpenoid (Rotundic Acid, RA) which significant antagonized the effect of cell proliferation, restitution after wounding, and colony formation caused by let-7f-5p. Moreover, the western blot results further indicated that the inhibitory effect of RA might be due to its suppressive role in let-7f-5p-targeted AMER3 and SLC9A9 regulation.

Conclusion: Our validation study results confirmed that let-7f-5p was a potent tumor suppressor gene of Caco2 cell proliferation, and RA showed as a regulator of the effect of let-7f-5p on cell proliferation and then could be a potential chemopreventive agent for CRC treatment.

Keywords: Caco2 cells, colorectal cancer, let-7f-5p, rotundic acid, proliferation, AMER3, SLC9A9.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Feng, Y.; Zhang, Y.; Zhou, D.; Chen, G.; Li, N. MicroRNAs, intestinal inflammatory and tumor. Bioorg. Med. Chem. Lett., 2019, 29(16), 2051-2058.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.013] [PMID: 31213403]
[3]
Ghanbari, R.; Mosakhani, N.; Sarhadi, V.K.; Armengol, G.; Nouraee, N.; Mohammadkhani, A.; Khorrami, S.; Arefian, E.; Paryan, M.; Malekzadeh, R.; Knuutila, S. Simultaneous underexpression of let-7a-5p and let-7f-5p microRNAs in plasma and stool samples from early stage colorectal carcinoma. Biomark. Cancer, 2016, 7(Suppl. 1), 39-48.
[PMID: 26793011]
[4]
Chen, G.; Feng, Y.; Li, X.; Jiang, Z.; Bei, B.; Zhang, L.; Han, Y.; Li, Y.; Li, N. Post-transcriptional gene regulation in colitis associated cancer. Front. Genet., 2019, 10, 585.
[http://dx.doi.org/10.3389/fgene.2019.00585] [PMID: 31275360]
[5]
Yuan, F.; Xiao, X.; Che, G.; Wang, Y.; Wang, T.; Luo, X.; Liang, W.; Gao, L.; Zhang, L. A functional variant in the flanking region of pri-let-7f contributes to colorectal cancer risk in a Chinese population. J. Cell. Physiol., 2019, 234, 15717.
[http://dx.doi.org/10.1002/jcp.28227] [PMID: 30740676]
[6]
Chen, G.; Ma, Y.; Jiang, Z.; Feng, Y.; Han, Y.; Tang, Y.; Zhang, J.; Ni, H.; Li, X.; Li, N. Lico A causes ER stress and apoptosis via up-regulating miR-144-3p in human lung cancer cell line H292. Front. Pharmacol., 2018, 9, 837-837.
[http://dx.doi.org/10.3389/fphar.2018.00837] [PMID: 30108506]
[7]
Ozbey, U.; Attar, R.; Romero, M.A.; Alhewairini, S.S.; Afshar, B.; Sabitaliyevich, U.Y.; Hanna-Wakim, L.; Ozcelik, B.; Farooqi, A.A. Apigenin as an effective anticancer natural product: Spotlight on TRAIL, WNT/β-catenin, JAK-STAT pathways, and microRNAs. J. Cell. Biochem., 2018, 120, 1060-1067.
[http://dx.doi.org/10.1002/jcb.27575] [PMID: 30278099]
[8]
Lv, Y.; So, K.F.; Wong, N.K.; Xiao, J. Anti-cancer activities of S-allylmercaptocysteine from aged garlic. Chin. J. Nat. Med., 2019, 17(1), 43-49.
[http://dx.doi.org/10.1016/S1875-5364(19)30008-1] [PMID: 30704623]
[9]
Han, Y.; Zhang, L.; Li, W.; Liu, X.; Xiao, J.; Chen, G.; Li, N. Natural CAC chemopreventive agents from Ilex rotunda Thunb. J. Nat. Med., 2019, 73(3), 456-467.
[http://dx.doi.org/10.1007/s11418-019-01281-z] [PMID: 30758715]
[10]
Saimaru, H.; Orihara, Y.; Tansakul, P.; Kang, Y.H.; Shibuya, M.; Ebizuka, Y. Production of triterpene acids by cell suspension cultures of Olea europaea. Chem. Pharm. Bull. (Tokyo), 2007, 55(5), 784-788.
[http://dx.doi.org/10.1248/cpb.55.784] [PMID: 17473469]
[11]
Kim, N.C.; Desjardins, A.E.; Wu, C.D.; Kinghorn, A.D. Activity of triterpenoid glycosides from the root bark of Mussaenda macrophylla against two oral pathogens. J. Nat. Prod., 1999, 62(10), 1379-1384.
[http://dx.doi.org/10.1021/np9901579] [PMID: 10543897]
[12]
Thang, T.D.; Kuo, P.C.; Yu, C.S.; Shen, Y.C.; Hoa, T.M.; Van Thanh, T.; Kuo, Y.H.; Yang, M.L.; Wu, T.S. Chemical constituents of the leaves of Glochidion obliquum and their bioactivity. Arch. Pharm. Res., 2011, 34(3), 383-389.
[http://dx.doi.org/10.1007/s12272-011-0305-y] [PMID: 21547669]
[13]
Hsu, Y.M.; Hung, Y.C.; Hu, L.; Lee, Y.J.; Yin, M.C. Anti-diabetic effects of madecassic acid and rotundic acid. Nutrients, 2015, 7(12), 10065-10075.
[http://dx.doi.org/10.3390/nu7125512] [PMID: 26633490]
[14]
Haraguchi, H.; Kataoka, S.; Okamoto, S.; Hanafi, M.; Shibata, K. Antimicrobial triterpenes from Ilex integra and the mechanism of antifungal action. Phytother. Res., 1999, 13(2), 151-156.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199903)13:2<151::AID-PTR391>3.0.CO;2-C] [PMID: 10190191]
[15]
Roy, G.; Guan, S.; Liu, H.; Zhang, L.; Guan, S.; Liu, H.; Zhang, L. Rotundic acid induces DNA damage and cell death in hepatocellular carcinoma through AKT/mTOR and MAPK pathways. Front. Oncol., 2019, 9, 545.
[http://dx.doi.org/10.3389/fonc.2019.00545] [PMID: 31293977]
[16]
Nan, M.L.; Wang, X.; Li, H.J.; Yu, D.H.; Sun, W.Y.; Xu, H.M.; He, Y.F.; Zhao, Q.C. Rotundic acid induces Cas3-MCF-7 cell apoptosis through the p53 pathway. Oncol. Lett., 2019, 17(1), 630-637.
[PMID: 30655810]
[17]
Yan, S.; Han, X.; Xue, H.; Zhang, P.; Guo, X.; Li, T.; Guo, X.; Yuan, G.; Deng, L.; Li, G. Let-7f inhibits glioma cell proliferation, migration, and invasion by targeting periostin. J. Cell. Biochem., 2015, 116(8), 1680-1692.
[http://dx.doi.org/10.1002/jcb.25128] [PMID: 25735962]
[18]
Liu, W.J.; Xu, Q.; Sun, L.P.; Dong, Q.G.; He, C.Y.; Yuan, Y. Expression of serum let-7c, let-7i, and let-7f microRNA with its target gene, pepsinogen C, in gastric cancer and precancerous disease. Tumour Biol., 2015, 36(5), 3337-3343.
[http://dx.doi.org/10.1007/s13277-014-2967-9] [PMID: 25549793]
[19]
Silva, J.; García, V.; Zaballos, Á.; Provencio, M.; Lombardía, L.; Almonacid, L.; García, J.M.; Domínguez, G.; Peña, C.; Diaz, R.; Herrera, M.; Varela, A.; Bonilla, F. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Respir. J., 2011, 37(3), 617-623.
[http://dx.doi.org/10.1183/09031936.00029610] [PMID: 20595154]
[20]
Li, D.; Chen, L.; Zhao, W.; Hao, J.; An, R. MicroRNA-let-7f-1 is induced by lycopene and inhibits cell proliferation and triggers apoptosis in prostate cancer. Mol. Med. Rep., 2016, 13(3), 2708-2714.
[http://dx.doi.org/10.3892/mmr.2016.4841] [PMID: 26847233]
[21]
Hilly, O.; Pillar, N.; Stern, S.; Strenov, Y.; Bachar, G.; Shomron, N.; Shpitzer, T. Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol. Lett., 2016, 12(3), 1729-1736.
[http://dx.doi.org/10.3892/ol.2016.4892] [PMID: 27602107]
[22]
Wang, Y.; Chen, X.; Zhang, Y.; Song, J. Potential proteins targeted by let-7f-5p in HeLa cells. Biosci. Trends, 2017, 11(3), 363-365.
[http://dx.doi.org/10.5582/bst.2017.01037] [PMID: 28420861]
[23]
Brauburger, K.; Akyildiz, S.; Ruppert, J.G.; Graeb, M.; Bernkopf, D.B.; Hadjihannas, M.V.; Behrens, J. Adenomatous Polyposis Coli (APC) membrane recruitment 3, a member of the APC membrane recruitment family of APC-binding proteins, is a positive regulator of Wnt-β-catenin signalling. FEBS J., 2014, 281(3), 787-801.
[http://dx.doi.org/10.1111/febs.12624] [PMID: 24251807]
[24]
Xu, M.; Wang, S.; Song, Y.U.; Yao, J.; Huang, K.; Zhu, X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol. Lett., 2016, 11(5), 3075-3080.
[http://dx.doi.org/10.3892/ol.2016.4331] [PMID: 27123066]
[25]
Ueda, M.; Iguchi, T.; Masuda, T.; Komatsu, H.; Nambara, S.; Sakimura, S.; Hirata, H.; Uchi, R.; Eguchi, H.; Ito, S.; Sugimachi, K.; Mizushima, T.; Doki, Y.; Mori, M.; Mimori, K. Up-regulation of SLC9A9 promotes cancer progression and is involved in poor prognosis in colorectal cancer. Anticancer Res., 2017, 37(5), 2255-2263.
[http://dx.doi.org/10.21873/anticanres.11562] [PMID: 28476790]
[26]
Gomez Zubieta, D.M.; Hamood, M.A.; Beydoun, R.; Pall, A.E.; Kondapalli, K.C. MicroRNA-135a regulates NHE9 to inhibit proliferation and migration of glioblastoma cells. Cell Commun. Signal., 2017, 15(1), 55.
[http://dx.doi.org/10.1186/s12964-017-0209-7] [PMID: 29268774]
[27]
Koustas, E.; Karamouzis, M.V.; Mihailidou, C.; Schizas, D.; Papavassiliou, A.G. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett., 2017, 396, 94-102.
[http://dx.doi.org/10.1016/j.canlet.2017.03.023] [PMID: 28323034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy