Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Nerve Growth Factor in Alcohol Use Disorders

Author(s): Flavio Maria Ceci, Giampiero Ferraguti, Carla Petrella, Antonio Greco, Massimo Ralli, Angela Iannitelli, Valentina Carito, Paola Tirassa, George N. Chaldakov, Marisa Patrizia Messina, Mauro Ceccanti and Marco Fiore*

Volume 19, Issue 1, 2021

Published on: 28 April, 2020

Page: [45 - 60] Pages: 16

DOI: 10.2174/1570159X18666200429003239

Price: $65

Abstract

The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.

Keywords: NGF, alcohol use disorders, binge drinking, chronic alcohol consumption, addiction, fetal alcohol spectrum disorders.

Graphical Abstract

[1]
Barde, Y.A. Neurotrophic factors: an evolutionary perspective. J. Neurobiol., 1994, 25(11), 1329-1333.
[http://dx.doi.org/10.1002/neu.480251102] [PMID: 7852988]
[2]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[3]
Levi-Montalcini, R. The nerve growth factor 35 years later.Science, (80-.),1987, 237(4819), 1154-1162..
[4]
Fiore, M.; Chaldakov, G.N.; Aloe, L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev. Neurosci., 2009, 20(2), 133-145.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.2.133] [PMID: 19774790]
[5]
Ebendal, T. NGF in CNS: experimental data and clinical implications. Prog. Growth Factor Res., 1989, 1(3), 143-159.
[http://dx.doi.org/10.1016/0955-2235(89)90008-2] [PMID: 2562358]
[6]
Levi-Montalcini, R.; Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool., 1951, 116(2), 321-361.
[http://dx.doi.org/10.1002/jez.1401160206] [PMID: 14824426]
[7]
Meakin, S.O.; Shooter, E.M. The nerve growth factor family of receptors. Trends Neurosci., 1992, 15(9), 323-331.
[http://dx.doi.org/10.1016/0166-2236(92)90047-C] [PMID: 1382329]
[8]
Donovan, M.J.; Miranda, R.C.; Kraemer, R.; McCaffrey, T.A.; Tessarollo, L.; Mahadeo, D.; Sharif, S.; Kaplan, D.R.; Tsoulfas, P.; Parada, L. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am. J. Pathol., 1995, 147(2), 309-324.
[PMID: 7639328]
[9]
Kaplan, D.R.; Martin-Zanca, D.; Parada, L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature, 1991, 350(6314), 158-160.
[http://dx.doi.org/10.1038/350158a0] [PMID: 1706478]
[10]
Chao, M.V. Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? J. Neurosci. Res., 2000, 59(3), 353-355.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000201)59:3<353:AID-JNR8>3.0.CO;2-S] [PMID: 10679770]
[11]
Huang, E.J.; Reichardt, L.F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem., 2003, 72(1), 609-642.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[12]
Smith, C.A.; Farrah, T.; Goodwin, R.G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 1994, 76(6), 959-962.
[http://dx.doi.org/10.1016/0092-8674(94)90372-7] [PMID: 8137429]
[13]
Yano, H.; Chao, M.V. Neurotrophin receptor structure and interactions. Pharm. Acta Helv., 2000, 74(2-3), 253-260.
[http://dx.doi.org/10.1016/S0031-6865(99)00036-9] [PMID: 10812966]
[14]
Banfield, M.J.; Naylor, R.L.; Robertson, A.G.S.; Allen, S.J.; Dawbarn, D.; Brady, R.L. Specificity in Trk receptor: neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure, 2001, 9(12), 1191-1199.
[http://dx.doi.org/10.1016/S0969-2126(01)00681-5] [PMID: 11738045]
[15]
Wiesmann, C.; Ultsch, M.H.; Bass, S.H.; de Vos, A.M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature, 1999, 401(6749), 184-188.
[http://dx.doi.org/10.1038/43705] [PMID: 10490030]
[16]
Sanes, D.H.; Reh, T.A.; Harris, W.A. Development of the Nervous System; Elsevier, 2005.
[17]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Ralli, M.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Attilia, M.L.; Ceccarelli, R. Nerve growth factor in brain diseases. Biomed. Rev., 2018, 29(0), 1-16.
[http://dx.doi.org/10.14748/bmr.v29.5845]
[18]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[19]
Hamanoue, M.; Middleton, G.; Wyatt, S.; Jaffray, E.; Hay, R.T.; Davies, A.M. p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci., 1999, 14(1), 28-40.
[http://dx.doi.org/10.1006/mcne.1999.0770] [PMID: 10433815]
[20]
Dobrowsky, R. T.; Werner, M. H.; Castellino, A. M.; Chao, M. V.; Hannun, Y. A. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science, (80-.), 1994 265(5178),1596-9..
[21]
DeFreitas, M. F.; McQuillen, P. S.; Shatz, C. J. A A novel p75ntr signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J. Neurosci., 2001, 11, 21(14), 5121- 9..
[22]
MacPhee, I.J.; Barker, P.A. Brain-derived neurotrophic factor binding to the p75 neurotrophin receptor reduces TrkA signaling while increasing serine phosphorylation in the TrkA intracellular domain. J. Biol. Chem., 1997, 272(38), 23547-23551.
[http://dx.doi.org/10.1074/jbc.272.38.23547] [PMID: 9295291]
[23]
Fiore, M.; Amendola, T.; Triaca, V.; Tirassa, P.; Alleva, E.; Aloe, L. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells’ activation. Eur. J. Neurosci., 2003, 17(7), 1455-1464.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02573.x] [PMID: 12713648]
[24]
Di Fausto, V.; Fiore, M.; Tirassa, P.; Lambiase, A.; Aloe, L. Eye drop NGF administration promotes the recovery of chemically injured cholinergic neurons of adult mouse forebrain. Eur. J. Neurosci., 2007, 26(9), 2473-2480.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05883.x] [PMID: 17970722]
[25]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: a novel component of neuroendocrinology. Cell Biol. Int., 2010, 34(10), 1051-1053.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[26]
Alleva, E.; Aloe, L.; Bigi, S. An updated role for nerve growth factor in neurobehavioural regulation of adult vertebrates. Rev. Neurosci., 1993, 4(1), 41-62.
[http://dx.doi.org/10.1515/REVNEURO.1993.4.1.41] [PMID: 7952382]
[27]
Tore, F.; Tonchev, A.; Fiore, M.; Tuncel, N.; Atanassova, P.; Aloe, L.; Chaldakov, G. From adipose tissue protein secretion to adipopharmacology of disease. Immunol. Endocr. Metab. Agents Med. Chem., 2007, 7(2), 149-155.
[http://dx.doi.org/10.2174/187152207780363712]
[28]
Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.; Rosso, P.; Fico, E.; Messina, M.P.; Carito, V.; Tarani, L.; Ceccanti, M.; Fiore, M. Nerve growth factor in the psychiatric brain. Riv. Psichiatr., 2020, 55(1), 4-15.
[http://dx.doi.org/10.1708/3301.3271332051620] [PMID: 32051620]
[29]
Fiore, M.; Angelucci, F.; Aloe, L.; Iannitelli, A.; Korf, J. Nerve growth factor and brain-derived neurotrophic factor in schizophrenia and depression: Findings in humans, and animal models. Curr. Neuropharmacol., 2005, 1(2), 109-123.
[http://dx.doi.org/10.2174/1570159033477206]
[30]
Amendola, T.; Fiore, M.; Aloe, L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci. Lett., 2003, 345(1), 37-40.
[http://dx.doi.org/10.1016/S0304-3940(03)00491-9] [PMID: 12809983]
[31]
Fiore, M.; Triaca, V.; Amendola, T.; Tirassa, P.; Aloe, L. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol. Behav., 2002, 77(2-3), 437-443.
[http://dx.doi.org/10.1016/S0031-9384(02)00875-2] [PMID: 12419420]
[32]
Cervilla, J.A.; Rivera, M.; Molina, E.; Torres-González, F.; Bellón, J.A.; Moreno, B.; de Dios Luna, J.; Lorente, J.A.; de Diego-Otero, Y.; King, M.; Nazareth, I.; Gutiérrez, B. PREDICT Study Core Group. The 5-HTTLPR s/s genotype at the serotonin transporter gene (SLC6A4) increases the risk for depression in a large cohort of primary care attendees: the PREDICT-gene study. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2006, 141B(8), 912-917.
[http://dx.doi.org/10.1002/ajmg.b.30455] [PMID: 17063469]
[33]
De Santis, S.; Pace, A.; Bove, L.; Cognetti, F.; Properzi, F.; Fiore, M.; Triaca, V.; Savarese, A.; Simone, M.D.; Jandolo, B.; Manzione, L.; Aloe, L. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin. Cancer Res., 2000, 6(1), 90-95.
[PMID: 10656436]
[34]
Aloe, L.; Manni, L.; Properzi, F.; De Santis, S.; Fiore, M. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis. Auton. Neurosci., 2000, 86(1-2), 84-93.
[http://dx.doi.org/10.1016/S1566-0702(00)00247-2] [PMID: 11269929]
[35]
Chaldakov, G.N.; Tunçel, N.; Beltowski, J.; Fiore, M.; Ranćić, G.; Tonchev, A.; Panayotov, P.; Evtimov, N.; Hinev, A.; Anakievski, D. Adipoparacrinology: An emerging field in biomedical research. Balkan Med. J., 2012, 29(1), 2-9.
[http://dx.doi.org/10.5152/balkanmedj.2012.022]
[36]
Rosso, P.; De Nicolò, S.; Carito, V.; Fiore, M.; Iannitelli, A.; Moreno, S.; Tirassa, P. Ocular nerve growth factor administration modulates brain-derived neurotrophic factor signaling in prefrontal cortex of healthy and diabetic rats. CNS Neurosci. Ther., 2017, 23(3), 198-208.
[http://dx.doi.org/10.1111/cns.12661] [PMID: 28044424]
[37]
Tirassa, P.; Rosso, P.; Iannitelli, A. Ocular nerve growth factor (ngf) and ngf eye drop application as paradigms to investigate ngf neuroprotective and reparative actions. Methods Mol. Biol., 2018, 1727, 19-38.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_2] [PMID: 29222770]
[38]
Aloe, L.; Tirassa, P.; Lambiase, A. The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacol. Res., 2008, 57(4), 253-258.
[http://dx.doi.org/10.1016/j.phrs.2008.01.010] [PMID: 18329283]
[39]
Adriaenssens, E.; Vanhecke, E.; Saule, P.; Mougel, A.; Page, A.; Romon, R.; Nurcombe, V.; Le Bourhis, X.; Hondermarck, H. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res., 2008, 68(2), 346-351.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1183] [PMID: 18199526]
[40]
Aloe, L.; Skaper, S.D.; Leon, A.; Levi-Montalcini, R. Nerve growth factor and autoimmune diseases. Autoimmunity, 1994, 19(2), 141-150.
[http://dx.doi.org/10.3109/08916939409009542] [PMID: 7772704]
[41]
D’Angelo, A.; Ceccanti, M.; Petrella, C.; Greco, A.; Tirassa, P.; Rosso, P.; Ralli, M.; Ferraguti, G.; Fiore, M.; Messina, M.P. Role of neurotrophins in pregnancy, delivery and postpartum. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 247, 32-41.
[http://dx.doi.org/10.1016/j.ejogrb.2020.01.046] [PMID: 32058187]
[42]
Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R. Oxidative stress inhibition by resveratrol in alcohol dependent mice. Nutrition, 2020, 79-80110783
[http://dx.doi.org/10.1016/j.nut.2020.110783]
[43]
Manni, L.; Di Fausto, V.; Fiore, M.; Aloe, L. Repeated restraint and nerve growth factor administration in male and female mice: effect on sympathetic and cardiovascular mediators of the stress response. Curr. Neurovasc. Res., 2008, 5(1), 1-12.
[http://dx.doi.org/10.2174/156720208783565654] [PMID: 18289016]
[44]
De Nicoló, S.; Tarani, L.; Ceccanti, M.; Maldini, M.; Natella, F.; Vania, A.; Chaldakov, G.N.; Fiore, M. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition, 2013, 29(4), 681-687.
[http://dx.doi.org/10.1016/j.nut.2012.11.007] [PMID: 23466052]
[45]
Carito, V.; Venditti, A.; Bianco, A.; Ceccanti, M.; Serrilli, A.M.; Chaldakov, G.; Tarani, L.; De Nicolò, S.; Fiore, M. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat. Prod. Res., 2014, 28(22), 1970-1984.
[http://dx.doi.org/10.1080/14786419.2014.918977] [PMID: 24865115]
[46]
Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[47]
Carito, V.; Ceccanti, M.; Tarani, L.; Ferraguti, G.; Chaldakov, G.N.; Fiore, M. Neurotrophins’ modulation by olive polyphenols. Curr. Med. Chem., 2016, 23(28), 3189-3197.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[48]
Carito, V.; Ciafrè, S.; Tarani, L.; Ceccanti, M.; Natella, F.; Iannitelli, A.; Tirassa, P.; Chaldakov, G.N.; Ceccanti, M.; Boccardo, C.; Fiore, M. TNF-α and IL-10 modulation induced by polyphenols extracted by olive pomace in a mouse model of paw inflammation. Ann. Ist. Super. Sanita, 2015, 51(4), 382-386.
[http://dx.doi.org/10.4415/ANN-15-04-2126783228] [PMID: 26783228]
[49]
Chuenkova, M.V.; Pereira, P.M. Chagas’ disease parasite promotes neuron survival and differentiation through TrkA nerve growth factor receptor. J. Neurochem., 2004, 91(2), 385-394.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02724.x] [PMID: 15447671]
[50]
Martinelli, P.M.; Camargos, E.R.; Azevedo, A.A.; Chiari, E.; Morel, G.; Machado, C.R. Cardiac NGF and GDNF expression during Trypanosoma cruzi infection in rats. Auton. Neurosci., 2006, 130(1-2), 32-40.
[http://dx.doi.org/10.1016/j.autneu.2006.05.004] [PMID: 16854632]
[51]
Fiore, M.; Moroni, R.; Alleva, E.; Aloe, L. Schistosoma mansoni: influence of infection on mouse behavior. Exp. Parasitol., 1996, 83(1), 46-54.
[http://dx.doi.org/10.1006/expr.1996.0047] [PMID: 8654550]
[52]
Fiore, M.; Moroni, R.; Aloe, L. Removal of the submaxillary salivary glands and infection with the trematode Schistosoma mansoni alters exploratory behavior and pain thresholds in female mice. Physiol. Behav., 1997, 62(2), 399-406.
[http://dx.doi.org/10.1016/S0031-9384(97)00036-X] [PMID: 9251986]
[53]
Fiore, M.; Aloe, L. Neuroinflammatory implication of Schistosoma mansoni infection in the mouse. Arch. Physiol. Biochem., 2001, 109(4), 361-364.
[http://dx.doi.org/10.1076/apab.109.4.361.4247] [PMID: 11935373]
[54]
Fiore, M.; Alleva, E.; Moroni, R.; Aloe, L. Infection with Schistosoma mansoni in mice induces changes in nociception and exploratory behavior. Physiol. Behav., 1998, 65(2), 347-353.
[http://dx.doi.org/10.1016/S0031-9384(98)00171-1] [PMID: 9855486]
[55]
Aloe, L.; Moroni, R.; Fiore, M.; Angelucci, F. Chronic parasite infection in mice induces brain granulomas and differentially alters brain nerve growth factor levels and thermal responses in paws. Acta Neuropathol., 1996, 92(3), 300-305.
[http://dx.doi.org/10.1007/s004010050522] [PMID: 8870833]
[56]
Aloe, L.; Moroni, R.; Angelucci, F.; Fiore, M. Role of TNF-α but not NGF in murine hyperalgesia induced by parasitic infection. Psychopharmacology (Berl.), 1997, 134(3), 287-292.
[http://dx.doi.org/10.1007/s002130050451] [PMID: 9438678]
[57]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Dimitrov, D.; Pancheva, R.; Rancic, G.; Aloe, L. Homo obesus: a metabotrophin-deficient species. Pharmacology and nutrition insight. Curr. Pharm. Des., 2007, 13(21), 2176-2179.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[58]
Chaldakov, G.N.; Fiore, M.; Ghenev, P.I.; Stankulov, I.S.; Aloe, L. Atherosclerotic lesions: possible interactive involvement of intima, adventitia and associated adipose tissue. Int. Med. J., 2000, 7(1), 43-49.
[59]
Chaldakov, G.N.; Fiore, M.; Hristova, M.G.; Aloe, L. Metabotrophic potential of neurotrophins:implication in obesity and related diseases? Med. Sci. Monit., 2003, 9(10), HY19-HY21.
[PMID: 14523335]
[60]
Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Hristova, M.; Antonelli, A.; Manni, L.; Ghenev, P.I.; Angelucci, F.; Aloe, L. NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome. Arch. Physiol. Biochem., 2001, 109(4), 357-360.
[http://dx.doi.org/10.1076/apab.109.4.357.4249] [PMID: 11935372]
[61]
Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Manni, L.; Hristova, M.G.; Antonelli, A.; Ghenev, P.I.; Aloe, L. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog. Brain Res.,; , 2004, 146, pp. 279-289.
[http://dx.doi.org/10.1016/S0079-6123(03)46018-4] [PMID: 14699970]
[62]
Chaldakov, G.N.; Stankulov, I.S.; Fiore, M.; Ghenev, P.I.; Aloe, L. Nerve growth factor levels and mast cell distribution in human coronary atherosclerosis. Atherosclerosis, 2001, 159(1), 57-66.
[http://dx.doi.org/10.1016/S0021-9150(01)00488-9] [PMID: 11689207]
[63]
Manni, L.; Nikolova, V.; Vyagova, D.; Chaldakov, G.N.; Aloe, L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int. J. Cardiol., 2005, 102(1), 169-171.
[http://dx.doi.org/10.1016/j.ijcard.2004.10.041] [PMID: 15939120]
[64]
Bersani, G.; Iannitelli, A.; Fiore, M.; Angelucci, F.; Aloe, L. Data and hypotheses on the role of nerve growth factor and other neurotrophins in psychiatric disorders. Med. Hypotheses, 2000, 55(3), 199-207.
[http://dx.doi.org/10.1054/mehy.1999.1044] [PMID: 10985909]
[65]
Ceccanti, M.; Inghilleri, M.; Attilia, M.L.; Raccah, R.; Fiore, M.; Zangen, A.; Ceccanti, M. Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. A pilot study. Can. J. Physiol. Pharmacol., 2015, 93(4), 283-290.
[http://dx.doi.org/10.1139/cjpp-2014-0188] [PMID: 25730614]
[66]
Ciafrè, S.; Carito, V.; Tirassa, P.; Ferraguti, G.; Attilia, M.L.; Ciolli, P.; Messina, M.P.; Ceccanti, M.; Fiore, M. Ethanol consumption and innate neuroimmunity. Biomed. Rev., 2017, 28, 49-61.
[http://dx.doi.org/10.14748/bmr.v28.4451]
[67]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M.; Ciafrè, S.; Carito, V.; Ferraguti, G. How alcohol drinking affects our genes: an epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[68]
Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106.
[http://dx.doi.org/10.1708/2925.2941029912210] [PMID: 29912210]
[69]
Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[70]
Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[71]
Bernardin, F.; Maheut-Bosser, A.; Paille, F. Cognitive impairments in alcohol-dependent subjects. Front. Psychiatry, 2014, 5, 78.
[http://dx.doi.org/10.3389/fpsyt.2014.00078] [PMID: 25076914]
[72]
Green, C.R.; Mihic, A.M.; Nikkel, S.M.; Stade, B.C.; Rasmussen, C.; Munoz, D.P.; Reynolds, J.N. Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the cambridge neuropsychological tests automated battery (CANTAB). J. Child Psychol. Psychiatry, 2009, 50(6), 688-697.
[http://dx.doi.org/10.1111/j.1469-7610.2008.01990.x] [PMID: 19175817]
[73]
Fiore, M.; Grace, A.A.; Korf, J.; Stampachiacchiere, B.; Aloe, L. Impaired brain development in the rat following prenatal exposure to methylazoxymethanol acetate at gestational day 17 and neurotrophin distribution. Neuroreport, 2004, 15(11), 1791-1795.
[http://dx.doi.org/10.1097/01.wnr.0000135934.03635.6a] [PMID: 15257149]
[74]
Fiore, M.; Korf, J.; Angelucci, F.; Talamini, L.; Aloe, L. Prenatal exposure to methylazoxymethanol acetate in the rat alters neurotrophin levels and behavior: considerations for neurodevelopmental diseases. Physiol. Behav., 2000, 71(1-2), 57-67.
[http://dx.doi.org/10.1016/S0031-9384(00)00310-3] [PMID: 11134686]
[75]
Fiore, M.; Korf, J.; Antonelli, A.; Talamini, L.; Aloe, L. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol. Teratol., 2002, 24(2), 179-191.
[http://dx.doi.org/10.1016/S0892-0362(01)00214-8] [PMID: 11943506]
[76]
Fiore, M.; Talamini, L.; Angelucci, F.; Koch, T.; Aloe, L.; Korf, J. Prenatal methylazoxymethanol acetate alters behavior and brain NGF levels in young rats: a possible correlation with the development of schizophrenia-like deficits. Neuropharmacology, 1999, 38(6), 857-869.
[http://dx.doi.org/10.1016/S0028-3908(99)00007-6] [PMID: 10465689]
[77]
Di Fausto, V.; Fiore, M.; Aloe, L. Exposure in fetus of methylazoxymethanol in the rat alters brain neurotrophins’ levels and brain cells’ proliferation. Neurotoxicol. Teratol., 2007, 29(2), 273-281.
[http://dx.doi.org/10.1016/j.ntt.2006.10.007] [PMID: 17142008]
[78]
Parikh, V.; Evans, D.R.; Khan, M.M.; Mahadik, S.P. Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr. Res., 2003, 60(2-3), 117-123.
[http://dx.doi.org/10.1016/S0920-9964(02)00434-6] [PMID: 12591576]
[79]
Mohammadi, A.; Rashidi, E.; Amooeian, V.G. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res., 2018, 265, 25-38.
[http://dx.doi.org/10.1016/j.psychres.2018.04.036] [PMID: 29680514]
[80]
Bracci-Laudiero, L.; De Stefano, M.E. NGF in early embryogenesis, differentiation, and pathology in the nervous and immune systems. Curr. Top. Behav. Neurosci., 2016, 29, 125-152.
[81]
Niewiadomska, G.; Baksalerska-Pazera, M.; Riedel, G. The septo-hippocampal system, learning and recovery of function. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(5), 791-805.
[http://dx.doi.org/10.1016/j.pnpbp.2009.03.039] [PMID: 19389457]
[82]
Aloe, L.; Bracci-Laudiero, L.; Bonini, S.; Manni, L. The expanding role of nerve growth factor: from neurotrophic activity to immunologic diseases. Allergy, 1997, 52(9), 883-894.
[http://dx.doi.org/10.1111/j.1398-9995.1997.tb01247.x] [PMID: 9298172]
[83]
Cattoretti, G.; Schiró, R.; Orazi, A.; Soligo, D.; Colombo, M.P. Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood, 1993, 81(7), 1726-1738.
[http://dx.doi.org/10.1182/blood.V81.7.1726.1726] [PMID: 7681701]
[84]
Ciriaco, E.; Dall’Aglio, C.; Hannestad, J.; Huerta, J.J.; Laurà, R.; Germanà, G.; Vega, J.A. Localization of Trk neurotrophin receptor-like proteins in avian primary lymphoid organs thymus and bursa of Fabricius. J. Neuroimmunol., 1996, 69(1-2), 73-83.
[http://dx.doi.org/10.1016/0165-5728(96)00062-8] [PMID: 8823378]
[85]
Labouyrie, E.; Parrens, M.; de Mascarel, A.; Bloch, B.; Merlio, J.P. Distribution of NGF receptors in normal and pathologic human lymphoid tissues. J. Neuroimmunol., 1997, 77(2), 161-173.
[http://dx.doi.org/10.1016/S0165-5728(97)00055-6] [PMID: 9258246]
[86]
Aloe, L.; Simone, M.D.; Properzi, F. Nerve growth factor: a neurotrophin with activity on cells of the immune system. Microsc. Res. Tech., 1999, 45(4-5), 285-291.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19990515/01)45:4/5<285:AID-JEMT12>3.0.CO;2-3] [PMID: 10383121]
[87]
Laurenzi, M.A.; Barbany, G.; Timmusk, T.; Lindgren, J.Å.; Persson, H. Expression of mRNA encoding neurotrophins and neurotrophin receptors in rat thymus, spleen tissue and immunocompetent cells. Regulation of neurotrophin-4 mRNA expression by mitogens and leukotriene B4. Eur. J. Biochem., 1994, 223(3), 733-741.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb19047.x] [PMID: 8055949]
[88]
Aloe, L.; Properzi, F.; Probert, L.; Akassoglou, K.; Kassiotis, G.; Micera, A.; Fiore, M. Learning abilities, NGF and BDNF brain levels in two lines of TNF-α transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res., 1999, 840(1-2), 125-137.
[http://dx.doi.org/10.1016/S0006-8993(99)01748-5] [PMID: 10517960]
[89]
Aloe, L.; Fiore, M.; Probert, L.; Turrini, P.; Tirassa, P. Overexpression of tumour necrosis factor alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine, 1999, 11(1), 45-54.
[http://dx.doi.org/10.1006/cyto.1998.0397] [PMID: 10080878]
[90]
Fiore, M.; Probert, L.; Kollias, G.; Akassoglou, K.; Alleva, E.; Aloe, L. Neurobehavioral alterations in developing transgenic mice expressing TNF-α in the brain. Brain Behav. Immun., 1996, 10(2), 126-138.
[http://dx.doi.org/10.1006/brbi.1996.0013] [PMID: 8811936]
[91]
Fiore, M.; Angelucci, F.; Alleva, E.; Branchi, I.; Probert, L.; Aloe, L. Learning performances, brain NGF distribution and NPY levels in transgenic mice expressing TNF-alpha. Behav. Brain Res., 2000, 112(1-2), 165-175.
[http://dx.doi.org/10.1016/S0166-4328(00)00180-7] [PMID: 10862948]
[92]
Aloe, L.; Fiore, M. TNF-α expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci. Lett., 1997, 238(1-2), 65-68.
[http://dx.doi.org/10.1016/S0304-3940(97)00850-1] [PMID: 9464656]
[93]
Otten, U.; März, P.; Heese, K.; Hock, C.; Kunz, D.; Rose-John, S. Cytokines and neurotrophins interact in normal and diseased states. Ann. N. Y. Acad. Sci., 2000, 917(1), 322-330.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05398.x] [PMID: 11268359]
[94]
Stanisz, A.M.; Stanisz, J.A. Nerve growth factor and neuroimmune interactions in inflammatory diseases. Ann. N. Y. Acad. Sci., 2000, 917(1), 268-272.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05392.x] [PMID: 11268353]
[95]
Aloe, L.; Alleva, E.; Fiore, M. Stress and nerve growth factor: findings in animal models and humans. Pharmacol. Biochem. Behav., 2002, 73(1), 159-166.
[http://dx.doi.org/10.1016/S0091-3057(02)00757-8] [PMID: 12076735]
[96]
Manni, L.; Aloe, L.; Fiore, M. Changes in cognition induced by social isolation in the mouse are restored by electro-acupuncture. Physiol. Behav., 2009, 98(5), 537-542.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.011] [PMID: 19733189]
[97]
Aloe, L.; Bracci-Laudiero, L.; Alleva, E.; Lambiase, A.; Micera, A.; Tirassa, P. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc. Natl. Acad. Sci. USA, 1994, 91(22), 10440-10444.
[http://dx.doi.org/10.1073/pnas.91.22.10440] [PMID: 7937971]
[98]
Cirulli, F.; Alleva, E. The NGF saga: from animal models of psychosocial stress to stress-related psychopathology. Front. Neuroendocrinol., 2009, 30(3), 379-395.
[http://dx.doi.org/10.1016/j.yfrne.2009.05.002] [PMID: 19442684]
[99]
Aloe, L. Adrenalectomy decreases nerve growth factor in young adult rat hippocampus. Proc. Natl. Acad. Sci. USA, 1989, 86(14), 5636-5640.
[http://dx.doi.org/10.1073/pnas.86.14.5636] [PMID: 2664787]
[100]
Iulita, M.F.; Cuello, A.C. The NGF metabolic pathway in the cns and its dysregulation in down syndrome and Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13, 53-67.
[101]
Madziar, B.; Shah, S.; Brock, M.; Burke, R.; Lopez-Coviella, I.; Nickel, A.C.; Cakal, E.B.; Blusztajn, J.K.; Berse, B. Nerve growth factor regulates the expression of the cholinergic locus and the high-affinity choline transporter via the Akt/PKB signaling pathway. J. Neurochem., 2008, 107(5), 1284-1293.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05681.x] [PMID: 18793330]
[102]
Karami, A.; Eyjolfsdottir, H.; Vijayaraghavan, S.; Lind, G.; Almqvist, P.; Kadir, A.; Linderoth, B.; Andreasen, N.; Blennow, K.; Wall, A.; Westman, E.; Ferreira, D.; Kristoffersen Wiberg, M.; Wahlund, L.O.; Seiger, Å.; Nordberg, A.; Wahlberg, L.; Darreh-Shori, T.; Eriksdotter, M. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimers Dement., 2015, 11(11), 1316-1328.
[http://dx.doi.org/10.1016/j.jalz.2014.11.008] [PMID: 25676388]
[103]
Pongrac, J.L.; Rylett, R.J. Molecular mechanisms regulating ngf-mediated enhancement of cholinergic neuronal phenotype: c-fos trans-activation of the choline acetyltransferase gene. J. Mol. Neurosci., 2003, 11(1), 79-93.
[http://dx.doi.org/10.1385/jmn:11:1:79] [PMID: 9826788]
[104]
Oosawa, H.; Fujii, T.; Kawashima, K. Nerve growth factor increases the synthesis and release of acetylcholine and the expression of vesicular acetylcholine transporter in primary cultured rat embryonic septal cells. J. Neurosci. Res., 1999, 57(3), 381-387.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990801)57:3<381:AID-JNR10>3.0.CO;2-C] [PMID: 10412029]
[105]
Berse, B.; Szczecinska, W.; Lopez-Coviella, I.; Madziar, B.; Zemelko, V.; Kaminski, R.; Kozar, K.; Lips, K.S.; Pfeil, U.; Blusztajn, J.K. Expression of high affinity choline transporter during mouse development in vivo and its upregulation by NGF and BMP-4 in vitro. Brain Res. Dev. Brain Res., 2005, 157(2), 132-140.
[http://dx.doi.org/10.1016/j.devbrainres.2005.03.013] [PMID: 15885806]
[106]
Fahnestock, M.; Michalski, B.; Xu, B.; Coughlin, M.D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell. Neurosci., 2001, 18(2), 210-220.
[http://dx.doi.org/10.1006/mcne.2001.1016] [PMID: 11520181]
[107]
Barnett, R. Alcohol use disorders. Lancet, 2017, 389(10064), 25.
[http://dx.doi.org/10.1016/S0140-6736(16)32600-9] [PMID: 28093128]
[108]
Rehm, J.; Anderson, P.; Barry, J.; Dimitrov, P.; Elekes, Z.; Feijão, F.; Frick, U.; Gual, A.; Gmel, G., Jr; Kraus, L.; Marmet, S.; Raninen, J.; Rehm, M.X.; Scafato, E.; Shield, K.D.; Trapencieris, M.; Gmel, G. Prevalence of and potential influencing factors for alcohol dependence in Europe. Eur. Addict. Res., 2015, 21(1), 6-18.
[http://dx.doi.org/10.1159/000365284] [PMID: 25342593]
[109]
WHO Global Status Report on Noncommunicable Diseases, 2011, 2010
[http://dx.doi.org/10.1007/978-981-287-206-7_55784246]
[110]
American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders : DSM-5; American Psychiatric Association, 2013.
[111]
Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; Hasin, D.S. Epidemiology of DSM-5 alcohol use disorder: results from the national epidemiologic survey on alcohol and related conditions iii. JAMA Psychiatry, 2015, 72(8), 757-766.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.0584] [PMID: 26039070]
[112]
Esser, M.B.; Hedden, S.L.; Kanny, D.; Brewer, R.D.; Gfroerer, J.C.; Naimi, T.S. Prevalence of alcohol dependence among US adult drinkers, 2009-2011. Prev. Chronic Dis., 2014, 11E206
[http://dx.doi.org/10.5888/pcd11.140329] [PMID: 25412029]
[113]
Mukamal, K.J.; Conigrave, K.M.; Mittleman, M.A.; Camargo, C.A., Jr; Stampfer, M.J.; Willett, W.C.; Rimm, E.B. Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N. Engl. J. Med., 2003, 348(2), 109-118.
[http://dx.doi.org/10.1056/NEJMoa022095] [PMID: 12519921]
[114]
Mukamal, K.J.; Maclure, M.; Muller, J.E.; Mittleman, M.A. Binge drinking and mortality after acute myocardial infarction. Circulation, 2005, 112(25), 3839-3845.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.574749] [PMID: 16365208]
[115]
Roerecke, M.; Rehm, J. Cause-specific mortality risk in alcohol use disorder treatment patients: a systematic review and meta-analysis. Int. J. Epidemiol., 2014, 43(3), 906-919.
[http://dx.doi.org/10.1093/ije/dyu018] [PMID: 24513684]
[116]
Gilpin, N.W.; Koob, G.F. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res. Health, 2008.19881886
[117]
Rehm, J.; Mathers, C.; Popova, S.; Thavorncharoensap, M.; Teerawattananon, Y.; Patra, J.; Hanson, D. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet, 2009, 373(9682), 2223-2233.
[http://dx.doi.org/10.1016/S0140-6736(09)60746-7] [PMID: 19560604]
[118]
Koob, G.F. Neurocircuitry of alcohol addiction: synthesis from animal models. Handb. Clin. Neurol., 2014, 125, 33-54.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00003-3] [PMID: 25307567]
[119]
Connor, J.P.; Haber, P.S.; Hall, W.D. Seminar alcohol use disorders. Lancet, 2016, 387, 988-998.https://doi.org//10.1016/
[120]
Morikawa, H.; Morrisett, R.A. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int. Rev. Neurobiol., 2010, 91, 235-288.
[http://dx.doi.org/10.1016/S0074-7742(10)91008-8] [PMID: 20813245]
[121]
Chastain, G. Alcohol, neurotransmitter systems, and behavior. J. Gen. Psychol., 2006, 133(4), 329-335.
[http://dx.doi.org/10.3200/GENP.133.4.329-335] [PMID: 17128954]
[122]
Babor, T.; Caetano, R.; Casswell, S.; Edwards, G.; Giesbrecht, N.; Graham, K.; Grube, J.; Gruenewald, P.; Hill, L.; Holder, H. Alcohol: No Ordinary Commodity: Research and Public Policy. Rev. Bras. Psiquiatr., 2003, 26(4), 280-283.
[123]
McCambridge, J.; McAlaney, J.; Rowe, R. Adult consequences of late adolescent alcohol consumption: a systematic review of cohort studies. PLoS Med., 2011, 8(2)e1000413
[http://dx.doi.org/10.1371/journal.pmed.1000413] [PMID: 21346802]
[124]
Chartier, K.G.; Hesselbrock, M.N.; Hesselbrock, V.M. Development and vulnerability factors in adolescent alcohol use. Child Adolesc. Psychiatr. Clin. N. Am., 2010, 19(3), 493-504.
[http://dx.doi.org/10.1016/j.chc.2010.03.004] [PMID: 20682217]
[125]
Agrawal, A.; Lynskey, M.T. Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction, 2008, 103(7), 1069-1081.
[http://dx.doi.org/10.1111/j.1360-0443.2008.02213.x] [PMID: 18494843]
[126]
Li, D.; Zhao, H.; Gelernter, J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet., 2012, 131(5), 725-737.
[http://dx.doi.org/10.1007/s00439-011-1116-4] [PMID: 22102315]
[127]
Palmer, R.H.C.; McGeary, J.E.; Francazio, S.; Raphael, B.J.; Lander, A.D.; Heath, A.C.; Knopik, V.S. The genetics of alcohol dependence: advancing towards systems-based approaches. Drug Alcohol Depend., 2012, 125(3), 179-191.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.07.005] [PMID: 22854292]
[128]
Heath, A.C.; Whitfield, J.B.; Martin, N.G.; Pergadia, M.L.; Goate, A.M.; Lind, P.A.; McEvoy, B.P.; Schrage, A.J.; Grant, J.D.; Chou, Y.L.; Zhu, R.; Henders, A.K.; Medland, S.E.; Gordon, S.D.; Nelson, E.C.; Agrawal, A.; Nyholt, D.R.; Bucholz, K.K.; Madden, P.A.; Montgomery, G.W. A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications. Biol. Psychiatry, 2011, 70(6), 513-518.
[http://dx.doi.org/10.1016/j.biopsych.2011.02.028] [PMID: 21529783]
[129]
Babor, T.; Higgins-Biddle, J. C.; Saunders, J. B.; Monteiro, M. G. The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care. Geneva World Heal. Organ.,. 2001.
[130]
Bush, K.; Kivlahan, D.R.; McDonell, M.B.; Fihn, S.D.; Bradley, K.A. The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. ambulatory care quality improvement project (acquip). alcohol use disorders identification test. Arch. Intern. Med., 1998, 158(16), 1789-1795.
[http://dx.doi.org/10.1001/archinte.158.16.1789] [PMID: 9738608]
[131]
Dhalla, S.; Kopec, J.A. The CAGE Questionnaire for Alcohol Misuse: A Review of Reliability and Validity Studies; Clinical and Investigative Medicine, 2007, p. 30.
[132]
Bertholet, N.; Winter, M.R.; Cheng, D.M.; Samet, J.H.; Saitz, R. How accurate are blood (or breath) tests for identifying self-reported heavy drinking among people with alcohol dependence? Alcohol Alcohol., 2014, 49(4), 423-429.
[http://dx.doi.org/10.1093/alcalc/agu016] [PMID: 24740846]
[133]
Litten, R.Z.; Bradley, A.M.; Moss, H.B. Alcohol biomarkers in applied settings: recent advances and future research opportunities. Alcohol. Clin. Exp. Res., 2010, 34(6), 955-967.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01170.x] [PMID: 20374219]
[134]
Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[135]
Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3)e12724
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[136]
Ledda, R.; Battagliese, G.; Attilia, F.; Rotondo, C.; Pisciotta, F.; Gencarelli, S.; Greco, A.; Fiore, M.; Ceccanti, M.; Attilia, M.L. Drop-out, relapse and abstinence in a cohort of alcoholic people under detoxification. Physiol. Behav., 2019, 198, 67-75.
[http://dx.doi.org/10.1016/j.physbeh.2018.10.009] [PMID: 30336230]
[137]
Coriale, G.; Battagliese, G.; Pisciotta, F.; Attilia, M.L.; Porrari, R.; De Rosa, F.; Vitali, M.; Carito, V.; Messina, M.P.; Greco, A.; Fiore, M.; Ceccanti, M. Behavioral responses in people affected by alcohol use disorder and psychiatric comorbidity: correlations with addiction severity. Ann. Ist. Super. Sanita, 2019, 55(2), 131-142.
[http://dx.doi.org/10.4415/ANN_19_02_0531264636] [PMID: 31264636]
[138]
Sinson, G.; Perri, B.R.; Trojanowski, J.Q.; Flamm, E.S.; McIntosh, T.K. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J. Neurosurg., 1997, 86(3), 511-518.
[http://dx.doi.org/10.3171/jns.1997.86.3.0511] [PMID: 9046309]
[139]
Seabold, G.K.; Luo, J.; Miller, M.W. Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons. Brain Res. Dev. Brain Res., 1998, 108(1-2), 139-145.
[http://dx.doi.org/10.1016/S0165-3806(98)00043-1] [PMID: 9693792]
[140]
Heaton, M.B.; Mitchell, J.J.; Paiva, M. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum. J. Neurobiol., 2000, 45(2), 95-104.
[http://dx.doi.org/10.1002/1097-4695(20001105)45:2<95:AID-NEU4>3.0.CO;2-Y] [PMID: 11018771]
[141]
Moore, D.B.; Madorsky, I.; Paiva, M.; Barrow, H.M. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. J. Neurobiol., 2004, 60(1), 101-113.
[http://dx.doi.org/10.1002/neu.20009] [PMID: 15188276]
[142]
Lee, B.C.; Choi, I.G.; Kim, Y.K.; Ham, B.J.; Yang, B.H.; Roh, S.; Choi, J.; Lee, J.S.; Oh, D.Y.; Chai, Y.G. Relation between plasma brain-derived neurotrophic factor and nerve growth factor in the male patients with alcohol dependence. Alcohol, 2009, 43(4), 265-269.
[http://dx.doi.org/10.1016/j.alcohol.2009.04.003] [PMID: 19560628]
[143]
Köhler, S.; Klimke, S.; Hellweg, R.; Lang, U.E. Serum brain-derived neurotrophic factor and nerve growth factor concentrations change after alcohol withdrawal: preliminary data of a case-control comparison. Eur. Addict. Res., 2013, 19(2), 98-104.
[http://dx.doi.org/10.1159/000342334] [PMID: 23128606]
[144]
Heberlein, A.; Muschler, M.; Frieling, H.; Behr, M.; Eberlein, C.; Wilhelm, J.; Gröschl, M.; Kornhuber, J.; Bleich, S.; Hillemacher, T. Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addict. Biol., 2013, 18(3), 508-510.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00307.x] [PMID: 21392176]
[145]
Suzuki, M.M.; Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet., 2008, 9(6), 465-476.
[http://dx.doi.org/10.1038/nrg2341] [PMID: 18463664]
[146]
Schiepers, O.J.G.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(2), 201-217.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.003] [PMID: 15694227]
[147]
Uhart, M.; Wand, G.S. Stress, alcohol and drug interaction: an update of human research. Addict. Biol., 2009, 14(1), 43-64.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00131.x] [PMID: 18855803]
[148]
Heberlein, A.; Schuster, R.; Kleimann, A.; Groh, A.; Kordon, A.; Opfermann, B.; Lichtinghagen, R.; Gröschl, M.; Kornhuber, J.; Bleich, S.; Frieling, H.; Hillemacher, T. Joint effects of the epigenetic alteration of neurotrophins and cytokine signaling: a possible exploratory model of affective symptoms in alcohol-dependent patients? Alcohol Alcohol., 2017, 52(3), 277-281.
[http://dx.doi.org/10.1093/alcalc/agw100] [PMID: 28430931]
[149]
Lhullier, A.C.; Moreira, F.P.; da Silva, R.A.; Marques, M.B.; Bittencourt, G.; Pinheiro, R.T.; Souza, L.D.M.; Portela, L.V.; Lara, D.R.; Jansen, K.; Wiener, C.D.; Oses, J.P. Increased serum neurotrophin levels related to alcohol use disorder in a young population sample. Alcohol. Clin. Exp. Res., 2015, 39(1), 30-33.
[http://dx.doi.org/10.1111/acer.12592] [PMID: 25623403]
[150]
Heberlein, A.; Bleich, S.; Bayerlein, K.; Frieling, H.; Gröschl, M.; Kornhuber, J.; Hillemacher, T. NGF plasma levels increase due to alcohol intoxication and decrease during withdrawal. Psychoneuroendocrinology, 2008, 33(7), 999-1003.
[http://dx.doi.org/10.1016/j.psyneuen.2008.05.011] [PMID: 18639986]
[151]
Kopera, M.; Wojnar, M.; Brower, K.; Glass, J.; Nowosad, I.; Gmaj, B.; Szelenberger, W. Cognitive functions in abstinent alcohol-dependent patients. Alcohol, 2012, 46(7), 665-671.
[http://dx.doi.org/10.1016/j.alcohol.2012.04.005] [PMID: 22703992]
[152]
Bae, H.; Ra, Y.; Han, C.; Kim, D.J. Decreased serum level of NGF in alcohol-dependent patients with declined executive function. Neuropsychiatr. Dis. Treat., 2014, 10, 2153-2157.
[http://dx.doi.org/10.2147/NDT.S72067] [PMID: 25419139]
[153]
Aloe, L.; Tuveri, M.A.; Guerra, G.; Pinna, L.; Tirassa, P.; Micera, A.; Alleva, E. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol. Clin. Exp. Res., 1996, 20(3), 462-465.
[http://dx.doi.org/10.1111/j.1530-0277.1996.tb01076.x] [PMID: 8727238]
[154]
Carlezon, W.A., Jr; Thomas, M.J. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology, 2009, 56(Suppl. 1), 122-132.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.075] [PMID: 18675281]
[155]
Pierce, R.C.; Kumaresan, V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev., 2006, 30(2), 215-238.
[http://dx.doi.org/10.1016/j.neubiorev.2005.04.016] [PMID: 16099045]
[156]
Sesack, S.R.; Grace, A.A. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology, 2010, 35(1), 27-47.
[http://dx.doi.org/10.1038/npp.2009.93] [PMID: 19675534]
[157]
Meredith, G.E. The Synaptic Framework for Chemical Signaling in Nucleus Accumbens; In Annals of the New York Academy of Sciences, 1999.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb09266.x]
[158]
Sperk, G.; Hamilton, T.; Colmers, W.F. Neuropeptide Y in the dentate gyrus. Prog. Brain Res., 2007, 163, 285-297.. , 2007.
[http://dx.doi.org/10.1016/S0079-6123(07)63017-9] [PMID: 17765725]
[159]
Milner, T.A.; Wiley, R.G.; Kurucz, O.S.; Prince, S.R.; Pierce, J.P. Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. J. Comp. Neurol., 1997, 386(1), 46-59.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970915)386:1<46:AID-CNE6>3.0.CO;2-D] [PMID: 9303524]
[160]
Baraban, S.C. Neuropeptide Y and epilepsy: recent progress, prospects and controversies. Neuropeptides, 2004, 38(4), 261-265.
[http://dx.doi.org/10.1016/j.npep.2004.04.006] [PMID: 15337378]
[161]
Borbély, E.; Scheich, B.; Helyes, Z. Neuropeptides in learning and memory. Neuropeptides, 2013, 47(6), 439-450.
[http://dx.doi.org/10.1016/j.npep.2013.10.012] [PMID: 24210137]
[162]
Malva, J.O.; Xapelli, S.; Baptista, S.; Valero, J.; Agasse, F.; Ferreira, R.; Silva, A.P. Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. Neuropeptides, 2012, 46(6), 299-308.
[http://dx.doi.org/10.1016/j.npep.2012.09.001] [PMID: 23116540]
[163]
Thorsell, A.; Neuropeptide, Y.; Neuropeptide, Y. NPY) in alcohol intake and dependence. Peptides, 2007, 28(2), 480-483.
[http://dx.doi.org/10.1016/j.peptides.2006.11.017] [PMID: 17239487]
[164]
Guha, M. Handbook of Neurochemistry and Molecular Biology: Neuroactive Proteins and Peptides (Handbook of Neurochemistry and Molecular Biology: Neuroactive Proteins and Peptides (3rd Editi. Ref. Rev, 3rd Edition; Lajtha, Abel.; Lim, Ramon, Eds.. , 2014.
[165]
Pereira, P.A.; Neves, J.; Vilela, M.; Sousa, S.; Cruz, C.; Madeira, M.D. Chronic alcohol consumption leads to neurochemical changes in the nucleus accumbens that are not fully reversed by withdrawal. Neurotoxicol. Teratol., 2014, 44, 53-61.
[http://dx.doi.org/10.1016/j.ntt.2014.05.007] [PMID: 24893293]
[166]
Miller, M.W. Repeated episodic exposure to ethanol affects neurotrophin content in the forebrain of the mature rat. Exp. Neurol., 2004, 189(1), 173-181.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.026] [PMID: 15296847]
[167]
Korkotian, E.; Botalova, A.; Odegova, T.; Segal, M. Chronic exposure to alcohol alters network activity and morphology of cultured hippocampal neurons. Neurotoxicology, 2015, 47, 62-71.
[http://dx.doi.org/10.1016/j.neuro.2015.01.005] [PMID: 25655208]
[168]
Miki, T.; Yokoyama, T.; Sumitani, K.; Kusaka, T.; Warita, K.; Matsumoto, Y.; Wang, Z.Y.; Wilce, P.A.; Bedi, K.S.; Itoh, S.; Takeuchi, Y. Ethanol neurotoxicity and dentate gyrus development. Congenit. Anom. (Kyoto), 2008, 48(3), 110-117.
[http://dx.doi.org/10.1111/j.1741-4520.2008.00190.x] [PMID: 18778455]
[169]
Matthews, D.B.; Morrow, A.L. Effects of acute and chronic ethanol exposure on spatial cognitive processing and hippocampal function in the rat. Hippocampus, 2000, 10(1), 122-130.
[http://dx.doi.org/10.1002/(SICI)1098-1063(2000)10:1<122:AID-HIPO13>3.0.CO;2-V] [PMID: 10706223]
[170]
Andrade, J.P.; Fernando, P.M.; Madeira, M.D.; Paula-Barbosa, M.M.; Cadete-Leite, A.; Zimmer, J. Effects of chronic alcohol consumption and withdrawal on the somatostatin-immunoreactive neurons of the rat hippocampal dentate hilus. Hippocampus, 1992, 2(1), 65-71.
[http://dx.doi.org/10.1002/hipo.450020109] [PMID: 1364047]
[171]
Cadete-Leite, A.; Brandão, F.; Andrade, J.P.; Ribeiro-da-Silva, A.; Paula-Barbosa, M.M. The GABAergic system of the dentate gyrus after withdrawal from chronic alcohol consumption: effects of intracerebral grafting and putative neuroprotective agents. Alcohol Alcohol., 1997, 32(4), 471-484.
[http://dx.doi.org/10.1093/oxfordjournals.alcalc.a008282] [PMID: 9269855]
[172]
Arendt, T.; Henning, D.; Gray, J.A.; Marchbanks, R. Loss of neurons in the rat basal forebrain cholinergic projection system after prolonged intake of ethanol. Brain Res. Bull., 1988, 21(4), 563-569.
[http://dx.doi.org/10.1016/0361-9230(88)90193-1] [PMID: 2850095]
[173]
Cadete-Leite, A.; Brandão, F.; Tajrine, D.; Antunes, S.; Ribeiro-da-Silva, A.; Andrade, J.P. Intracerebral grafts promote recovery of the cholinergic innervation of the hippocampal formation in rats withdrawn from chronic alcohol intake. An immunocytochemical study. Neuroscience, 1997, 79(2), 383-397.
[http://dx.doi.org/10.1016/S0306-4522(96)00688-4] [PMID: 9200723]
[174]
Lukoyanov, N.V.; Madeira, M.D.; Paula-Barbosa, M.M. Behavioral and neuroanatomical consequences of chronic ethanol intake and withdrawal. Physiol. Behav., 1999, 66(2), 337-346.
[http://dx.doi.org/10.1016/S0031-9384(98)00301-1] [PMID: 10336163]
[175]
Paula-Barbosa, M.M.; Brandão, F.; Madeira, M.D.; Cadete-Leite, A. Structural changes in the hippocampal formation after long-term alcohol consumption and withdrawal in the rat. Addiction, 1993, 88(2), 237-247.
[http://dx.doi.org/10.1111/j.1360-0443.1993.tb00807.x] [PMID: 8220061]
[176]
Milner, T.A.; Hammel, J.R.; Ghorbani, T.T.; Wiley, R.G.; Pierce, J.P. Septal Cholinergic deafferentation of the dentate gyms results in a loss of a subset of neuropeptide y somata and an increase in synaptic area on remaining neuropeptide y dendrites. Brain Res., 1999, 831(1-2), 322-336.
[http://dx.doi.org/10.1016/S0006-8993(99)01493-6]
[177]
Pereira, P.A.; Rocha, J.P.; Cardoso, A.; Vilela, M.; Sousa, S.; Madeira, M.D. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus. Neurotoxicology, 2016, 54, 153-160.
[http://dx.doi.org/10.1016/j.neuro.2016.04.007] [PMID: 27090822]
[178]
Who. Global Status Report on Alcohol and Health. World Heal.Organ.,. 2014.https://doi.org//entity/substance_abuse/publications/global_alcohol_report/en/index.html5155205
[179]
National Institute on Alcohol Abuse and Alcoholism. NIAAA Council Approves Definition of Binge Drinking. NIAAA Newsl. , 2004, 1643..
[180]
Patrick, M.E.; Schulenberg, J.E.; Martz, M.E.; Maggs, J.L.; O’Malley, P.M.; Johnston, L.D. Extreme binge drinking among 12th-grade students in the United States: prevalence and predictors. JAMA Pediatr., 2013, 167(11), 1019-1025.
[http://dx.doi.org/10.1001/jamapediatrics.2013.2392] [PMID: 24042318]
[181]
Ardic-Pulas, T. Binge Drinking; Aide Soignante, 2016.
[182]
Lobach, K.S. Binge drinking and associated health risk behaviors among high school students. J. Urban Health, 2007, 119(1), 76-85.
[http://dx.doi.org/10.1007/s11524-007-9184-4]
[183]
Szabo, G. Consequences of alcohol consumption on host defence. Alcohol Alcohol., 1999, 34(6), 830-841.
[http://dx.doi.org/10.1093/alcalc/34.6.830] [PMID: 10659718]
[184]
Mikszta, J.A.; Waltenbaugh, C.; Kim, B.S. Impaired antigen presentation by splenocytes of ethanol-consuming C57BL/6 mice. Alcohol, 1995, 12(3), 265-271.
[http://dx.doi.org/10.1016/0741-8329(94)00105-M] [PMID: 7543758]
[185]
Szabo, G.; Mandrekar, P.; Girouard, L.; Catalano, D. Regulation of human monocyte functions by acute ethanol treatment: decreased tumor necrosis factor-α, interleukin-1 β and elevated interleukin-10, and transforming growth factor-β production. Alcohol. Clin. Exp. Res., 1996, 20(5), 900-907.
[http://dx.doi.org/10.1111/j.1530-0277.1996.tb05269.x] [PMID: 8865966]
[186]
Zhao, X-J.; Marrero, L.; Song, K.; Oliver, P.; Chin, S.Y.; Simon, H.; Schurr, J.R.; Zhang, Z.; Thoppil, D.; Lee, S.; Nelson, S.; Kolls, J.K. Acute alcohol inhibits TNF-alpha processing in human monocytes by inhibiting TNF/TNF-alpha-converting enzyme interactions in the cell membrane. J. Immunol., 2003, 170(6), 2923-2931.
[http://dx.doi.org/10.4049/jimmunol.170.6.2923] [PMID: 12626543]
[187]
Aloe, L.; Bracci-Laudiero, L.; Tirassa, P. The effect of chronic ethanol intake on brain NGF level and on NGF-target tissues of adult mice. Drug Alcohol Depend., 1993, 31(2), 159-167.
[http://dx.doi.org/10.1016/0376-8716(93)90068-2] [PMID: 8436061]
[188]
Angelucci, F.; Cimino, M.; Balduini, W.; Piltillo, L.; Aloe, L. Prenatal exposure to ethanol causes differential effects in nerve growth factor and its receptor in the basal forebrain of preweaning and adult rats. J. Neural Transplant. Plast., 1997, 6(2), 63-71.
[http://dx.doi.org/10.1155/NP.1997.63] [PMID: 9306238]
[189]
Caroleo, M.C.; Costa, N.; Tirassa, P.; Aloe, L. Nerve growth factor produced by activated human monocytes/macrophages is severely affected by ethanol. Alcohol, 2004, 34(2-3), 107-114.
[http://dx.doi.org/10.1016/j.alcohol.2004.06.005] [PMID: 15902903]
[190]
Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev., 2000, 24(4), 417-463.
[http://dx.doi.org/10.1016/S0149-7634(00)00014-2]
[191]
Guo, K.H.; Li, D.P.; Gu, H.Y. Jie-Xu; Yao, Z.B. Postnatal development of nestin positive neurons in rat basal forebrain: different onset and topography with choline acetyltransferase and parvalbumin expression. Int. J. Dev. Neurosci., 2014, 35, 72-79.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.03.004] [PMID: 24657285]
[192]
Isaev, N.K.; Stelmashook, E.V.; Genrikhs, E.E. Role of nerve growth factor in plasticity of forebrain cholinergic neurons. Biochem., 2017, 82(3), 291-300.
[http://dx.doi.org/10.1134/S0006297917030075]
[193]
Zahalka, E.A.; Seidler, F.J.; Lappi, S.E.; Yanai, J.; Slotkin, T.A. Differential development of cholinergic nerve terminal markers in rat brain regions: implications for nerve terminal density, impulse activity and specific gene expression. Brain Res., 1993, 601(1-2), 221-229.
[http://dx.doi.org/10.1016/0006-8993(93)91714-4] [PMID: 8431769]
[194]
Johnston, L.D.; O’Malley, P.M.; Bachman, J.G. Monitoring the Future: National results on adolescent drug use: overview of key findings. Focus (Madison), 2014, 126.
[http://dx.doi.org/10.1176/foc.1.2.213]
[195]
White, A.M.; Kraus, C.L.; Swartzwelder, H. Many college freshmen drink at levels far beyond the binge threshold. Alcohol. Clin. Exp. Res., 2006, 30(6), 1006-1010.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00122.x] [PMID: 16737459]
[196]
Vetreno, R.P.; Broadwater, M.; Liu, W.; Spear, L.P.; Crews, F.T. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain. PLoS One, 2014, 9(11)e113421
[http://dx.doi.org/10.1371/journal.pone.0113421] [PMID: 25405505]
[197]
Coleman, L.G., Jr; He, J.; Lee, J.; Styner, M.; Crews, F.T. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol. Clin. Exp. Res., 2011, 35(4), 671-688.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01385.x] [PMID: 21223304]
[198]
Boutros, N.; Semenova, S.; Liu, W.; Crews, F.T.; Markou, A. Adolescent intermittent ethanol exposure is associated with increased risky choice and decreased dopaminergic and cholinergic neuron markers in adult rats. Int. J. Neuropsychopharmacol., 2015, 18(2)pyu003
[http://dx.doi.org/10.1093/ijnp/pyu003] [PMID: 25612895]
[199]
Swartzwelder, H.S.; Acheson, S.K.; Miller, K.M.; Sexton, H.G.; Liu, W.; Crews, F.T.; Risher, M.L. Adolescent intermittent alcohol exposure: deficits in object recognition memory and forebrain cholinergic markers. PLoS One, 2015, 10(11)e0140042
[http://dx.doi.org/10.1371/journal.pone.0140042] [PMID: 26529506]
[200]
Vetreno, R.P.; Lawrimore, C.J.; Rowsey, P.J.; Crews, F.T. Persistent adult neuroimmune activation and loss of hippocampal neurogenesis following adolescent ethanol exposure: blockade by exercise and the anti-inflammatory drug indomethacin. Front. Neurosci., 2018, 12, 200.
[http://dx.doi.org/10.3389/fnins.2018.00200] [PMID: 29643762]
[201]
Vetreno, R.P.; Patel, Y.; Patel, U.; Walter, T.J.; Crews, F.T. Adolescent intermittent ethanol reduces serotonin expression in the adult raphe nucleus and upregulates innate immune expression that is prevented by exercise. Brain Behav. Immun., 2017, 60, 333-345.
[http://dx.doi.org/10.1016/j.bbi.2016.09.018] [PMID: 27647531]
[202]
Vetreno, R.P.; Crews, F.T. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front. Neurosci., 2015, 9, 35.
[http://dx.doi.org/10.3389/fnins.2015.00035] [PMID: 25729346]
[203]
Vetreno, R.P.; Qin, L.; Crews, F.T. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol. Dis., 2013, 59, 52-62.
[http://dx.doi.org/10.1016/j.nbd.2013.07.002] [PMID: 23867237]
[204]
Vetreno, R.P.; Crews, F.T. Adolescent binge ethanol-induced loss of basal forebrain cholinergic neurons and neuroimmune activation are prevented by exercise and indomethacin. PLoS One, 2018, 13(10)e0204500
[http://dx.doi.org/10.1371/journal.pone.0204500] [PMID: 30296276]
[205]
White, A.M.; Swartzwelder, H.S. Hippocampal function during adolescence: a unique target of ethanol effects. Ann. York Acad. Sci., 2004, 1021, 206-220.
[http://dx.doi.org/10.1196/annals.1308.026]
[206]
Khakpai, F.; Nasehi, M.; Haeri-Rohani, A.; Eidi, A.; Zarrindast, M.R. Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum. Behav. Brain Res., 2012, 231(1), 1-10.
[http://dx.doi.org/10.1016/j.bbr.2012.02.049] [PMID: 22421366]
[207]
Jamal, M.; Ameno, K.; Ruby, M.; Miki, T.; Tanaka, N.; Nakamura, Y.; Kinoshita, H. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor. Brain Res., 2013, 1539, 41-47.
[http://dx.doi.org/10.1016/j.brainres.2013.09.035] [PMID: 24096209]
[208]
Jones, K.L.; Smith, D.W. Recognition of the fetal alcohol syndrome in early infancy. Lancet, 1973, 302(7836), 999-1001.
[http://dx.doi.org/10.1016/S0140-6736(73)91092-1] [PMID: 4127281]
[209]
Mattson, S.N.; Bernes, G.A.; Doyle, L.R. Fetal alcohol spectrum disorders: a review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol. Clin. Exp. Res., 2019, 43(6), 1046-1062.
[http://dx.doi.org/10.1111/acer.14040] [PMID: 30964197]
[210]
Coriale, G.; Fiorentino, D.; Di Lauro, F.; Marchitelli, R.; Scalese, B.; Fiore, M.; Maviglia, M.; Ceccanti, M. Fetal Alcohol Spectrum Disorder (FASD): neurobehavioral profile, indications for diagnosis and treatment. Riv. Psichiatr., 2013, 48(5), 359-369.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[211]
May, P.A.; Baete, A.; Russo, J.; Elliott, A.J.; Blankenship, J.; Kalberg, W.O.; Buckley, D.; Brooks, M.; Hasken, J.; Abdul-Rahman, O.; Adam, M.P.; Robinson, L.K.; Manning, M.; Hoyme, H.E. Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics, 2014, 134(5), 855-866.
[http://dx.doi.org/10.1542/peds.2013-3319] [PMID: 25349310]
[212]
Banakar, M.K.; Kudlur, N.S.; George, S. Fetal alcohol spectrum disorder(FASD. Indian J. Pediatr., 2009, 76(11), 1173-1175.
[http://dx.doi.org/10.1007/s12098-009-0239-2] [PMID: 20012791]
[213]
Cranston, M.E.; Mhanni, A.A.; Marles, S.L.; Chudley, A.E. Concordance of three methods for palpebral fissure length measurement in the assessment of fetal alcohol spectrum disorder. Can. J. Clin. Pharmacol., 2009, 16(1), e234-e241.
[PMID: 19372601]
[214]
Carito, V.; Parlapiano, G.; Rasio, D.; Paparella, R.; Paolucci, V.; Ferraguti, G.; Greco, A.; Ralli, M.; Pichini, S.; Fiore, M. Fetal Alcohol spectrum disorders in pediatrics. fasd and the pediatrician. Biomed. Rev., 2018, 29, 27-35.
[http://dx.doi.org/10.14748/bmr.v29.5847]
[215]
Abel, E. Paternal contribution to fetal alcohol syndrome. Addict. Biol., 2004, 9(2), 127-133.
[http://dx.doi.org/10.1080/13556210410001716980] [PMID: 15223537]
[216]
Ceccanti, M.; Coccurello, R.; Carito, V.; Ciafrè, S.; Ferraguti, G.; Giacovazzo, G.; Mancinelli, R.; Tirassa, P.; Chaldakov, G.N.; Pascale, E.; Ceccanti, M.; Codazzo, C.; Fiore, M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict. Biol., 2016, 21(4), 776-787.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]
[217]
Servais, L.; Hourez, R.; Bearzatto, B.; Gall, D.; Schiffmann, S.N.; Cheron, G. Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9858-9863.
[http://dx.doi.org/10.1073/pnas.0607037104] [PMID: 17535929]
[218]
Fiore, M.; Laviola, G.; Aloe, L.; di Fausto, V.; Mancinelli, R.; Ceccanti, M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology, 2009, 30(1), 59-71.
[http://dx.doi.org/10.1016/j.neuro.2008.11.009] [PMID: 19100286]
[219]
Tsuji, R.; Fattori, V.; Abe, S.; Costa, L.G.; Kobayashi, K. Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain. Neurotoxicol. Teratol., 2008, 30(3), 228-236.
[http://dx.doi.org/10.1016/j.ntt.2008.01.004] [PMID: 18358698]
[220]
Aloe, L.; Tirassa, P. The effect of long-term alcohol intake on brain NGF-target cells of aged rats. Alcohol, 1992, 9(4), 299-304.
[http://dx.doi.org/10.1016/0741-8329(92)90070-Q] [PMID: 1322141]
[221]
Driscoll, C.D.; Chen, J.S.; Riley, E.P. Passive avoidance performance in rats prenatally exposed to alcohol during various periods of gestation. Neurobehav. Toxicol. Teratol., 1982, 4(1), 99-103.
[PMID: 7070576]
[222]
al-Rabiai, S.; Miller, M.W. Effect of prenatal exposure to ethanol on the ultrastructure of layer V of mature rat somatosensory cortex. J. Neurocytol., 1989, 18(6), 711-729.
[http://dx.doi.org/10.1007/BF01187226] [PMID: 2621473]
[223]
Angelucci, F.; Fiore, M.; Cozzari, C.; Aloe, L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: a preliminary study. Neurotoxicol. Teratol., 1999, 21(4), 415-425.
[http://dx.doi.org/10.1016/S0892-0362(99)00005-7] [PMID: 10440485]
[224]
Allen, S.J.; Dawbarn, D. Clinical relevance of the neurotrophins and their receptors. Clin. Sci. (Lond.), 2006, 110(2), 175-191.
[http://dx.doi.org/10.1042/CS20050161] [PMID: 16411894]
[225]
Sun, W.; Funakoshi, H.; Nakamura, T. Localization and functional role of hepatocyte growth factor (HGF) and its receptor c-met in the rat developing cerebral cortex. Brain Res. Mol. Brain Res., 2002, 103(1-2), 36-48.
[http://dx.doi.org/10.1016/S0169-328X(02)00168-7] [PMID: 12106690]
[226]
Fiore, M.; Mancinelli, R.; Aloe, L.; Laviola, G.; Sornelli, F.; Vitali, M.; Ceccanti, M. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol. Lett., 2009, 188(3), 208-213.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.013] [PMID: 19397965]
[227]
Ceccanti, M.; Mancinelli, R.; Tirassa, P.; Laviola, G.; Rossi, S.; Romeo, M.; Fiore, M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol. Aging, 2012, 33(2), 359-367.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[228]
Lee, S.; Choi, I.; Kang, S.; Rivier, C. Role of various neurotransmitters in mediating the long-term endocrine consequences of prenatal alcohol exposure. Ann. N. Y. Acad. Sci., 2008, 1144, 176-188.
[http://dx.doi.org/10.1196/annals.1418.015] [PMID: 19076376]
[229]
Molnár, I.; Bokk, A. Decreased nerve growth factor levels in hyperthyroid Graves’ ophthalmopathy highlighting the role of neuroprotective factor in autoimmune thyroid diseases. Cytokine, 2006, 35(3-4), 109-114.
[http://dx.doi.org/10.1016/j.cyto.2006.08.002] [PMID: 17008110]
[230]
Nakagawara, A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett., 2001, 169(2), 107-114.
[http://dx.doi.org/10.1016/S0304-3835(01)00530-4] [PMID: 11431098]
[231]
Ceccanti, M.; De Nicolò, S.; Mancinelli, R.; Chaldakov, G.; Carito, V.; Ceccanti, M.; Laviola, G.; Tirassa, P.; Fiore, M. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann. Ist. Super. Sanita, 2013, 49(4), 383-390.
[http://dx.doi.org/10.4415/ANN-13-04-1124334784] [PMID: 24334784]
[232]
Ichim, G.; Tauszig-Delamasure, S.; Mehlen, P. Neurotrophins and cell death. Exp. Cell Res., 2012, 318(11), 1221-1228.
[http://dx.doi.org/10.1016/j.yexcr.2012.03.006] [PMID: 22465479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy