Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli

Author(s): Jorge Goldstein*, Krista Nuñez-Goluboay and Alipio Pinto*

Volume 19, Issue 1, 2021

Published on: 20 February, 2020

Page: [24 - 44] Pages: 21

DOI: 10.2174/1570159X18666200220143001

Price: $65

Abstract

Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.

Keywords: Neurodegeneration, neuroprotection, neuropharmacology, reactive astrocytes, microvasculature, oligodendrocytes, microglial cells, Shiga toxin 2, images, brain, cerebellum, transmission electron microscopy, fluorescence microscopy, lipopolysaccharides, inflammation, Hemolytic Uremic Syndrome.

Graphical Abstract

[1]
Konowalchuk, J.; Dickie, N.; Stavric, S.; Speirs, J.I. Properties of an Escherichia coli cytotoxin. Infect. Immun., 1978, 20(2), 575-577.
[http://dx.doi.org/10.1128/IAI.20.2.575-577.1978] [PMID: 208977]
[2]
Donnenberg, M.S. Escherichia coli: Pathotypes and Principles of Pathogenesis., 2013, 2nd Edition.
[3]
Levine, M.M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis., 1987, 155(3), 377-389.
[http://dx.doi.org/10.1093/infdis/155.3.377] [PMID: 3543152]
[4]
Zuverink, M.; Barbieri, J.T. Protein toxins that utilize gangliosides as host receptors. Prog. Mol. Biol. Transl. Sci., 2018, 156, 325-354.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.010] [PMID: 29747819]
[5]
Chaudhuri, K.; Chatterjee, S.N. Cholera Toxins; 2009 Springer.
[http://dx.doi.org/10.1007/978-3-540-88452-1]
[6]
Launders, N.; Byrne, L.; Jenkins, C.; Harker, K.; Charlett, A.; Adak, G.K. Disease severity of Shiga toxin-producing E. coli O157 and factors influencing the development of typical haemolytic uraemic syndrome: a retrospective cohort study, 2009-2012. BMJ Open, 2016, 6(1)e009933
[http://dx.doi.org/10.1136/bmjopen-2015-009933] [PMID: 26826153]
[7]
Fakhouri, F.; Zuber, J.; Frémeaux-Bacchi, V.; Loirat, C. Haemolytic uraemic syndrome. Lancet, 2017, 390(10095), 681-696.
[http://dx.doi.org/10.1016/S0140-6736(17)30062-4] [PMID: 28242109]
[8]
Picard, C.; Burtey, S.; Bornet, C.; Curti, C.; Montana, M.; Vanelle, P. Pathophysiology and treatment of typical and atypical hemolytic uremic syndrome. Pathol. Biol. (Paris), 2015, 63(3), 136-143.
[http://dx.doi.org/10.1016/j.patbio.2015.03.001] [PMID: 25845294]
[9]
Noris, M.; Remuzzi, G. Hemolytic uremic syndrome. J. Am. Soc. Nephrol., 2005, 16(4), 1035-1050.
[http://dx.doi.org/10.1681/ASN.2004100861] [PMID: 15728781]
[10]
Karmali, M.A.; Steele, B.T.; Petric, M.; Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet, 1983, 1(8325), 619-620.
[http://dx.doi.org/10.1016/S0140-6736(83)91795-6] [PMID: 6131302]
[11]
Karmali, M.A.; Petric, M.; Lim, C.; Fleming, P.C.; Arbus, G.S.; Lior, H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J. Infect. Dis., 1985, 151(5), 775-782.
[http://dx.doi.org/10.1093/infdis/151.5.775] [PMID: 3886804]
[12]
Torres, A.G.; Amaral, M.M.; Bentancor, L.; Galli, L.; Goldstein, J.; Krüger, A.; Rojas-Lopez, M. Recent advances in shiga toxin-producing Escherichia coli Research in Latin America. Microorganisms, 2018, 6(4)E100
[http://dx.doi.org/10.3390/microorganisms6040100] [PMID: 30274180]
[13]
Alconcher, L.F.; Coccia, P.A.; Suarez, A.D.C.; Monteverde, M.L.; Perez, Y. Gutiérrez, M.G.; Carlopio, P.M.; Missoni, M.L.; Balestracci, A.; Principi, I.; Ramírez, F.B.; Estrella, P.; Micelli, S.; Leroy, D.C.; Quijada, N.E.; Seminara, C.; Giordano, M.I.; Hidalgo Solís, S.B.; Saurit, M.; Caminitti, A.; Arias, A.; Rivas, M.; Risso, P.; Liern, M. Hyponatremia: a new predictor of mortality in patients with Shiga toxin-producing Escherichia coli hemolytic uremic syndrome. Pediatr. Nephrol., 2018, 33(10), 1791-1798.
[http://dx.doi.org/10.1007/s00467-018-3991-6] [PMID: 29961127]
[14]
Karch, H.; Schmidt, H.; Janetzki-Mittmann, C.; Scheef, J.; Kröger, M. Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol. Gen. Genet., 1999, 262(4-5), 600-607.
[http://dx.doi.org/10.1007/s004380051122] [PMID: 10628842]
[15]
Wagner, P.L.; Livny, J.; Neely, M.N.; Acheson, D.W.; Friedman, D.I.; Waldor, M.K. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol., 2002, 44(4), 957-970.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02950.x] [PMID: 12010491]
[16]
Wagner, P.L.; Waldor, M.K. Bacteriophage control of bacterial virulence. Infect. Immun., 2002, 70(8), 3985-3993.
[http://dx.doi.org/10.1128/IAI.70.8.3985-3993.2002] [PMID: 12117903]
[17]
Freedman, S.B.; Xie, J.; Neufeld, M.S.; Hamilton, W.L.; Hartling, L.; Tarr, P.I.; Nettel-Aguirre, A.; Chuck, A.; Lee, B.; Johnson, D.; Currie, G.; Talbot, J.; Jiang, J.; Dickinson, J.; Kellner, J.; MacDonald, J.; Svenson, L.; Chui, L.; Louie, M.; Lavoie, M.; Eltorki, M.; Vanderkooi, O.; Tellier, R.; Ali, S.; Drews, S.; Graham, T.; Pang, X.L. Alberta provincial pediatric enteric infection team (appetite). shiga toxin-producing Escherichia coli Infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clin. Infect. Dis., 2016, 62(10), 1251-1258.
[http://dx.doi.org/10.1093/cid/ciw099] [PMID: 26917812]
[18]
Goldwater, P.N.; Bettelheim, K.A. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med., 2012, 10, 12.
[http://dx.doi.org/10.1186/1741-7015-10-12] [PMID: 22300510]
[19]
Bitzan, M.; Moebius, E.; Ludwig, K.; Müller-Wiefel, D.E.; Heesemann, J.; Karch, H. High incidence of serum antibodies to Escherichia coli O157 lipopolysaccharide in children with hemolytic-uremic syndrome. J. Pediatr., 1991, 119(3), 380-385.
[http://dx.doi.org/10.1016/S0022-3476(05)82049-9] [PMID: 1880650]
[20]
Spika, J.S.; Parsons, J.E.; Nordenberg, D.; Wells, J.G.; Gunn, R.A.; Blake, P.A. Hemolytic uremic syndrome and diarrhea associated with Escherichia coli O157:H7 in a day care center. J. Pediatr., 1986, 109(2), 287-291.
[http://dx.doi.org/10.1016/S0022-3476(86)80386-9] [PMID: 3525791]
[21]
Carter, A.O.; Borczyk, A.A.; Carlson, J.A.; Harvey, B.; Hockin, J.C.; Karmali, M.A.; Krishnan, C.; Korn, D.A.; Lior, H. A severe outbreak of Escherichia coli O157:H7--associated hemorrhagic colitis in a nursing home. N. Engl. J. Med., 1987, 317(24), 1496-1500.
[http://dx.doi.org/10.1056/NEJM198712103172403] [PMID: 3317047]
[22]
Rowe, P.C.; Orrbine, E.; Lior, H.; Wells, G.A.; McLaine, P.N. Diarrhoea in close contacts as a risk factor for childhood haemolytic uraemic syndrome. The CPKDRC co-investigators. Epidemiol. Infect., 1993, 110(1), 9-16.
[http://dx.doi.org/10.1017/S0950268800050627] [PMID: 8432328]
[23]
Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis., 2005, 11(4), 603-609.
[http://dx.doi.org/10.3201/eid1104.040739] [PMID: 15829201]
[24]
Steiner, T.S.; Thielman, N.M.; Gerrant, R.L. Enteric Escherichia coli Infections.Tropical Infectious Diseases: Principles, Pathogens and Practice; Geuerrant, R.L.; Walker, D.H; Weller, P.F., Ed.; , 2011, pp. 110-120.
[http://dx.doi.org/10.1016/B978-0-7020-3935-5.00015-X]
[25]
Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; Strockbine, N.A.; Melton-Celsa, A.R.; Sanchez, M.; Persson, S.; O’Brien, A.D. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol., 2012, 50(9), 2951-2963.
[http://dx.doi.org/10.1128/JCM.00860-12] [PMID: 22760050]
[26]
Calderwood, S.B.; Auclair, F.; Donohue-Rolfe, A.; Keusch, G.T.; Mekalanos, J.J. Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc. Natl. Acad. Sci. USA, 1987, 84(13), 4364-4368.
[http://dx.doi.org/10.1073/pnas.84.13.4364] [PMID: 3299365]
[27]
Tesh, V.L. Activation of cell stress response pathways by Shiga toxins. Cell. Microbiol., 2012, 14(1), 1-9.
[http://dx.doi.org/10.1111/j.1462-5822.2011.01684.x] [PMID: 21899699]
[28]
Griffin, P.M.; Tauxe, R.V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev., 1991, 13, 60-98.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036079] [PMID: 1765120]
[29]
Boerlin, P.; McEwen, S.A.; Boerlin-Petzold, F.; Wilson, J.B.; Johnson, R.P.; Gyles, C.L. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol., 1999, 37(3), 497-503.
[http://dx.doi.org/10.1128/JCM.37.3.497-503.1999] [PMID: 9986802]
[30]
Donnenberg, M.S. Escherichia coli: virulence mechanisms of a versatile pathogen; Academic Press: San Diego, Calif., 2002.
[31]
Beutin, L.; Krüger, U.; Krause, G.; Miko, A.; Martin, A.; Strauch, E. Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Appl. Environ. Microbiol., 2008, 74(15), 4806-4816.
[http://dx.doi.org/10.1128/AEM.00623-08] [PMID: 18515483]
[32]
Beddoe, T.; Paton, A.W.; Le Nours, J.; Rossjohn, J.; Paton, J.C. Structure, biological functions and applications of the AB5 toxins. Trends Biochem. Sci., 2010, 35(7), 411-418.
[http://dx.doi.org/10.1016/j.tibs.2010.02.003] [PMID: 20202851]
[33]
Fraser, M.E.; Fujinaga, M.; Cherney, M.M.; Melton-Celsa, A.R.; Twiddy, E.M.; O’Brien, A.D.; James, M.N. Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem., 2004, 279(26), 27511-27517.
[http://dx.doi.org/10.1074/jbc.M401939200] [PMID: 15075327]
[34]
Sandvig, K.; Dubinina, E.; Garred, O.; Prydz, K.; Kozlov, J.V.; Hansen, S.H.; Van Deurs, B. Entry of Shiga toxin into cells. Zentralbl. Bakteriol., 1993, 278(2-3), 296-305.
[http://dx.doi.org/10.1016/S0934-8840(11)80846-7] [PMID: 8347933]
[35]
Sandvig, K.; Grimmer, S.; Lauvrak, S.U.; Torgersen, M.L.; Skretting, G.; van Deurs, B.; Iversen, T.G. Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol., 2002, 117(2), 131-141.
[http://dx.doi.org/10.1007/s00418-001-0346-2] [PMID: 11935289]
[36]
Melton-Celsa, A.R. Shiga, toxin classification, structure, and function Microbiol Spectr, 2014, 2(4)EHEC-0024-2013.
[37]
Endo, Y.; Tsurugi, K.; Yutsudo, T.; Takeda, Y.; Ogasawara, T.; Igarashi, K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem., 1988, 171(1-2), 45-50.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb13756.x] [PMID: 3276522]
[38]
Furutani, M.; Kashiwagi, K.; Ito, K.; Endo, Y.; Igarashi, K. Comparison of the modes of action of a Vero toxin (a Shiga-like toxin) from Escherichia coli, of ricin, and of alpha-sarcin. Arch. Biochem. Biophys., 1992, 293(1), 140-146.
[http://dx.doi.org/10.1016/0003-9861(92)90376-8] [PMID: 1731630]
[39]
Hall, G.; Kurosawa, S.; Stearns-Kurosawa, D.J. Shiga toxin therapeutics: beyond neutralization. Toxins (Basel), 2017, 9(9)E291
[http://dx.doi.org/10.3390/toxins9090291] [PMID: 28925976]
[40]
Iordanov, M.S.; Paranjape, J.M.; Zhou, A.; Wong, J.; Williams, B.R.; Meurs, E.F.; Silverman, R.H.; Magun, B.E. Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and encephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol. Cell. Biol., 2000, 20(2), 617-627.
[http://dx.doi.org/10.1128/MCB.20.2.617-627.2000] [PMID: 10611240]
[41]
Morace, I.; Pilz, R.; Federico, G.; Jennemann, R.; Krunic, D.; Nordström, V.; von Gerichten, J.; Marsching, C.; Schießl, I.M.; Müthing, J.; Wunder, C.; Johannes, L.; Sandhoff, R.; Gröne, H.J. Renal globotriaosylceramide facilitates tubular albumin absorption and its inhibition protects against acute kidney injury. Kidney Int., 2019, 96(2), 327-341.
[http://dx.doi.org/10.1016/j.kint.2019.02.010] [PMID: 31101366]
[42]
Iwamura, K.; Furukawa, K.; Uchikawa, M.; Sojka, B.N.; Kojima, Y.; Wiels, J.; Shiku, H.; Urano, T.; Furukawa, K. The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. A clue to the solution of the P1/P2/p puzzle. J. Biol. Chem., 2003, 278(45), 44429-44438.
[http://dx.doi.org/10.1074/jbc.M301609200] [PMID: 12888565]
[43]
Naiki, M.; Kato, M. Immunological identification of blood group Pk antigen on normal human erythrocytes and isolation of anti-Pk with different affinity. Vox Sang., 1979, 37(1), 30-38.
[http://dx.doi.org/10.1159/000466879] [PMID: 494578]
[44]
Knapp, W.; Dörken, B.; Rieber, P.; Schmidt, R.E.; Stein, H.; von dem Borne, A.E. CD antigens 1989. Blood, 1989, 74(4), 1448-1450.
[http://dx.doi.org/10.1182/blood.V74.4.1448.1448] [PMID: 2765668]
[45]
Mangeney, M.; Richard, Y.; Coulaud, D.; Tursz, T.; Wiels, J. CD77: an antigen of germinal center B cells entering apoptosis. Eur. J. Immunol., 1991, 21(5), 1131-1140.
[http://dx.doi.org/10.1002/eji.1830210507] [PMID: 1709864]
[46]
Sueoka, H.; Aoki, M.; Tsukimura, T.; Togawa, T.; Sakuraba, H. Distributions of globotriaosylceramide isoforms, and globotriaosylsphingosine and its analogues in an α-galactosidase a knockout mouse, a model of fabry disease. PLoS One, 2015, 10(12)e0144958
[http://dx.doi.org/10.1371/journal.pone.0144958] [PMID: 26661087]
[47]
Kovbasnjuk, O.; Edidin, M.; Donowitz, M. Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J. Cell Sci., 2001, 114(Pt 22), 4025-4031.
[PMID: 11739634]
[48]
Kavaliauskiene, S.; Nymark, C.M.; Bergan, J.; Simm, R.; Sylvänne, T.; Simolin, H.; Ekroos, K.; Skotland, T.; Sandvig, K. Cell density-induced changes in lipid composition and intracellular trafficking. Cell. Mol. Life Sci., 2014, 71(6), 1097-1116.
[http://dx.doi.org/10.1007/s00018-013-1441-y] [PMID: 23921715]
[49]
Brigotti, M. The interactions of human neutrophils with shiga toxins and related plant toxins: danger or safety? Toxins (Basel), 2012, 4(3), 157-190.
[http://dx.doi.org/10.3390/toxins4030157] [PMID: 22741061]
[50]
Brigotti, M.; Carnicelli, D.; Ravanelli, E.; Barbieri, S.; Ricci, F.; Bontadini, A.; Tozzi, A.E.; Scavia, G.; Caprioli, A.; Tazzari, P.L. Interactions between Shiga toxins and human polymorphonuclear leukocytes. J. Leukoc. Biol., 2008, 84(4), 1019-1027.
[http://dx.doi.org/10.1189/jlb.0308157] [PMID: 18625912]
[51]
Brigotti, M.; Tazzari, P.L.; Ravanelli, E.; Carnicelli, D.; Rocchi, L.; Arfilli, V.; Scavia, G.; Minelli, F.; Ricci, F.; Pagliaro, P.; Ferretti, A.V.; Pecoraro, C.; Paglialonga, F.; Edefonti, A.; Procaccino, M.A.; Tozzi, A.E.; Caprioli, A. Clinical relevance of shiga toxin concentrations in the blood of patients with hemolytic uremic syndrome. Pediatr. Infect. Dis. J., 2011, 30(6), 486-490.
[http://dx.doi.org/10.1097/INF.0b013e3182074d22] [PMID: 21164386]
[52]
te Loo, D.M.; Monnens, L.A.; van Der Velden, T.J.; Vermeer, M.A.; Preyers, F.; Demacker, P.N.; van Den Heuvel, L.P.; van Hinsbergh, V.W. Binding and transfer of verocytotoxin by polymorphonuclear leukocytes in hemolytic uremic syndrome. Blood, 2000, 95(11), 3396-3402.
[http://dx.doi.org/10.1182/blood.V95.11.3396] [PMID: 10828021]
[53]
Te Loo, D.M.; van Hinsbergh, V.W.; van den Heuvel, L.P.; Monnens, L.A. Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. J. Am. Soc. Nephrol., 2001, 12(4), 800-806.
[PMID: 11274241]
[54]
Brigotti, M.; Carnicelli, D.; Arfilli, V.; Tamassia, N.; Borsetti, F.; Fabbri, E.; Tazzari, P.L.; Ricci, F.; Pagliaro, P.; Spisni, E.; Cassatella, M.A. Identification of TLR4 as the receptor that recognizes Shiga toxins in human neutrophils. J. Immunol., 2013, 191(9), 4748-4758.
[http://dx.doi.org/10.4049/jimmunol.1300122] [PMID: 24068665]
[55]
Ståhl, A.L.; Arvidsson, I.; Johansson, K.E.; Chromek, M.; Rebetz, J.; Loos, S.; Kristoffersson, A.C.; Békássy, Z.D.; Mörgelin, M.; Karpman, D. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PLoS Pathog., 2015, 11(2)e1004619
[http://dx.doi.org/10.1371/journal.ppat.1004619] [PMID: 25719452]
[56]
Pinto, A.; Cangelosi, A.; Geoghegan, P.A.; Goldstein, J. Dexamethasone prevents motor deficits and neurovascular damage produced by shiga toxin 2 and lipopolysaccharide in the mouse striatum. Neuroscience, 2017, 344, 25-38.
[http://dx.doi.org/10.1016/j.neuroscience.2016.12.036] [PMID: 28042026]
[57]
Exeni, R.A.; Fernandez-Brando, R.J.; Santiago, A.P.; Fiorentino, G.A.; Exeni, A.M.; Ramos, M.V.; Palermo, M.S. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatr. Nephrol., 2018, 33(11), 2057-2071.
[http://dx.doi.org/10.1007/s00467-017-3876-0] [PMID: 29372302]
[58]
Eisenhauer, P.B.; Chaturvedi, P.; Fine, R.E.; Ritchie, A.J.; Pober, J.S.; Cleary, T.G.; Newburg, D.S. Tumor necrosis factor alpha increases human cerebral endothelial cell Gb3 and sensitivity to Shiga toxin. Infect. Immun., 2001, 69(3), 1889-1894.
[http://dx.doi.org/10.1128/IAI.69.3.1889-1894.2001] [PMID: 11179369]
[59]
Ito, M.; Shiozaki, A.; Shimizu, M.; Saito, S. Hemolytic-uremic syndrome with acute encephalopathy in a pregnant woman infected with epidemic enterohemorrhagic Escherichia coli: characteristic brain images and cytokine profiles. Int. J. Infect. Dis., 2015, 34, 119-121.
[http://dx.doi.org/10.1016/j.ijid.2015.03.024] [PMID: 25841635]
[60]
Shimizu, M.; Nakayama, Y.; Taniguchi, T. Successful treatment of enterohemorrhagic Escherichia coli O111-induced acute encephalopathy and hemolytic-uremic syndrome with plasma diafiltration. Ther. Apher. Dial., 2014, 18(5), 516-518.
[http://dx.doi.org/10.1111/1744-9987.12165] [PMID: 24467800]
[61]
Karpman, D.; Connell, H.; Svensson, M.; Scheutz, F.; Alm, P.; Svanborg, C. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J. Infect. Dis., 1997, 175(3), 611-620.
[http://dx.doi.org/10.1093/infdis/175.3.611] [PMID: 9041333]
[62]
Jing, W.; Jabbari, B.; Vaziri, N.D. Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway and disruption of blood brain barrier. Am. J. Transl. Res., 2018, 10(7), 2137-2147.
[PMID: 30093950]
[63]
Obata, F.; Tohyama, K.; Bonev, A.D.; Kolling, G.L.; Keepers, T.R.; Gross, L.K.; Nelson, M.T.; Sato, S.; Obrig, T.G. Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J. Infect. Dis., 2008, 198(9), 1398-1406.
[http://dx.doi.org/10.1086/591911] [PMID: 18754742]
[64]
Magnus, T.; Röther, J.; Simova, O.; Meier-Cillien, M.; Repenthin, J.; Möller, F.; Gbadamosi, J.; Panzer, U.; Wengenroth, M.; Hagel, C.; Kluge, S.; Stahl, R.K.; Wegscheider, K.; Urban, P.; Eckert, B.; Glatzel, M.; Fiehler, J.; Gerloff, C. The neurological syndrome in adults during the 2011 northern German E. coli serotype O104:H4 outbreak. Brain, 2012, 135(Pt 6), 1850-1859.
[http://dx.doi.org/10.1093/brain/aws090] [PMID: 22539260]
[65]
López, M.; Huete, I.; Hernández, M. Acute cerebrovascular events associated to hemolytic uremic syndrome: description of two pediatric cases. Rev. Chil. Pediatr., 2017, 88(5), 640-646.
[PMID: 29546950]
[66]
Imataka, G.; Wake, K.; Suzuki, M.; Yamanouchi, H.; Arisaka, O. Acute encephalopathy associated with hemolytic uremic syndrome caused by Escherichia coli O157: H7 and rotavirus infection. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(10), 1842-1844.
[PMID: 26044229]
[67]
Hamano, S.; Nakanishi, Y.; Nara, T.; Seki, T.; Ohtani, T.; Oishi, T.; Joh, K.; Oikawa, T.; Muramatsu, Y.; Ogawa, Y. Neurological manifestations of hemorrhagic colitis in the outbreak of Escherichia coli O157:H7 infection in Japan. Acta Paediatr., 1993, 82(5), 454-458.
[http://dx.doi.org/10.1111/j.1651-2227.1993.tb12721.x] [PMID: 8518521]
[68]
Pape, L.; Hartmann, H.; Bange, F.C.; Suerbaum, S.; Bueltmann, E.; Ahlenstiel-Grunow, T. Eculizumab in typical hemolytic uremic Syndrome (HUS) with neurological involvement. Medicine (Baltimore), 2015, 94(24)e1000
[http://dx.doi.org/10.1097/MD.0000000000001000] [PMID: 26091445]
[69]
Nathanson, S.; Kwon, T.; Elmaleh, M.; Charbit, M.; Launay, E.A.; Harambat, J.; Brun, M.; Ranchin, B.; Bandin, F.; Cloarec, S.; Bourdat-Michel, G.; Piètrement, C.; Champion, G.; Ulinski, T.; Deschênes, G. Acute neurological involvement in diarrhea-associated hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol., 2010, 5(7), 1218-1228.
[http://dx.doi.org/10.2215/CJN.08921209] [PMID: 20498239]
[70]
Schuppner, R.; Maehlmann, J.; Dirks, M.; Worthmann, H.; Tryc, A.B.; Sandorski, K.; Bahlmann, E.; Kielstein, J.T.; Giesemann, A.M.; Lanfermann, H.; Weissenborn, K. Neurological sequelae in adults after E. coli o104: h4 infection-induced hemolytic-uremic syndrome. Medicine (Baltimore), 2016, 95(6)e2337
[http://dx.doi.org/10.1097/MD.0000000000002337] [PMID: 26871766]
[71]
Weissenborn, K.; Donnerstag, F.; Kielstein, J.T.; Heeren, M.; Worthmann, H.; Hecker, H.; Schmitt, R.; Schiffer, M.; Pasedag, T.; Schuppner, R.; Tryc, A.B.; Raab, P.; Hartmann, H.; Ding, X.Q.; Hafer, C.; Menne, J.; Schmidt, B.M.; Bültmann, E.; Haller, H.; Dengler, R.; Lanfermann, H.; Giesemann, A.M. Neurologic manifestations of E. coli infection-induced hemolytic-uremic syndrome in adults. Neurology, 2012, 79(14), 1466-1473.
[http://dx.doi.org/10.1212/WNL.0b013e31826d5f26] [PMID: 22993286]
[72]
Matthies, J.; Hünseler, C.; Ehren, R.; Volland, R.; Körber, F.; Hoppe, B.; Weber, L.T.; Habbig, S. Extrarenal manifestations in Shigatoxin-associated haemolytic uremic syndrome. Klin. Padiatr., 2016, 228(4), 181-188.
[http://dx.doi.org/10.1055/s-0042-108444] [PMID: 27294341]
[73]
Steinborn, M. Leiz, S.; Rüdisser, K.; Griebel, M.; Harder, T.; Hahn, H. CT and MRI in haemolytic uraemic syndrome with central nervous system involvement: distribution of lesions and prognostic value of imaging findings. Pediatr. Radiol., 2004, 34(10), 805-810.
[http://dx.doi.org/10.1007/s00247-004-1289-2] [PMID: 15378218]
[74]
Trachtman, H.; Austin, C.; Lewinski, M.; Stahl, R.A. Renal and neurological involvement in typical Shiga toxin-associated HUS. Nat. Rev. Nephrol., 2012, 8(11), 658-669.
[http://dx.doi.org/10.1038/nrneph.2012.196] [PMID: 22986362]
[75]
Yahata, Y.; Misaki, T.; Ishida, Y.; Nagira, M.; Watahiki, M.; Isobe, J.; Terajima, J.; Iyoda, S.; Mitobe, J.; Ohnishi, M.; Sata, T.; Taniguchi, K.; Tada, Y.; Okabe, N.E. coli O111 Outbreak Investigation Team. Epidemiological analysis of a large enterohaemorrhagic Escherichia coli O111 outbreak in Japan associated with haemolytic uraemic syndrome and acute encephalopathy. Epidemiol. Infect., 2015, 143(13), 2721-2732.
[http://dx.doi.org/10.1017/S0950268814003641] [PMID: 25600435]
[76]
Loudon, S.E. linded by shiga toxin-producing O104 Escherichia coli and hemolytic uremic syndrome. J. Pediatr, 2014, 165(2), 410- 410 e1..
[http://dx.doi.org/10.1016/j.jpeds.2014.04.008]
[77]
Obata, F. Influence of Escherichia coli shiga toxin on the mammalian central nervous system. Adv. Appl. Microbiol., 2010, 71, 1-19.
[http://dx.doi.org/10.1016/S0065-2164(10)71001-7] [PMID: 20378049]
[78]
Signorini, E.; Lucchi, S.; Mastrangelo, M.; Rapuzzi, S.; Edefonti, A.; Fossali, E. Central nervous system involvement in a child with hemolytic uremic syndrome. Pediatr. Nephrol., 2000, 14(10-11), 990-992.
[http://dx.doi.org/10.1007/s004670050059] [PMID: 10975313]
[79]
Carnicelli, D.; Arfilli, V.; Ricci, F.; Velati, C.; Tazzari, P.L.; Brigotti, M. The Antibiotic Polymyxin B impairs the interactions between shiga toxins and human neutrophils. J. Immunol., 2016, 196(3), 1177-1185.
[http://dx.doi.org/10.4049/jimmunol.1500671] [PMID: 26695372]
[80]
Arfilli, V.; Carnicelli, D.; Rocchi, L.; Ricci, F.; Pagliaro, P.; Tazzari, P.L.; Brigotti, M. Shiga toxin 1 and ricin A chain bind to human polymorphonuclear leucocytes through a common receptor. Biochem. J., 2010, 432(1), 173-180.
[http://dx.doi.org/10.1042/BJ20100455] [PMID: 20809900]
[81]
Brigotti, M.; Tazzari, P.L.; Ravanelli, E.; Carnicelli, D.; Barbieri, S.; Rocchi, L.; Arfilli, V.; Scavia, G.; Ricci, F.; Bontadini, A.; Alfieri, R.R.; Petronini, P.G.; Pecoraro, C.; Tozzi, A.E.; Caprioli, A. Endothelial damage induced by Shiga toxins delivered by neutrophils during transmigration. J. Leukoc. Biol., 2010, 88(1), 201-210.
[http://dx.doi.org/10.1189/jlb.0709475] [PMID: 20371598]
[82]
Griener, T.P.; Mulvey, G.L.; Marcato, P.; Armstrong, G.D. Differential binding of Shiga toxin 2 to human and murine neutrophils. J. Med. Microbiol., 2007, 56(Pt 11), 1423-1430.
[http://dx.doi.org/10.1099/jmm.0.47282-0] [PMID: 17965340]
[83]
Ståhl, A.L.; Sartz, L.; Nelsson, A.; Békássy, Z.D.; Karpman, D. Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS One, 2009, 4(9)e6990
[http://dx.doi.org/10.1371/journal.pone.0006990] [PMID: 19750223]
[84]
Tazzari, P.L.; Ricci, F.; Carnicelli, D.; Caprioli, A.; Tozzi, A.E.; Rizzoni, G.; Conte, R.; Brigotti, M. Flow cytometry detection of Shiga toxins in the blood from children with hemolytic uremic syndrome. Cytometry B Clin. Cytom., 2004, 61(1), 40-44.
[http://dx.doi.org/10.1002/cyto.b.20022] [PMID: 15351981]
[85]
Kanazawa, K.; Sato, Y.; Ohki, K.; Okimura, K.; Uchida, Y.; Shindo, M.; Sakura, N. Contribution of each amino acid residue in polymyxin B(3) to antimicrobial and lipopolysaccharide binding activity. Chem. Pharm. Bull. (Tokyo), 2009, 57(3), 240-244.
[http://dx.doi.org/10.1248/cpb.57.240] [PMID: 19252313]
[86]
Percivalle, E.; Monzillo, V.; Pauletto, A.; Marone, P.; Imberti, R. Colistin inhibits E. coli O157:H7 Shiga-like toxin release, binds endotoxins and protects Vero cells. New Microbiol., 2016, 39(2), 119-123.
[PMID: 27196550]
[87]
Zavascki, A.P.; Goldani, L.Z.; Cao, G.; Superti, S.V.; Lutz, L.; Barth, A.L.; Ramos, F.; Boniatti, M.M.; Nation, R.L.; Li, J. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin. Infect. Dis., 2008, 47(10), 1298-1304.
[http://dx.doi.org/10.1086/592577] [PMID: 18840079]
[88]
Kwa, A.; Kasiakou, S.K.; Tam, V.H.; Falagas, M.E. Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Rev. Anti Infect. Ther., 2007, 5(5), 811-821.
[http://dx.doi.org/10.1586/14787210.5.5.811] [PMID: 17914915]
[89]
Cai, Y.; Lee, W.; Kwa, A.L. Polymyxin B versus colistin: an update. Expert Rev. Anti Infect. Ther., 2015, 13(12), 1481-1497.
[http://dx.doi.org/10.1586/14787210.2015.1093933] [PMID: 26488563]
[90]
Macher, B.A.; Klock, J.C. Isolation and chemical characterization of neutral glycosphingolipids of human neutrophils. J. Biol. Chem., 1980, 255(5), 2092-2096.
[PMID: 7354081]
[91]
Dijkmans, A.C.; Zacarías, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics (Basel), 2017, 6(4)E24
[http://dx.doi.org/10.3390/antibiotics6040024] [PMID: 29088073]
[92]
Tajiri, H.; Nishi, J.; Ushijima, K.; Shimizu, T.; Ishige, T.; Shimizu, M.; Tanaka, H.; Brooks, S. A role for fosfomycin treatment in children for prevention of haemolytic-uraemic syndrome accompanying Shiga toxin-producing Escherichia coli infection. Int. J. Antimicrob. Agents, 2015, 46(5), 586-589.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.08.006] [PMID: 26391378]
[93]
Ikeda, K.; Ida, O.; Kimoto, K.; Takatorige, T.; Nakanishi, N.; Tatara, K. Effect of early fosfomycin treatment on prevention of hemolytic uremic syndrome accompanying Escherichia coli O157:H7 infection. Clin. Nephrol., 1999, 52(6), 357-362.
[PMID: 10604643]
[94]
Hosaka, T.; Nakamagoe, K.; Tamaoka, A. Hemolytic uremic syndrome-associated encephalopathy successfully treated with corticosteroids. Intern. Med., 2017, 56(21), 2937-2941.
[http://dx.doi.org/10.2169/internalmedicine.8341-16] [PMID: 28943538]
[95]
Ohara, T.; Kojio, S.; Taneike, I.; Nakagawa, S.; Gondaira, F.; Tamura, Y.; Gejyo, F.; Zhang, H.M.; Yamamoto, T. Effects of azithromycin on shiga toxin production by Escherichia coli and subsequent host inflammatory response. Antimicrob. Agents Chemother., 2002, 46(11), 3478-3483.
[http://dx.doi.org/10.1128/AAC.46.11.3478-3483.2002] [PMID: 12384353]
[96]
Matsushiro, A.; Sato, K.; Miyamoto, H.; Yamamura, T.; Honda, T. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J. Bacteriol., 1999, 181(7), 2257-2260.
[http://dx.doi.org/10.1128/JB.181.7.2257-2260.1999] [PMID: 10094706]
[97]
Zhang, X.; McDaniel, A.D.; Wolf, L.E.; Keusch, G.T.; Waldor, M.K.; Acheson, D.W. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis., 2000, 181(2), 664-670.
[http://dx.doi.org/10.1086/315239] [PMID: 10669353]
[98]
Fujii, T.; Kadota, J.; Morikawa, T.; Matsubara, Y.; Kawakami, K.; Iida, K.; Shirai, R.; Taniguchi, H.; Kaseda, M.; Kawamoto, S.; Kohno, S. Inhibitory effect of erythromycin on interleukin 8 production by 1 alpha,25-dihydroxyvitamin D3-stimulated THP-1 cells. Antimicrob. Agents Chemother., 1996, 40(6), 1548-1551.
[http://dx.doi.org/10.1128/AAC.40.6.1548] [PMID: 8726037]
[99]
Khan, A.A.; Slifer, T.R.; Araujo, F.G.; Remington, J.S. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int. J. Antimicrob. Agents, 1999, 11(2), 121-132.
[http://dx.doi.org/10.1016/S0924-8579(98)00091-0] [PMID: 10221415]
[100]
Rubin, B.K.; Druce, H.; Ramirez, O.E.; Palmer, R. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am. J. Respir. Crit. Care Med., 1997, 155(6), 2018-2023.
[http://dx.doi.org/10.1164/ajrccm.155.6.9196110] [PMID: 9196110]
[101]
Rubin, B.K.; Tamaoki, J. Macrolide antibiotics as biological response modifiers. Curr. Opin. Investig. Drugs, 2000, 1(2), 169-172.
[PMID: 11249569]
[102]
Gianantonio, C.; Vitacco, M.; Mendilaharzu, F.; Rutty, A.; Mendilaharzu, J. The hemolytic-uremic syndrome. J. Pediatr., 1964, 64, 478-491.
[http://dx.doi.org/10.1016/S0022-3476(64)80337-1] [PMID: 14141006]
[103]
Bell, W.R.; Braine, H.G.; Ness, P.M.; Kickler, T.S. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N. Engl. J. Med., 1991, 325(6), 398-403.
[http://dx.doi.org/10.1056/NEJM199108083250605] [PMID: 2062331]
[104]
Perez, N.; Spizzirri, F.; Rahman, R.; Suarez, A.; Larrubia, C.; Lasarte, P. Steroids in the hemolytic uremic syndrome. Pediatr. Nephrol., 1998, 12(2), 101-104.
[http://dx.doi.org/10.1007/s004670050413] [PMID: 9543364]
[105]
Fujii, J.; Kinoshita, Y.; Matsukawa, A.; Villanueva, S.Y.; Yutsudo, T.; Yoshida, S. Successful steroid pulse therapy for brain lesion caused by Shiga toxin 2 in rabbits. Microb. Pathog., 2009, 46(4), 179-184.
[http://dx.doi.org/10.1016/j.micpath.2009.01.005] [PMID: 19490831]
[106]
Takanashi, J.; Taneichi, H.; Misaki, T.; Yahata, Y.; Okumura, A.; Ishida, Y.; Miyawaki, T.; Okabe, N.; Sata, T.; Mizuguchi, M. Clinical and radiologic features of encephalopathy during 2011 E coli O111 outbreak in Japan. Neurology, 2014, 82(7), 564-572.
[http://dx.doi.org/10.1212/WNL.0000000000000120] [PMID: 24443449]
[107]
Oki, E.; Tsuruga, K.; Tsugawa, K.; Suzuki, K.; Shinagawa, T.; Nakahata, T.; Ito, E.; Tanaka, H. Alternative treatment for systemic involvement in a child with postdiarrheal hemolytic-uremic syndrome. Clin. Nephrol., 2008, 70(4), 354-356.
[http://dx.doi.org/10.5414/CNP70354] [PMID: 18826863]
[108]
Yoshimitsu, M.; Hayashi, N.; Kaneko, Y.; Doyama, H. An adult case of combined encephalopathy and hemolytic uremic syndrome caused by Escherichia coli O157. Nippon Shokakibyo Gakkai Zasshi, 2011, 108(1), 74-79.
[PMID: 21212597]
[109]
Yada, N.; Fujioka, M.; Bennett, C.L.; Inoki, K.; Miki, T.; Watanabe, A.; Yoshida, T.; Hayakawa, M.; Matsumoto, M.; Fujimura, Y. STEC:O111-HUS complicated by acute encephalopathy in a young girl was successfully treated with a set of hemodiafiltration, steroid pulse, and soluble thrombomodulin under plasma exchange. Clin. Case Rep., 2015, 3(4), 208-212.
[http://dx.doi.org/10.1002/ccr3.196] [PMID: 25914810]
[110]
Kuroda, M.; Shimizu, M.; Inoue, N.; Ikeno, I.; Nakagawa, H.; Yokoi, A.; Niida, Y.; Konishi, M.; Kaneda, H.; Igarashi, N.; Yamahana, J.; Taneichi, H.; Kanegane, H.; Ito, M.; Saito, S.; Furuichi, K.; Wada, T.; Nakagawa, M.; Yokoyama, H.; Yachie, A. Serum tau protein as a marker of disease activity in enterohemorrhagic Escherichia coli O111-induced hemolytic uremic syndrome. Neurochem. Int., 2015, 85-86, 24-30.
[http://dx.doi.org/10.1016/j.neuint.2015.04.003] [PMID: 25895963]
[111]
Förster, C.; Waschke, J.; Burek, M.; Leers, J.; Drenckhahn, D. Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J. Physiol., 2006, 573(Pt 2), 413-425.
[http://dx.doi.org/10.1113/jphysiol.2006.106385] [PMID: 16543270]
[112]
Liu, C.C.; Chien, C.H.; Lin, M.T. Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J. Physiol., 2000, 527(Pt 2), 333-343.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00333.x] [PMID: 10970434]
[113]
Pinto, A.; Carnuccio, R.; Sorrentino, R.; Di Rosa, M. The inhibition of platelet aggregation by activated macrophages is blocked by dexamethasone. Pharmacol. Res., 1993, 27(2), 165-172.
[http://dx.doi.org/10.1006/phrs.1993.1016] [PMID: 8474960]
[114]
Gómez, S.A.; Fernández, G.C.; Vanzulli, S.; Dran, G.; Rubel, C.; Berki, T.; Isturiz, M.A.; Palermo, M.S. Endogenous glucocorticoids attenuate Shiga toxin-2-induced toxicity in a mouse model of haemolytic uraemic syndrome. Clin. Exp. Immunol., 2003, 131(2), 217-224.
[http://dx.doi.org/10.1046/j.1365-2249.2003.02057.x] [PMID: 12562380]
[115]
Pinto, A.; Jacobsen, M.; Geoghegan, P.A.; Cangelosi, A.; Cejudo, M.L.; Tironi-Farinati, C.; Goldstein, J. Dexamethasone rescues neurovascular unit integrity from cell damage caused by systemic administration of shiga toxin 2 and lipopolysaccharide in mice motor cortex. PLoS One, 2013, 8(7)e70020
[http://dx.doi.org/10.1371/journal.pone.0070020] [PMID: 23894578]
[116]
Pinto, A.; Berdasco, C.; Arenas-Mosquera, D.; Cangelosi, A.; Geoghegan, P.A.; Nuñez, M.C.; Goldstein, J. Anti-inflammatory agents reduce microglial response, demyelinating process and neuronal toxin uptake in a model of encephalopathy produced by Shiga Toxin 2. Int. J. Med. Microbiol., 2018, 308(8), 1036-1042.
[http://dx.doi.org/10.1016/j.ijmm.2018.09.007] [PMID: 30314914]
[117]
Wu, J.J.; Feldman, S.R.; Lebwohl, M. Therapy for severe psoriasis., 2017.
[118]
Haraoui, B.; Bykerk, V. Etanercept in the treatment of rheumatoid arthritis. Ther. Clin. Risk Manag., 2007, 3(1), 99-105.
[http://dx.doi.org/10.2147/tcrm.2007.3.1.99] [PMID: 18360618]
[119]
Mohler, K.M.; Torrance, D.S.; Smith, C.A.; Goodwin, R.G.; Stremler, K.E.; Fung, V.P.; Madani, H.; Widmer, M.B. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J. Immunol., 1993, 151(3), 1548-1561.
[PMID: 8393046]
[120]
Menter, A.; Gottlieb, A.; Feldman, S.R.; Van Voorhees, A.S.; Leonardi, C.L.; Gordon, K.B.; Lebwohl, M.; Koo, J.Y.; Elmets, C.A.; Korman, N.J.; Beutner, K.R.; Bhushan, R. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J. Am. Acad. Dermatol., 2008, 58(5), 826-850.
[http://dx.doi.org/10.1016/j.jaad.2008.02.039] [PMID: 18423260]
[121]
Goldstein, J.; Carden, T.R.; Perez, M.J.; Taira, C.A.; Höcht, C.; Gironacci, M.M. Angiotensin-(1-7) protects from brain damage induced by shiga toxin 2-producing enterohemorrhagic Escherichia coli. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, 311(6), R1173-R1185.
[http://dx.doi.org/10.1152/ajpregu.00467.2015] [PMID: 27681328]
[122]
Bennion, D.M.; Haltigan, E.; Regenhardt, R.W.; Steckelings, U.M.; Sumners, C. Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr. Hypertens. Rep., 2015, 17(2), 3.
[http://dx.doi.org/10.1007/s11906-014-0512-2] [PMID: 25620630]
[123]
Regenhardt, R.W.; Bennion, D.M.; Sumners, C. Cerebroprotective action of angiotensin peptides in stroke. Clin. Sci. (Lond.), 2014, 126(3), 195-205.
[http://dx.doi.org/10.1042/CS20130324] [PMID: 24102099]
[124]
Regenhardt, R.W.; Mecca, A.P.; Desland, F.; Ritucci-Chinni, P.F.; Ludin, J.A.; Greenstein, D.; Banuelos, C.; Bizon, J.L.; Reinhard, M.K.; Sumners, C. Centrally administered angiotensin-(1-7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp. Physiol., 2014, 99(2), 442-453.
[http://dx.doi.org/10.1113/expphysiol.2013.075242] [PMID: 24142453]
[125]
Chang, A.Y.; Li, F.C.; Huang, C.W.; Wu, J.C.; Dai, K.Y.; Chen, C.H.; Li, S.H.; Su, C.H.; Wu, R.W. Interplay between brain stem angiotensins and monocyte chemoattractant protein-1 as a novel mechanism for pressor response after ischemic stroke. Neurobiol. Dis., 2014, 71, 292-304.
[http://dx.doi.org/10.1016/j.nbd.2014.08.005] [PMID: 25131447]
[126]
Chen, J.; Zhao, Y.; Chen, S.; Wang, J.; Xiao, X.; Ma, X.; Penchikala, M.; Xia, H.; Lazartigues, E.; Zhao, B.; Chen, Y. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology, 2014, 79, 550-558.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.004] [PMID: 24440367]
[127]
Zheng, J.; Li, G.; Chen, S.; Bihl, J.; Buck, J.; Zhu, Y.; Xia, H.; Lazartigues, E.; Chen, Y.; Olson, J.E. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience, 2014, 273, 39-51.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.060] [PMID: 24814023]
[128]
da Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Sachs, D.; Barroso, L.C.; Costa, V.V.; Bretas, T.L.; Bader, M.; de Sousa, L.P.; da Silva, T.A.; dos Santos, R.A.; Simões e Silva, A.C.; Teixeira, M.M. Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis. J. Immunol., 2010, 185(9), 5569-5576.
[http://dx.doi.org/10.4049/jimmunol.1000314] [PMID: 20935211]
[129]
Giani, J.F.; Muñoz, M.C.; Pons, R.A.; Cao, G.; Toblli, J.E.; Turyn, D.; Dominici, F.P. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol., 2011, 300(1), F272-F282.
[http://dx.doi.org/10.1152/ajprenal.00278.2010] [PMID: 20962118]
[130]
Tesanovic, S.; Vinh, A.; Gaspari, T.A.; Casley, D.; Widdop, R.E. Vasoprotective and atheroprotective effects of angiotensin (1-7) in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1606-1613.
[http://dx.doi.org/10.1161/ATVBAHA.110.204453] [PMID: 20448208]
[131]
El-Hashim, A.Z.; Renno, W.M.; Raghupathy, R.; Abduo, H.T.; Akhtar, S.; Benter, I.F. Angiotensin-(1-7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br. J. Pharmacol., 2012, 166(6), 1964-1976.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01905.x] [PMID: 22339213]
[132]
Wösten-van Asperen, R.M.; Lutter, R.; Specht, P.A.; Moll, G.N.; van Woensel, J.B.; van der Loos, C.M.; van Goor, H.; Kamilic, J.; Florquin, S.; Bos, A.P. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J. Pathol., 2011, 225(4), 618-627.
[http://dx.doi.org/10.1002/path.2987] [PMID: 22009550]
[133]
Xu, P.; Sriramula, S.; Lazartigues, E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(4), R804-R817.
[http://dx.doi.org/10.1152/ajpregu.00222.2010] [PMID: 21178125]
[134]
Gironacci, M.M.; Longo Carbajosa, N.A.; Goldstein, J.; Cerrato, B.D. Neuromodulatory role of angiotensin-(1-7) in the central nervous system. Clin. Sci. (Lond.), 2013, 125(2), 57-65.
[http://dx.doi.org/10.1042/CS20120652] [PMID: 23530669]
[135]
Poupko, J.M.; Baskin, S.I.; Moore, E. The pharmacological properties of anisodamine. J. Appl. Toxicol., 2007, 27(2), 116-121.
[http://dx.doi.org/10.1002/jat.1154] [PMID: 17186568]
[136]
Guo, H.Y.; Lorenz, R.R.; Vanhoutte, P.M. Anisodamine inhibits non-selectively muscarinic receptors in isolated canine veins. Chin. Med. J. (Engl.), 1992, 105(1), 5-10.
[PMID: 1576871]
[137]
Xiu, R.J.; Hammerschmidt, D.E.; Coppo, P.A.; Jacob, H.S. Anisodamine inhibits thromboxane synthesis, granulocyte aggregation, and platelet aggregation. A possible mechanism for its efficacy in bacteremic shock. JAMA, 1982, 247(10), 1458-1460.
[http://dx.doi.org/10.1001/jama.247.10.1458] [PMID: 7057538]
[138]
Zhang, H.M.; Ou, Z.L.; Gondaira, F.; Ohmura, M.; Kojio, S.; Yamamoto, T. Protective effect of anisodamine against Shiga toxin-1: inhibition of cytokine production and increase in the survival of mice. J. Lab. Clin. Med., 2001, 137(2), 93-100.
[http://dx.doi.org/10.1067/mlc.2001.112507] [PMID: 11174465]
[139]
Balestracci, A. C3 levels and acute outcomes in Shiga toxin-related hemolytic uremic syndrome. Pediatr. Nephrol., 2020, 35, 331-339.
[PMID: 31475299]
[140]
Robson, W.L.; Leung, A.K.; Fick, G.H.; McKenna, A.I. Hypocomplementemia and leukocytosis in diarrhea-associated hemolytic uremic syndrome. Nephron, 1992, 62(3), 296-299.
[http://dx.doi.org/10.1159/000187063] [PMID: 1436342]
[141]
Thurman, J.M.; Marians, R.; Emlen, W.; Wood, S.; Smith, C.; Akana, H.; Holers, V.M.; Lesser, M.; Kline, M.; Hoffman, C.; Christen, E.; Trachtman, H. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol., 2009, 4(12), 1920-1924.
[http://dx.doi.org/10.2215/CJN.02730409] [PMID: 19820137]
[142]
Ferraris, J.R.; Ferraris, V.; Acquier, A.B.; Sorroche, P.B.; Saez, M.S.; Ginaca, A.; Mendez, C.F. Activation of the alternative pathway of complement during the acute phase of typical haemolytic uraemic syndrome. Clin. Exp. Immunol., 2015, 181(1), 118-125.
[http://dx.doi.org/10.1111/cei.12601] [PMID: 25677399]
[143]
Ahlenstiel-Grunow, T.; Hachmeister, S.; Bange, F.C.; Wehling, C.; Kirschfink, M.; Bergmann, C.; Pape, L. Systemic complement activation and complement gene analysis in enterohaemorrhagic Escherichia coli-associated paediatric haemolytic uraemic syndrome. Nephrol. Dial. Transplant., 2016, 31(7), 1114-1121.
[http://dx.doi.org/10.1093/ndt/gfw078] [PMID: 27190382]
[144]
Ağbaş, A.; Göknar, N.; Akıncı, N.; Yıldırım, Z.Y.; Taşdemir, M.; Benzer, M.; Gökçe, İ.; Candan, C.; Küçük, N.; Uzuner, S.; Özçelik, G.; Demirkol, D.; Sever, L.; Çalışkan, S. Outbreak of Shiga toxin-producing Escherichia-coli-associated hemolytic uremic syndrome in Istanbul in 2015: outcome and experience with eculizumab. Pediatr. Nephrol., 2018, 33(12), 2371-2381.
[http://dx.doi.org/10.1007/s00467-018-4033-0] [PMID: 30159625]
[145]
Karnisova, L.; Hradsky, O.; Blahova, K.; Fencl, F.; Dolezel, Z.; Zaoral, T.; Zieg, J. Complement activation is associated with more severe course of diarrhea-associated hemolytic uremic syndrome, a preliminary study. Eur. J. Pediatr., 2018, 177(12), 1837-1844.
[http://dx.doi.org/10.1007/s00431-018-3255-2] [PMID: 30251107]
[146]
Frémeaux-Bacchi, V.; Sellier-Leclerc, A.L.; Vieira-Martins, P.; Limou, S.; Kwon, T.; Lahoche, A.; Novo, R.; Llanas, B.; Nobili, F.; Roussey, G.; Cailliez, M.; Ulinski, T.; Deschênes, G.; Alberti, C.; Weill, F.X.; Mariani, P.; Loirat, C. Complement gene variants and Shiga Toxin-Producing Escherichia coli-associated hemolytic uremic syndrome: retrospective genetic and clinical study. Clin. J. Am. Soc. Nephrol., 2019, 14(3), 364-377.
[http://dx.doi.org/10.2215/CJN.05830518] [PMID: 30674459]
[147]
Kaplan, B.S.; Thomson, P.D.; MacNab, G.M. Letter: Serum-complement levels in haemolytic-uraemic syndrome. Lancet, 1973, 2(7844), 1505-1506.
[http://dx.doi.org/10.1016/S0140-6736(73)92782-7] [PMID: 4129358]
[148]
Gitiaux, C.; Krug, P.; Grevent, D.; Kossorotoff, M.; Poncet, S.; Eisermann, M.; Oualha, M.; Boddaert, N.; Salomon, R.; Desguerre, I. Brain magnetic resonance imaging pattern and outcome in children with haemolytic-uraemic syndrome and neurological impairment treated with eculizumab. Dev. Med. Child Neurol., 2013, 55(8), 758-765.
[http://dx.doi.org/10.1111/dmcn.12161] [PMID: 23659643]
[149]
Krämer, J.; Deppe, M.; Göbel, K.; Tabelow, K.; Wiendl, H.; Meuth, S.G. Recovery of thalamic microstructural damage after Shiga toxin 2-associated hemolytic-uremic syndrome. J. Neurol. Sci., 2015, 356(1-2), 175-183.
[http://dx.doi.org/10.1016/j.jns.2015.06.045] [PMID: 26189050]
[150]
Lapeyraque, A.L.; Malina, M.; Fremeaux-Bacchi, V.; Boppel, T.; Kirschfink, M.; Oualha, M.; Proulx, F.; Clermont, M.J.; Le Deist, F.; Niaudet, P.; Schaefer, F. Eculizumab in severe Shiga-toxin-associated HUS. N. Engl. J. Med., 2011, 364(26), 2561-2563.
[http://dx.doi.org/10.1056/NEJMc1100859] [PMID: 21612462]
[151]
Mahat, U.; Matar, R.B.; Rotz, S.J. Use of complement monoclonal antibody eculizumab in Shiga toxin producing Escherichia coli associated hemolytic uremic syndrome: A review of current evidence. Pediatr. Blood Cancer, 2019, 66(11)e27913
[http://dx.doi.org/10.1002/pbc.27913] [PMID: 31286658]
[152]
Saini, A.; Emke, A.R.; Silva, M.C.; Perlman, S.J. Response to Eculizumab in Escherichia coli O157: H7-induced hemolytic uremic syndrome with severe neurological manifestations. Clin. Pediatr. (Phila.), 2015, 54(4), 387-389.
[http://dx.doi.org/10.1177/0009922814534520] [PMID: 24817079]
[153]
Dmytrijuk, A.; Robie-Suh, K.; Cohen, M.H.; Rieves, D.; Weiss, K.; Pazdur, R. FDA report: eculizumab (Soliris) for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Oncologist, 2008, 13(9), 993-1000.
[http://dx.doi.org/10.1634/theoncologist.2008-0086] [PMID: 18784156]
[154]
Wijnsma, K.L.; Ter Heine, R.; Moes, D.J.A.R.; Langemeijer, S.; Schols, S.E.M.; Volokhina, E.B.; van den Heuvel, L.P.; Wetzels, J.F.M.; van de Kar, N.C.A.J.; Brüggemann, R. J. Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin. Pharmacokinet., 2019, 58(7), 859-874.
[http://dx.doi.org/10.1007/s40262-019-00742-8] [PMID: 30758736]
[155]
Goldstein, J.; Loidl, C.F.; Creydt, V.P.; Boccoli, J.; Ibarra, C. Intracerebroventricular administration of Shiga toxin type 2 induces striatal neuronal death and glial alterations: an ultrastructural study. Brain Res., 2007, 1161, 106-115.
[http://dx.doi.org/10.1016/j.brainres.2007.05.067] [PMID: 17610852]
[156]
Gallo, E.G.; Gianantonio, C.A. Extrarenal involvement in diarrhoea-associated haemolytic-uraemic syndrome. Pediatr. Nephrol., 1995, 9(1), 117-119.
[http://dx.doi.org/10.1007/BF00858990] [PMID: 7742210]
[157]
Kielstein, J.T.; Beutel, G.; Fleig, S.; Steinhoff, J.; Meyer, T.N.; Hafer, C.; Kuhlmann, U.; Bramstedt, J.; Panzer, U.; Vischedyk, M.; Busch, V.; Ries, W.; Mitzner, S.; Mees, S.; Stracke, S.; Nürnberger, J.; Gerke, P.; Wiesner, M.; Sucke, B.; Abu-Tair, M.; Kribben, A.; Klause, N.; Schindler, R.; Merkel, F.; Schnatter, S.; Dorresteijn, E.M.; Samuelsson, O.; Brunkhorst, R. Collaborators of the DGfN STEC-HUS registry. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol. Dial. Transplant., 2012, 27(10), 3807-3815.
[http://dx.doi.org/10.1093/ndt/gfs394] [PMID: 23114903]
[158]
Perera, L.P.; Marques, L.R.; O’Brien, A.D. Isolation and characterization of monoclonal antibodies to Shiga-like toxin II of enterohemorrhagic Escherichia coli and use of the monoclonal antibodies in a colony enzyme-linked immunosorbent assay. J. Clin. Microbiol., 1988, 26(10), 2127-2131.
[http://dx.doi.org/10.1128/JCM.26.10.2127-2131.1988] [PMID: 3053764]
[159]
Hiriart, Y.; Pardo, R.; Bukata, L.; Lauché, C.; Muñoz, L.; Colonna, M.; Goldbaum, F.; Sanguineti, S.; Zylberman, V. Development of a product anti-Shiga toxin for prevention of the hemolytic uremic syndrome. Medicina (B. Aires), 2018, 78(2), 107-112.
[PMID: 29659360]
[160]
Mejías, M.P.; Hiriart, Y.; Lauché, C.; Fernández-Brando, R.J.; Pardo, R.; Bruballa, A.; Ramos, M.V.; Goldbaum, F.A.; Palermo, M.S.; Zylberman, V. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS). Sci. Rep., 2016, 6, 24913.
[http://dx.doi.org/10.1038/srep24913] [PMID: 27118524]
[161]
Kimura, T.; Co, M.S.; Vasquez, M.; Wei, S.; Xu, H.; Tani, S.; Sakai, Y.; Kawamura, T.; Matsumoto, Y.; Nakao, H.; Takeda, T. Development of humanized monoclonal antibody TMA-15 which neutralizes Shiga toxin 2. Hybrid. Hybridomics, 2002, 21(3), 161-168.
[http://dx.doi.org/10.1089/153685902760173872] [PMID: 12165141]
[162]
Kimura, T.; Tani, S.; Motoki, M.; Matsumoto, Y. Role of Shiga toxin 2 (Stx2)-binding protein, human serum amyloid P component (HuSAP), in Shiga toxin-producing Escherichia coli infections: assumption from in vitro and in vivo study using HuSAP and anti-Stx2 humanized monoclonal antibody TMA-15. Biochem. Biophys. Res. Commun., 2003, 305(4), 1057-1060.
[http://dx.doi.org/10.1016/S0006-291X(03)00901-X] [PMID: 12767937]
[163]
Yamagami, S.; Motoki, M.; Kimura, T.; Izumi, H.; Takeda, T.; Katsuura, Y.; Matsumoto, Y. Efficacy of postinfection treatment with anti-Shiga toxin (Stx) 2 humanized monoclonal antibody TMA-15 in mice lethally challenged with Stx-producing Escherichia coli. J. Infect. Dis., 2001, 184(6), 738-742.
[http://dx.doi.org/10.1086/323082] [PMID: 11517435]
[164]
Sauter, K.A.; Melton-Celsa, A.R.; Larkin, K.; Troxell, M.L.; O’Brien, A.D.; Magun, B.E. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infect. Immun., 2008, 76(10), 4469-4478.
[http://dx.doi.org/10.1128/IAI.00592-08] [PMID: 18694970]
[165]
Dowling, T.C.; Chavaillaz, P.A.; Young, D.G.; Melton-Celsa, A.; O’Brien, A.; Thuning-Roberson, C.; Edelman, R.; Tacket, C.O. Phase 1 safety and pharmacokinetic study of chimeric murine-human monoclonal antibody c alpha Stx2 administered intravenously to healthy adult volunteers. Antimicrob. Agents Chemother., 2005, 49(5), 1808-1812.
[http://dx.doi.org/10.1128/AAC.49.5.1808-1812.2005] [PMID: 15855500]
[166]
Bitzan, M.; Poole, R.; Mehran, M.; Sicard, E.; Brockus, C.; Thuning-Roberson, C.; Rivière, M. Safety and pharmacokinetics of chimeric anti-Shiga toxin 1 and anti-Shiga toxin 2 monoclonal antibodies in healthy volunteers. Antimicrob. Agents Chemother., 2009, 53(7), 3081-3087.
[http://dx.doi.org/10.1128/AAC.01661-08] [PMID: 19414580]
[167]
López, E.L.; Contrini, M.M.; Glatstein, E.; González Ayala, S.; Santoro, R.; Allende, D.; Ezcurra, G.; Teplitz, E.; Koyama, T.; Matsumoto, Y.; Sato, H.; Sakai, K.; Hoshide, S.; Komoriya, K.; Morita, T.; Harning, R.; Brookman, S. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob. Agents Chemother., 2010, 54(1), 239-243.
[http://dx.doi.org/10.1128/AAC.00343-09] [PMID: 19822704]
[168]
Mejias, M.P.; Cabrera, G.; Fernández-Brando, R.J.; Baschkier, A.; Ghersi, G.; Abrey-Recalde, M.J.; Miliwebsky, E.; Meiss, R.; Goldbaum, F.; Zylberman, V.; Rivas, M.; Palermo, M.S. Protection of mice against Shiga toxin 2 (Stx2)-associated damage by maternal immunization with a Brucella lumazine synthase-Stx2 B subunit chimera. Infect. Immun., 2014, 82(4), 1491-1499.
[http://dx.doi.org/10.1128/IAI.00027-14] [PMID: 24421050]
[169]
Mejias, M.P.; Ghersi, G.; Craig, P.O.; Panek, C.A.; Bentancor, L.V.; Baschkier, A.; Goldbaum, F.A.; Zylberman, V.; Palermo, M.S. Immunization with a chimera consisting of the B subunit of Shiga toxin type 2 and brucella lumazine synthase confers total protection against Shiga toxins in mice. J. Immunol., 2013, 191(5), 2403-2411.
[http://dx.doi.org/10.4049/jimmunol.1300999] [PMID: 23918978]
[170]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[171]
Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J. Med. Food, 2005, 8(3), 281-290.
[http://dx.doi.org/10.1089/jmf.2005.8.281] [PMID: 16176136]
[172]
Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S] [PMID: 15640497]
[173]
Doughari, J.H.; Ndakidemi, P.A.; Human, I.S.; Benade, S. Antioxidant, antimicrobial and antiverotoxic potentials of extracts of Curtisia dentata. J. Ethnopharmacol., 2012, 141(3), 1041-1050.
[http://dx.doi.org/10.1016/j.jep.2012.03.051] [PMID: 22504170]
[174]
Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep., 2017, 34(12), 1391-1421.
[http://dx.doi.org/10.1039/C7NP00030H] [PMID: 29160894]
[175]
Quiñones, B.; Massey, S.; Friedman, M.; Swimley, M.S.; Teter, K. Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl. Environ. Microbiol., 2009, 75(5), 1410-1416.
[http://dx.doi.org/10.1128/AEM.02230-08] [PMID: 19139230]
[176]
Zhao, T.; Tang, H.; Xie, L.; Zheng, Y.; Ma, Z.; Sun, Q.; Li, X. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol., 2019, 71(9), 1353-1369.
[http://dx.doi.org/10.1111/jphp.13129] [PMID: 31236960]
[177]
Tao, Y.; Zhan, S.; Wang, Y.; Zhou, G.; Liang, H.; Chen, X.; Shen, H. Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Sci. Rep., 2018, 8(1), 14477.
[http://dx.doi.org/10.1038/s41598-018-32734-2] [PMID: 30262902]
[178]
Dong, J.; Zhang, Y.; Chen, Y.; Niu, X.; Zhang, Y.; Yang, C.; Wang, Q.; Li, X.; Deng, X. Baicalin inhibits the lethality of Shiga-like toxin 2 in mice. Antimicrob. Agents Chemother., 2015, 59(11), 7054-7060.
[http://dx.doi.org/10.1128/AAC.01416-15] [PMID: 26349825]
[179]
Zhang, Y.; Qi, Z.; Liu, Y.; He, W.; Yang, C.; Wang, Q.; Dong, J.; Deng, X. Baicalin protects mice from lethal infection by enterohemorrhagic Escherichia coli. Front. Microbiol., 2017, 8, 395.
[http://dx.doi.org/10.3389/fmicb.2017.00395] [PMID: 28337193]
[180]
Vinh, P.T.; Shinohara, Y.; Yamada, A.; Duc, H.M.; Nakayama, M.; Ozawa, T.; Sato, J.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Baicalein Inhibits Stx1 and 2 of EHE: Effects of baicalein on the cytotoxicity, production, and secretion of Shiga Toxins of Enterohaemorrhagic Escherichia coli. Toxins (Basel), 2019, 11(9)E505
[http://dx.doi.org/10.3390/toxins11090505] [PMID: 31470657]
[181]
Sugita-Konishi, Y.; Hara-Kudo, Y.; Amano, F.; Okubo, T.; Aoi, N.; Iwaki, M.; Kumagai, S. Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7. Biochim. Biophys. Acta, 1999, 1472(1-2), 42-50.
[http://dx.doi.org/10.1016/S0304-4165(99)00102-6] [PMID: 10572924]
[182]
Higdon, J.V.; Frei, B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 89-143.
[http://dx.doi.org/10.1080/10408690390826464] [PMID: 12587987]
[183]
Fan, F.Y.; Sang, L.X.; Jiang, M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules, 2017, 22(3)E484
[http://dx.doi.org/10.3390/molecules22030484] [PMID: 28335502]
[184]
Miyamoto, T. Specific inhibition of cytotoxicity of Shiga-like toxin 1 of enterohemorrhagic Escherichia coli by gallocatechin gallate and epigallocatechin gallate. Food Control, 2014, 42, 263-269.
[http://dx.doi.org/10.1016/j.foodcont.2014.02.017]
[185]
Toda, M.; Okubo, S.; Ikigai, H.; Suzuki, T.; Suzuki, Y.; Shimamura, T. The protective activity of tea against infection by Vibrio cholerae O1. J. Appl. Bacteriol., 1991, 70(2), 109-112.
[http://dx.doi.org/10.1111/j.1365-2672.1991.tb04435.x] [PMID: 2019547]
[186]
Toda, M.; Okubo, S.; Ohnishi, R.; Shimamura, T. Antibacterial and bactericidal activities of Japanese green tea. Nippon Saikingaku Zasshi, 1989, 44(4), 669-672.
[http://dx.doi.org/10.3412/jsb.44.669] [PMID: 2677434]
[187]
Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res., 1993, 21(4), 289-299.
[http://dx.doi.org/10.1016/0166-3542(93)90008-7] [PMID: 8215301]
[188]
Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta, 1996, 1304(3), 210-222.
[http://dx.doi.org/10.1016/S0005-2760(96)00122-1] [PMID: 8982267]
[189]
Sanders, M.E. Probiotics in 2015: Their scope and use. J. Clin. Gastroenterol., 2015, 49(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1097/MCG.0000000000000350] [PMID: 26447958]
[190]
Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[191]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[192]
Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 2001, 57(6), 929-967.
[http://dx.doi.org/10.1016/S0031-9422(01)00113-3] [PMID: 11423142]
[193]
Olano-Martin, E.; Williams, M.R.; Gibson, G.R.; Rastall, R.A. Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29. FEMS Microbiol. Lett., 2003, 218(1), 101-105.
[http://dx.doi.org/10.1111/j.1574-6968.2003.tb11504.x] [PMID: 12583904]
[194]
Di, R.; Vakkalanka, M.S.; Onumpai, C.; Chau, H.K.; White, A.; Rastall, R.A.; Yam, K.; Hotchkiss, A.T. Jr Pectic oligosaccharide structure-function relationships: Prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells. Food Chem., 2017, 227, 245-254.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.100] [PMID: 28274429]
[195]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[196]
Williams, N.T. Probiotics. Am. J. Health Syst. Pharm., 2010, 67(6), 449-458.
[http://dx.doi.org/10.2146/ajhp090168] [PMID: 20208051]
[197]
Mohsin, M.; Guenther, S.; Schierack, P.; Tedin, K.; Wieler, L.H. Probiotic Escherichia coli Nissle 1917 reduces growth, Shiga toxin expression, release and thus cytotoxicity of enterohemorrhagic Escherichia coli. Int. J. Med. Microbiol., 2015, 305(1), 20-26.
[http://dx.doi.org/10.1016/j.ijmm.2014.10.003] [PMID: 25465158]
[198]
Rund, S.A.; Rohde, H.; Sonnenborn, U.; Oelschlaeger, T.A. Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7. Int. J. Med. Microbiol., 2013, 303(1), 1-8.
[http://dx.doi.org/10.1016/j.ijmm.2012.11.006] [PMID: 23312798]
[199]
Reissbrodt, R.; Hammes, W.P.; dal Bello, F.; Prager, R.; Fruth, A.; Hantke, K.; Rakin, A.; Starcic-Erjavec, M.; Williams, P.H. Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic Escherichia coli. FEMS Microbiol. Lett., 2009, 290(1), 62-69.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01405.x] [PMID: 19016876]
[200]
Kushida, Y.; Wakao, S.; Dezawa, M. Muse cells are endogenous reparative stem cells. Adv. Exp. Med. Biol., 2018, 1103, 43-68.
[http://dx.doi.org/10.1007/978-4-431-56847-6_3] [PMID: 30484223]
[201]
Dezawa, M. Clinical trials of muse cells. Adv. Exp. Med. Biol., 2018, 1103, 305-307.
[http://dx.doi.org/10.1007/978-4-431-56847-6_17] [PMID: 30484237]
[202]
Ozuru, R. Rescue from Stx2-Producing E.coli-Associated encephalopathy by intravenous injection of muse cells in NOD-SCID Mice. Mol. Ther., 2019, 28, 100-118.
[PMID: 31607541]
[203]
Chu, H.; Tang, Y.; Dong, Q. Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: effects of vascular endothelial growth factor and aquaporin-4. Neuroscience, 2014, 260, 59-72.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.017] [PMID: 24355496]
[204]
Dietrich, J.; Baryawno, N.; Nayyar, N.; Valtis, Y.K.; Yang, B.; Ly, I.; Besnard, A.; Severe, N.; Gustafsson, K.U.; Andronesi, O.C.; Batchelor, T.T.; Sahay, A.; Scadden, D.T. Bone marrow drives central nervous system regeneration after radiation injury. J. Clin. Invest., 2018, 128(6), 2651.
[http://dx.doi.org/10.1172/JCI121592] [PMID: 29856368]
[205]
Hattori, T.; Watanabe-Takahashi, M.; Ohoka, N.; Hamabata, T.; Furukawa, K.; Nishikawa, K.; Naito, M. Proteasome inhibitors prevent cell death and prolong survival of mice challenged by Shiga toxin. FEBS Open Bio, 2015, 5, 605-614.
[http://dx.doi.org/10.1016/j.fob.2015.06.005] [PMID: 26273560]
[206]
Silberstein, C.; Lucero, M.S.; Zotta, E.; Copeland, D.P.; Lingyun, L.; Repetto, H.A.; Ibarra, C. A glucosylceramide synthase inhibitor protects rats against the cytotoxic effects of shiga toxin 2. Pediatr. Res., 2011, 69(5 Pt 1), 390-394.
[http://dx.doi.org/10.1203/PDR.0b013e318211dd57] [PMID: 21270676]
[207]
Flam, B.; Sackey, P.; Berge, A.; Zachau, A.C.; Brink, B.; Lundberg, S. Diarrhea-associated hemolytic uremic syndrome with severe neurological manifestations treated with IgG depletion through immunoadsorption. J. Nephrol., 2016, 29(5), 711-714.
[http://dx.doi.org/10.1007/s40620-016-0294-5] [PMID: 26995001]
[208]
Bergan, J.; Skotland, T.; Lingelem, A.B.; Simm, R.; Spilsberg, B.; Lindbäck, T.; Sylvänne, T.; Simolin, H.; Ekroos, K.; Sandvig, K. The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cell. Mol. Life Sci., 2014, 71(21), 4285-4300.
[http://dx.doi.org/10.1007/s00018-014-1624-1] [PMID: 24740796]
[209]
Ailte, I.; Lingelem, A.B.; Kavaliauskiene, S.; Bergan, J.; Kvalvaag, A.S.; Myrann, A.G.; Skotland, T.; Sandvig, K. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding. Sci. Rep., 2016, 6, 30336.
[http://dx.doi.org/10.1038/srep30336] [PMID: 27458147]
[210]
Stechmann, B.; Bai, S.K.; Gobbo, E.; Lopez, R.; Merer, G.; Pinchard, S.; Panigai, L.; Tenza, D.; Raposo, G.; Beaumelle, B.; Sauvaire, D.; Gillet, D.; Johannes, L.; Barbier, J. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell, 2010, 141(2), 231-242.
[http://dx.doi.org/10.1016/j.cell.2010.01.043] [PMID: 20403321]
[211]
Abdelkafi, H.; Michau, A.; Clerget, A.; Buisson, D.A.; Johannes, L.; Gillet, D.; Barbier, J.; Cintrat, J.C. Synthesis, chiral separation, absolute configuration assignment, and biological activity of enantiomers of retro-1 as potent inhibitors of Shiga Toxin. ChemMedChem, 2015, 10(7), 1153-1156.
[http://dx.doi.org/10.1002/cmdc.201500139] [PMID: 26033849]
[212]
Secher, T.; Shima, A.; Hinsinger, K.; Cintrat, J.C.; Johannes, L.; Barbier, J.; Gillet, D.; Oswald, E. Retrograde trafficking inhibitor of shiga toxins reduces morbidity and mortality of mice infected with enterohemorrhagic Escherichia coli. Antimicrob. Agents Chemother., 2015, 59(8), 5010-5013.
[http://dx.doi.org/10.1128/AAC.00455-15] [PMID: 25987610]
[213]
Gupta, N.; Noël, R.; Goudet, A.; Hinsinger, K.; Michau, A.; Pons, V.; Abdelkafi, H.; Secher, T.; Shima, A.; Shtanko, O.; Sakurai, Y.; Cojean, S.; Pomel, S.; Liévin-Le Moal, V.; Leignel, V.; Herweg, J.A.; Fischer, A.; Johannes, L.; Harrison, K.; Beard, P.M.; Clayette, P.; Le Grand, R.; Rayner, J.O.; Rudel, T.; Vacus, J.; Loiseau, P.M.; Davey, R.A.; Oswald, E.; Cintrat, J.C.; Barbier, J.; Gillet, D. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses. Leishmania and Chlamydiales. Chem. Biol. Interact., 2017, 267, 96-103.
[http://dx.doi.org/10.1016/j.cbi.2016.10.005] [PMID: 27712998]
[214]
de Vries Schultink, A.H.; Zwart, W.; Linn, S.C.; Beijnen, J.H.; Huitema, A.D. Effects of pharmacogenetics on the pharmacokinetics and pharmacodynamics of tamoxifen. Clin. Pharmacokinet., 2015, 54(8), 797-810.
[http://dx.doi.org/10.1007/s40262-015-0273-3] [PMID: 25940823]
[215]
Touitou, I.; Mathieu, M.; Rochefort, H. Stable transfection of the estrogen receptor cDNA into Hela cells induces estrogen responsiveness of endogenous cathepsin D gene but not of cell growth. Biochem. Biophys. Res. Commun., 1990, 169(1), 109-115.
[http://dx.doi.org/10.1016/0006-291X(90)91440-4] [PMID: 2350335]
[216]
Paton, J.C.; Paton, A.W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev., 1998, 11(3), 450-479.
[http://dx.doi.org/10.1128/CMR.11.3.450] [PMID: 9665978]
[217]
Selyunin, A.S. Tamoxifen blocks retrograde trafficking of Shiga toxin 1 and 2 and protects against lethal toxicosis. Life Sci Alliance, 2019, 2(3)
[http://dx.doi.org/10.26508/lsa.201900439]
[218]
Pitz, A.M.; Park, G.W.; Lee, D.; Boissy, Y.L.; Vinjé, J. Antimicrobial activity of bismuth subsalicylate on Clostridium difficile, Escherichia coli O157:H7, norovirus, and other common enteric pathogens. Gut Microbes, 2015, 6(2), 93-100.
[http://dx.doi.org/10.1080/19490976.2015.1008336] [PMID: 25901890]
[219]
Subils, T.; Casabonne, C.; Balagué, C. The inhibitory effect of colloidal bismuth hydroxide gel on Escherichia coli O157:H7 and on the activity of Shiga toxins. BMC Res. Notes, 2014, 7, 875.
[http://dx.doi.org/10.1186/1756-0500-7-875] [PMID: 25475210]
[220]
Crane, J.K.; Broome, J.E.; Reddinger, R.M.; Werth, B.B. Zinc protects against Shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria. BMC Microbiol., 2014, 14, 145.
[http://dx.doi.org/10.1186/1471-2180-14-145] [PMID: 24903402]
[221]
Tewari, R.; Jarvela, T.; Linstedt, A.D. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin. Mol. Biol. Cell, 2014, 25(19), 3049-3058.
[http://dx.doi.org/10.1091/mbc.e14-05-1003] [PMID: 25079690]
[222]
Trachtman, H.; Cnaan, A.; Christen, E.; Gibbs, K.; Zhao, S.; Acheson, D.W.; Weiss, R.; Kaskel, F.J.; Spitzer, A.; Hirschman, G.H. Investigators of the HUS-SYNSORB Pk Multicenter Clinical Trial. Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA, 2003, 290(10), 1337-1344.
[http://dx.doi.org/10.1001/jama.290.10.1337] [PMID: 12966125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy