Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Is It the Twilight of BACE1 Inhibitors?

Author(s): Martina Hrabinova, Jaroslav Pejchal*, Tomas Kucera, Daniel Jun, Monika Schmidt and Ondrej Soukup

Volume 19, Issue 1, 2021

Published on: 02 May, 2020

Page: [61 - 77] Pages: 17

DOI: 10.2174/1570159X18666200503023323

Price: $65

Abstract

β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.

Keywords: β-secretase, amyloid beta, Alzheimer’s disease, substrates, inhibitors, clinical trials.

Graphical Abstract

[1]
Selkoe, D.J. The molecular pathology of Alzheimer’s disease. Neuron, 1991, 6(4), 487-498.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[2]
Román, G.C.; Kalaria, R.N. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol. Aging, 2006, 27(12), 1769-1785.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.10.004] [PMID: 16300856]
[3]
Vardy, E.R.L.C.; Catto, A.J.; Hooper, N.M. Proteolytic mechanisms in amyloid-β metabolism: therapeutic implications for Alzheimer’s disease. Trends Mol. Med., 2005, 11(10), 464-472.
[http://dx.doi.org/10.1016/j.molmed.2005.08.004] [PMID: 16153892]
[4]
Tanzi, R.E.; Gusella, J.F.; Watkins, P.C.; Bruns, G.A.; St George-Hyslop, P.; Van Keuren, M.L.; Patterson, D.; Pagan, S.; Kurnit, D.M.; Neve, R.L. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 1987, 235(4791), 880-884.
[http://dx.doi.org/10.1126/science.2949367] [PMID: 2949367]
[5]
Goldgaber, D.; Lerman, M.I.; McBride, O.W.; Saffiotti, U.; Gajdusek, D.C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science, 1987, 235(4791), 877-880.
[http://dx.doi.org/10.1126/science.3810169] [PMID: 3810169]
[6]
König, G.; Mönning, U.; Czech, C.; Prior, R.; Banati, R.; Schreiter-Gasser, U.; Bauer, J.; Masters, C.L.; Beyreuther, K. Identification and differential expression of a novel alternative splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. J. Biol. Chem., 1992, 267(15), 10804-10809.
[PMID: 1587857]
[7]
Norstrom, E. Metabolic processing of the amyloid precursor protein -- new pieces of the Alzheimer’s puzzle. Discov. Med., 2017, 23(127), 269-276.
[PMID: 28595039]
[8]
Sathya, M.; Premkumar, P.; Karthick, C.; Moorthi, P.; Jayachandran, K.S.; Anusuyadevi, M. BACE1 in Alzheimer’s disease. Clin. Chim. Acta, 2012, 414, 171-178.
[http://dx.doi.org/10.1016/j.cca.2012.08.013] [PMID: 22926063]
[9]
He, X.; Zhu, G.; Koelsch, G.; Rodgers, K.K.; Zhang, X.C.; Tang, J. Biochemical and structural characterization of the interaction of memapsin 2 (β-secretase) cytosolic domain with the VHS domain of GGA proteins. Biochemistry, 2003, 42(42), 12174-12180.
[http://dx.doi.org/10.1021/bi035199h] [PMID: 14567678]
[10]
Waldron, E.; Heilig, C.; Schweitzer, A.; Nadella, N.; Jaeger, S.; Martin, A.M.; Weggen, S.; Brix, K.; Pietrzik, C.U. LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol. Dis., 2008, 31(2), 188-197.
[http://dx.doi.org/10.1016/j.nbd.2008.04.006] [PMID: 18559293]
[11]
Cole, S.L.; Vassar, R. The role of amyloid precursor protein processing by BACE1, the β-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem., 2008, 283(44), 29621-29625.
[http://dx.doi.org/10.1074/jbc.R800015200] [PMID: 18650431]
[12]
Deng, Y.; Wang, Z.; Wang, R.; Zhang, X.; Zhang, S.; Wu, Y.; Staufenbiel, M.; Cai, F.; Song, W. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur. J. Neurosci., 2013, 37(12), 1962-1969.
[http://dx.doi.org/10.1111/ejn.12235] [PMID: 23773065]
[13]
Zhang, S.; Wang, Z.; Cai, F.; Zhang, M.; Wu, Y.; Zhang, J.; Song, W. BACE1 Cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J. Neurosci., 2017, 37(29), 6915-6925.
[http://dx.doi.org/10.1523/JNEUROSCI.0340-17.2017] [PMID: 28626014]
[14]
Haass, C.; Lemere, C.A.; Capell, A.; Citron, M.; Seubert, P.; Schenk, D.; Lannfelt, L.; Selkoe, D.J. The Swedish mutation causes early-onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nat. Med., 1995, 1(12), 1291-1296.
[http://dx.doi.org/10.1038/nm1295-1291] [PMID: 7489411]
[15]
Mullan, M.; Crawford, F.; Axelman, K.; Houlden, H.; Lilius, L.; Winblad, B.; Lannfelt, L. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet., 1992, 1(5), 345-347.
[http://dx.doi.org/10.1038/ng0892-345] [PMID: 1302033]
[16]
Cole, S.L.; Vassar, R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener., 2007, 2, 22.
[http://dx.doi.org/10.1186/1750-1326-2-22] [PMID: 18005427]
[17]
Lu, P.; Bai, X.C.; Ma, D.; Xie, T.; Yan, C.; Sun, L.; Yang, G.; Zhao, Y.; Zhou, R.; Scheres, S.H.W.; Shi, Y. Three-dimensional structure of human γ-secretase. Nature, 2014, 512(7513), 166-170.
[http://dx.doi.org/10.1038/nature13567] [PMID: 25043039]
[18]
Zhang, X.; Li, Y.; Xu, H.; Zhang, Y.W. The γ-secretase complex: from structure to function. Front. Cell. Neurosci., 2014, 8, 427.
[http://dx.doi.org/10.3389/fncel.2014.00427] [PMID: 25565961]
[19]
Somavarapu, A.K.; Kepp, K.P. Membrane dynamics of γ-secretase provides a molecular basis for β-Amyloid binding and processing. ACS Chem. Neurosci., 2017, 8(11), 2424-2436.
[http://dx.doi.org/10.1021/acschemneuro.7b00208] [PMID: 28841371]
[20]
Morimoto, A.; Irie, K.; Murakami, K.; Masuda, Y.; Ohigashi, H.; Nagao, M.; Fukuda, H.; Shimizu, T.; Shirasawa, T. Analysis of the secondary structure of β-amyloid (Abeta42) fibrils by systematic proline replacement. J. Biol. Chem., 2004, 279(50), 52781-52788.
[http://dx.doi.org/10.1074/jbc.M406262200] [PMID: 15459202]
[21]
Koelsch, G. BACE1 Function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer’s Disease pathology. Molecules, 2017, 22(10), 1723.
[http://dx.doi.org/10.3390/molecules22101723] [PMID: 29027981]
[22]
Tcw, J.; Goate, A.M. Genetics of β-Amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb. Perspect. Med., 2017, 7(6)a024539
[http://dx.doi.org/10.1101/cshperspect.a024539]] [PMID: 28003277]
[23]
Maloney, J.A.; Bainbridge, T.; Gustafson, A.; Zhang, S.; Kyauk, R.; Steiner, P.; van der Brug, M.; Liu, Y.; Ernst, J.A.; Watts, R.J.; Atwal, J.K. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J. Biol. Chem., 2014, 289(45), 30990-31000.
[http://dx.doi.org/10.1074/jbc.M114.589069] [PMID: 25253696]
[24]
Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10)a006296
[http://dx.doi.org/10.1101/cshperspect.a006296]] [PMID: 23028126]
[25]
Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; Hoyte, K.; Gustafson, A.; Liu, Y.; Lu, Y.; Bhangale, T.; Graham, R.R.; Huttenlocher, J.; Bjornsdottir, G.; Andreassen, O.A.; Jönsson, E.G.; Palotie, A.; Behrens, T.W.; Magnusson, O.T.; Kong, A.; Thorsteinsdottir, U.; Watts, R.J.; Stefansson, K. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 2012, 488(7409), 96-99.
[http://dx.doi.org/10.1038/nature11283] [PMID: 22801501]
[26]
Hussain, I.; Powell, D.; Howlett, D.R.; Tew, D.G.; Meek, T.D.; Chapman, C.; Gloger, I.S.; Murphy, K.E.; Southan, C.D.; Ryan, D.M.; Smith, T.S.; Simmons, D.L.; Walsh, F.S.; Dingwall, C.; Christie, G. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci., 1999, 14(6), 419-427.
[http://dx.doi.org/10.1006/mcne.1999.0811] [PMID: 10656250]
[27]
Sinha, S.; Anderson, J.P.; Barbour, R.; Basi, G.S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H.F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Lieberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S.M.; Wang, S.; Walker, D.; Zhao, J.; McConlogue, L.; John, V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature, 1999, 402(6761), 537-540.
[http://dx.doi.org/10.1038/990114] [PMID: 10591214]
[28]
Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[29]
Yan, R.; Bienkowski, M.J.; Shuck, M.E.; Miao, H.; Tory, M.C.; Pauley, A.M.; Brashier, J.R.; Stratman, N.C.; Mathews, W.R.; Buhl, A.E.; Carter, D.B.; Tomasselli, A.G.; Parodi, L.A.; Heinrikson, R.L.; Gurney, M.E. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature, 1999, 402(6761), 533-537.
[http://dx.doi.org/10.1038/990107] [PMID: 10591213]
[30]
Lin, X.; Koelsch, G.; Wu, S.; Downs, D.; Dashti, A.; Tang, J. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1456-1460.
[http://dx.doi.org/10.1073/pnas.97.4.1456] [PMID: 10677483]
[31]
Barão, S.; Moechars, D.; Lichtenthaler, S.F.; De Strooper, B. BACE1 Physiological functions may limit its use as therapeutic target for Alzheimer’s Disease. Trends Neurosci., 2016, 39(3), 158-169.
[http://dx.doi.org/10.1016/j.tins.2016.01.003] [PMID: 26833257]
[32]
Motonaga, K.; Itoh, M.; Becker, L.E.; Goto, Y.; Takashima, S. Elevated expression of beta-site amyloid precursor protein cleaving enzyme 2 in brains of patients with Down syndrome. Neurosci. Lett., 2002, 326(1), 64-66.
[http://dx.doi.org/10.1016/S0304-3940(02)00287-2] [PMID: 12052539]
[33]
Head, E.; Powell, D.; Gold, B.T.; Schmitt, F.A. Alzheimer’s Disease in Down Syndrome. Eur. J. Neurodegener. Dis., 2012, 1(3), 353-364.
[PMID: 25285303]
[34]
Head, E.; Lott, I.T.; Wilcock, D.M.; Lemere, C.A. Aging in down syndrome and the development of Alzheimer’s Disease neuropathology. Curr. Alzheimer Res., 2016, 13(1), 18-29.
[http://dx.doi.org/10.2174/1567205012666151020114607] [PMID: 26651341]
[35]
Stockley, J.H.; O’Neill, C. The proteins BACE1 and BACE2 and β-secretase activity in normal and Alzheimer’s disease brain. Biochem. Soc. Trans., 2007, 35(Pt 3), 574-576.
[http://dx.doi.org/10.1042/BST0350574] [PMID: 17511655]
[36]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-β peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[37]
Christensen, M.A.; Zhou, W.; Qing, H.; Lehman, A.; Philipsen, S.; Song, W. Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1. Mol. Cell. Biol., 2004, 24(2), 865-874.
[http://dx.doi.org/10.1128/MCB.24.2.865-874.2004] [PMID: 14701757]
[38]
Cole, S.L.; Vassar, R. The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 509-530.
[http://dx.doi.org/10.2174/138920207783769512] [PMID: 19415126]
[39]
Venugopal, C.; Demos, C.M.; Rao, K.S.J.; Pappolla, M.A.; Sambamurti, K. Beta-secretase: structure, function, and evolution. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 278-294.
[http://dx.doi.org/10.2174/187152708784936626] [PMID: 18673212]
[40]
Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med., 2010, 12(1), 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[41]
Lahiri, D.K. Advances in Alzheimer’s Research; Bentham Science Publishers: Sharjah, 2013.
[http://dx.doi.org/10.2174/97816080549541130101]
[42]
Wang, R.; Li, J.J.; Diao, S.; Kwak, Y-D.; Liu, L.; Zhi, L.; Büeler, H.; Bhat, N.R.; Williams, R.W.; Park, E.A.; Liao, F-F. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab., 2013, 17(5), 685-694.
[http://dx.doi.org/10.1016/j.cmet.2013.03.016] [PMID: 23663737]
[43]
Chen, C-H.; Zhou, W.; Liu, S.; Deng, Y.; Cai, F.; Tone, M.; Tone, Y.; Tong, Y.; Song, W. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol., 2012, 15(1), 77-90.
[http://dx.doi.org/10.1017/S1461145711000149] [PMID: 21329555]
[44]
Zhou, W.; Qing, H.; Tong, Y.; Song, W. BACE1 gene expression and protein degradation. Ann. N. Y. Acad. Sci., 2004, 1035, 49-67.
[http://dx.doi.org/10.1196/annals.1332.004] [PMID: 15681800]
[45]
Nowak, K.; Lange-Dohna, C.; Zeitschel, U.; Günther, A.; Lüscher, B.; Robitzki, A.; Perez-Polo, R.; Rossner, S. The transcription factor Yin Yang 1 is an activator of BACE1 expression. J. Neurochem., 2006, 96(6), 1696-1707.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03692.x] [PMID: 16539685]
[46]
Hong, H.S.; Hwang, E.M.; Sim, H.J.; Cho, H-J.; Boo, J.H.; Oh, S.S.; Kim, S.U.; Mook-Jung, I. Interferon γ stimulates β-secretase expression and sAPPbeta production in astrocytes. Biochem. Biophys. Res. Commun., 2003, 307(4), 922-927.
[http://dx.doi.org/10.1016/S0006-291X(03)01270-1] [PMID: 12878199]
[47]
Menting, K.W.; Claassen, J.A.H.R. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 165.
[http://dx.doi.org/10.3389/fnagi.2014.00165] [PMID: 25100992]
[48]
Zhou, W.; Cai, F.; Li, Y.; Yang, G.S.; O’Connor, K.D.; Holt, R.A.; Song, W. BACE1 gene promoter single-nucleotide polymorphisms in Alzheimer’s disease. J. Mol. Neurosci., 2010, 42(1), 127-133.
[http://dx.doi.org/10.1007/s12031-010-9381-6] [PMID: 20455082]
[49]
Cordner, Z.A.; Tamashiro, K.L.K. Effects of chronic variable stress on cognition and Bace1 expression among wild-type mice. Transl. Psychiatry, 2016, 6(7)e854
[http://dx.doi.org/10.1038/tp.2016.127]] [PMID: 27404286]
[50]
Zeng, H.; Huang, P.; Wang, X.; Wu, J.; Wu, M.; Huang, J. Galangin-induced down-regulation of BACE1 by epigenetic mechanisms in SH-SY5Y cells. Neuroscience, 2015, 294, 172-181.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.054] [PMID: 25779965]
[51]
Zhang, N.; Li, W-W.; Lv, C-M.; Gao, Y-W.; Liu, X-L.; Zhao, L. miR-16-5p and miR-19b-3p prevent amyloid β-induced injury by targeting BACE1 in SH-SY5Y cells. Neuroreport, 2020, 31(3), 205-212.
[http://dx.doi.org/10.1097/WNR.0000000000001379] [PMID: 31876684]
[52]
Barros-Viegas, A.T.; Carmona, V.; Ferreiro, E.; Guedes, J.; Cardoso, A.M.; Cunha, P.; Pereira de Almeida, L.; Resende de Oliveira, C.; Pedro de Magalhães, J.; Peça, J.; Cardoso, A.L. miRNA-31 Improves cognition and abolishes Amyloid-β pathology by targeting app and bace1 in an animal model of Alzheimer’s disease. Mol. Ther. Nucleic Acids, 2020, 19, 1219-1236.
[http://dx.doi.org/10.1016/j.omtn.2020.01.010] [PMID: 32069773]
[53]
Miya Shaik, M.; Tamargo, I.A.; Abubakar, M.B.; Kamal, M.A.; Greig, N.H.; Gan, S.H. The Role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes (Basel), 2018, 9(4), 174.
[http://dx.doi.org/10.3390/genes9040174] [PMID: 29561798]
[54]
Deng, Y.; Ding, Y.; Hou, D. Research status of the regulation of miRNA on BACE1. Int. J. Neurosci., 2014, 124(7), 474-477.
[http://dx.doi.org/10.3109/00207454.2013.858249] [PMID: 24147552]
[55]
Kandalepas, P.C.; Vassar, R. The normal and pathologic roles of the Alzheimer’s β-secretase, BACE1. Curr. Alzheimer Res., 2014, 11(5), 441-449.
[http://dx.doi.org/10.2174/1567205011666140604122059] [PMID: 24893886]
[56]
Vassar, R. BACE1: the β-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci., 2004, 23(1-2), 105-114.
[http://dx.doi.org/10.1385/JMN:23:1-2:105] [PMID: 15126696]
[57]
Vassar, R. The β-secretase, BACE: a prime drug target for Alzheimer’s disease. J. Mol. Neurosci., 2001, 17(2), 157-170.
[http://dx.doi.org/10.1385/JMN:17:2:157] [PMID: 11816789]
[58]
Yan, R.; Han, P.; Miao, H.; Greengard, P.; Xu, H. The transmembrane domain of the Alzheimer’s β-secretase (BACE1) determines its late Golgi localization and access to β -amyloid precursor protein (APP) substrate. J. Biol. Chem., 2001, 276(39), 36788-36796.
[http://dx.doi.org/10.1074/jbc.M104350200] [PMID: 11466313]
[59]
Holsinger, R.M.D.; Goense, N.; Bohorquez, J.; Strappe, P. Splice variants of the Alzheimer’s disease beta-secretase, BACE1. Neurogenetics, 2013, 14(1), 1-9.
[http://dx.doi.org/10.1007/s10048-012-0348-3] [PMID: 23142975]
[60]
Tanahashi, H.; Tabira, T. Three novel alternatively spliced isoforms of the human beta-site amyloid precursor protein cleaving enzyme (BACE) and their effect on amyloid beta-peptide production. Neurosci. Lett., 2001, 307(1), 9-12.
[http://dx.doi.org/10.1016/S0304-3940(01)01912-7] [PMID: 11516562]
[61]
Tan, J.; Evin, G. B-site APP-cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis. J. Neurochem., 2012, 120(6), 869-880.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07623.x] [PMID: 22171895]
[62]
Araki, W. Post-translational regulation of the β-secretase BACE1. Brain Res. Bull., 2016, 126(Pt 2), 170-177.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.009] [PMID: 27086128]
[63]
Vassar, R.; Kovacs, D.M.; Yan, R.; Wong, P.C. The β-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J. Neurosci., 2009, 29(41), 12787-12794.
[http://dx.doi.org/10.1523/JNEUROSCI.3657-09.2009] [PMID: 19828790]
[64]
Haniu, M.; Denis, P.; Young, Y.; Mendiaz, E.A.; Fuller, J.; Hui, J.O.; Bennett, B.D.; Kahn, S.; Ross, S.; Burgess, T.; Katta, V.; Rogers, G.; Vassar, R.; Citron, M. Characterization of Alzheimer’s β -secretase protein BACE. A pepsin family member with unusual properties. J. Biol. Chem., 2000, 275(28), 21099-21106.
[http://dx.doi.org/10.1074/jbc.M002095200] [PMID: 10887202]
[65]
Vassar, R.; Kandalepas, P.C. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(3), 20.
[http://dx.doi.org/10.1186/alzrt82] [PMID: 21639952]
[66]
Costantini, C.; Ko, M.H.; Jonas, M.C.; Puglielli, L. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem. J., 2007, 407(3), 383-395.
[http://dx.doi.org/10.1042/BJ20070040] [PMID: 17425515]
[67]
Walter, J.; Fluhrer, R.; Hartung, B.; Willem, M.; Kaether, C.; Capell, A.; Lammich, S.; Multhaup, G.; Haass, C. Phosphorylation regulates intracellular trafficking of β-secretase. J. Biol. Chem., 2001, 276(18), 14634-14641.
[http://dx.doi.org/10.1074/jbc.M011116200] [PMID: 11278841]
[68]
Yang, H-C.; Chai, X.; Mosior, M.; Kohn, W.; Boggs, L.N.; Erickson, J.A.; McClure, D.B.; Yeh, W-K.; Zhang, L.; Gonzalez-DeWhitt, P.; Mayer, J.P.; Martin, J.A.; Hu, J.; Chen, S.H.; Bueno, A.B.; Little, S.P.; McCarthy, J.R.; May, P.C. Biochemical and kinetic characterization of BACE1: investigation into the putative species-specificity for β- and β′-cleavage sites by human and murine BACE1. J. Neurochem., 2004, 91(6), 1249-1259.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02764.x] [PMID: 15584902]
[69]
Motoki, K.; Kume, H.; Oda, A.; Tamaoka, A.; Hosaka, A.; Kametani, F.; Araki, W. Neuronal β-amyloid generation is independent of lipid raft association of β-secretase BACE1: analysis with a palmitoylation-deficient mutant. Brain Behav., 2012, 2(3), 270-282.
[http://dx.doi.org/10.1002/brb3.52] [PMID: 22741101]
[70]
Vetrivel, K.S.; Meckler, X.; Chen, Y.; Nguyen, P.D.; Seidah, N.G.; Vassar, R.; Wong, P.C.; Fukata, M.; Kounnas, M.Z.; Thinakaran, G. Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J. Biol. Chem., 2009, 284(6), 3793-3803.
[http://dx.doi.org/10.1074/jbc.M808920200] [PMID: 19074428]
[71]
Kalvodova, L.; Kahya, N.; Schwille, P.; Ehehalt, R.; Verkade, P.; Drechsel, D.; Simons, K. Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J. Biol. Chem., 2005, 280(44), 36815-36823.
[http://dx.doi.org/10.1074/jbc.M504484200] [PMID: 16115865]
[72]
Cordy, J.M.; Hooper, N.M.; Turner, A.J.; Turner, A.J. The involvement of lipid rafts in Alzheimer’s disease. Mol. Membr. Biol., 2006, 23(1), 111-122.
[http://dx.doi.org/10.1080/09687860500496417] [PMID: 16611586]
[73]
Cordy, J.M.; Hussain, I.; Dingwall, C.; Hooper, N.M.; Turner, A.J. Exclusively targeting β-secretase to lipid rafts by GPI-anchor addition up-regulates β-site processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11735-11740.
[http://dx.doi.org/10.1073/pnas.1635130100] [PMID: 14504402]
[74]
Hirst, J.; Lui, W.W.Y.; Bright, N.A.; Totty, N.; Seaman, M.N.J.; Robinson, M.S. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol., 2000, 149(1), 67-80.
[http://dx.doi.org/10.1083/jcb.149.1.67] [PMID: 10747088]
[75]
He, X.; Li, F.; Chang, W-P.; Tang, J. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J. Biol. Chem., 2005, 280(12), 11696-11703.
[http://dx.doi.org/10.1074/jbc.M411296200] [PMID: 15615712]
[76]
Ghosh, P.; Kornfeld, S. The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur. J. Cell Biol., 2004, 83(6), 257-262.
[http://dx.doi.org/10.1078/0171-9335-00374] [PMID: 15511083]
[77]
von Einem, B.; Wahler, A.; Schips, T.; Serrano-Pozo, A.; Proepper, C.; Boeckers, T.M.; Rueck, A.; Wirth, T.; Hyman, B.T.; Danzer, K.M.; Thal, D.R.; von Arnim, C.A.F. The Golgi-Localized γ-ear-containing arf-binding (gga) proteins alter Amyloid-β precursor protein (app) processing through interaction of their gae domain with the beta-site app cleaving enzyme 1 (BACE1). PLoS One, 2015, 10(6)e0129047
[http://dx.doi.org/10.1371/journal.pone.0129047]] [PMID: 26053850]
[78]
Tesco, G.; Koh, Y.H.; Kang, E.L.; Cameron, A.N.; Das, S.; Sena-Esteves, M.; Hiltunen, M.; Yang, S-H.; Zhong, Z.; Shen, Y.; Simpkins, J.W.; Tanzi, R.E. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron, 2007, 54(5), 721-737.
[http://dx.doi.org/10.1016/j.neuron.2007.05.012] [PMID: 17553422]
[79]
Deng, M.; He, W.; Tan, Y.; Han, H.; Hu, X.; Xia, K.; Zhang, Z.; Yan, R. Increased expression of reticulon 3 in neurons leads to reduced axonal transport of β site amyloid precursor protein-cleaving enzyme 1. J. Biol. Chem., 2013, 288(42), 30236-30245.
[http://dx.doi.org/10.1074/jbc.M113.480079] [PMID: 24005676]
[80]
Murayama, K.S.; Kametani, F.; Saito, S.; Kume, H.; Akiyama, H.; Araki, W. Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid β-protein. Eur. J. Neurosci., 2006, 24(5), 1237-1244.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05005.x] [PMID: 16965550]
[81]
Zhao, Y.; Wang, Y.; Yang, J.; Wang, X.; Zhao, Y.; Zhang, X.; Zhang, Y.W. Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol. Neurodegener., 2012, 7, 30.
[http://dx.doi.org/10.1186/1750-1326-7-30] [PMID: 22709416]
[82]
Okada, H.; Zhang, W.; Peterhoff, C.; Hwang, J.C.; Nixon, R.A.; Ryu, S.H.; Kim, T-W. Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J., 2010, 24(8), 2783-2794.
[http://dx.doi.org/10.1096/fj.09-146357] [PMID: 20354142]
[83]
Kandalepas, P.C.; Vassar, R. Identification and biology of β-secretase. J. Neurochem., 2012, 120(Suppl. 1), 55-61.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07512.x] [PMID: 22122287]
[84]
Dislich, B.; Wohlrab, F.; Bachhuber, T.; Müller, S.A.; Kuhn, P-H.; Hogl, S.; Meyer-Luehmann, M.; Lichtenthaler, S.F. Label-free Quantitative proteomics of mouse cerebrospinal fluid detects β-site app cleaving enzyme (bace1) protease substrates In Vivo. Mol. Cell. Proteomics, 2015, 14(10), 2550-2563.
[http://dx.doi.org/10.1074/mcp.M114.041533] [PMID: 26139848]
[85]
Hemming, M.L.; Elias, J.E.; Gygi, S.P.; Selkoe, D.J. Identification of β-secretase (BACE1) substrates using quantitative proteomics. PLoS One, 2009, 4(12)e8477
[http://dx.doi.org/10.1371/journal.pone.0008477]] [PMID: 20041192]
[86]
Munro, K.M.; Nash, A.; Pigoni, M.; Lichtenthaler, S.F.; Gunnersen, J.M. Functions of the Alzheimer’s disease protease bace1 at the synapse in the central nervous system. J. Mol. Neurosci., 2016, 60(3), 305-315.
[http://dx.doi.org/10.1007/s12031-016-0800-1] [PMID: 27456313]
[87]
Yan, R. Physiological functions of the β-Site amyloid precursor protein cleaving enzyme 1 and 2. Front. Mol. Neurosci., 2017, 10, 97.
[http://dx.doi.org/10.3389/fnmol.2017.00097] [PMID: 28469554]
[88]
Hu, X.; Hicks, C.W.; He, W.; Wong, P.; Macklin, W.B.; Trapp, B.D.; Yan, R. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci., 2006, 9(12), 1520-1525.
[http://dx.doi.org/10.1038/nn1797] [PMID: 17099708]
[89]
Fleck, D.; Garratt, A.N.; Haass, C.; Willem, M. BACE1 dependent neuregulin processing:review Curr. Alzheimer Res., 2012, 9(2), 178-183.
[http://dx.doi.org/10.2174/156720512799361637] [PMID: 22455478]
[90]
Wansbury, O.; Panchal, H.; James, M.; Parry, S.; Ashworth, A.; Howard, B. Dynamic expression of Erbb pathway members during early mammary gland morphogenesis. J. Invest. Dermatol., 2008, 128(4), 1009-1021.
[http://dx.doi.org/10.1038/sj.jid.5701118] [PMID: 17960183]
[91]
Zhou, L.; Barão, S.; Laga, M.; Bockstael, K.; Borgers, M.; Gijsen, H.; Annaert, W.; Moechars, D.; Mercken, M.; Gevaert, K.; De Strooper, B. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J. Biol. Chem., 2012, 287(31), 25927-25940.
[http://dx.doi.org/10.1074/jbc.M112.377465] [PMID: 22692213]
[92]
Vassar, R. Editorial: Implications for BACE1 inhibitor clinical trials: adult conditional bace1 knockout mice exhibit axonal Organization defects in the Hippocampus. J. Prev. Alzheimers Dis., 2019, 6(2), 78-84.
[PMID: 30756113]
[93]
Ou-Yang, M-H.; Kurz, J.E.; Nomura, T.; Popovic, J.; Rajapaksha, T.W.; Dong, H.; Contractor, A.; Chetkovich, D.M.; Tourtellotte, W.G.; Vassar, R. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci. Transl. Med., 2018, 10(459)eaao5620
[http://dx.doi.org/10.1126/scitranslmed.aao5620]] [PMID: 30232227]
[94]
Mayer, M.C.; Schauenburg, L.; Thompson-Steckel, G.; Dunsing, V.; Kaden, D.; Voigt, P.; Schaefer, M.; Chiantia, S.; Kennedy, T.E.; Multhaup, G. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2. J. Neurochem., 2016, 137(2), 266-276.
[http://dx.doi.org/10.1111/jnc.13540] [PMID: 26801522]
[95]
Heber, S.; Herms, J.; Gajic, V.; Hainfellner, J.; Aguzzi, A.; Rülicke, T.; von Kretzschmar, H.; von Koch, C.; Sisodia, S.; Tremml, P.; Lipp, H-P.; Wolfer, D.P.; Müller, U. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci., 2000, 20(21), 7951-7963.
[http://dx.doi.org/10.1523/JNEUROSCI.20-21-07951.2000] [PMID: 11050115]
[96]
Han, K.; Müller, U.C.; Hülsmann, S. Amyloid-precursor like proteins aplp1 and aplp2 are dispensable for normal development of the neonatal respiratory network. Front. Mol. Neurosci., 2017, 10, 189.
[http://dx.doi.org/10.3389/fnmol.2017.00189] [PMID: 28690498]
[97]
Kim, D.Y.; Carey, B.W.; Wang, H.; Ingano, L.A.M.; Binshtok, A.M.; Wertz, M.H.; Pettingell, W.H.; He, P.; Lee, V.M-Y.; Woolf, C.J.; Kovacs, D.M. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol., 2007, 9(7), 755-764.
[http://dx.doi.org/10.1038/ncb1602] [PMID: 17576410]
[98]
Bouza, A.A.; Isom, L.L. Voltage-gated sodium channel β subunits and their related diseases. Handb. Exp. Pharmacol., 2018, 246, 423-450.
[http://dx.doi.org/10.1007/164_2017_48] [PMID: 28965169]
[99]
Kitazume, S.; Tachida, Y.; Oka, R.; Kotani, N.; Ogawa, K.; Suzuki, M.; Dohmae, N.; Takio, K.; Saido, T.C.; Hashimoto, Y. Characterization of alpha 2,6-sialyltransferase cleavage by Alzheimer’s β -secretase (BACE1). J. Biol. Chem., 2003, 278(17), 14865-14871.
[http://dx.doi.org/10.1074/jbc.M206262200] [PMID: 12473667]
[100]
Kitazume, S.; Suzuki, M.; Saido, T.C.; Hashimoto, Y. Involvement of proteases in glycosyltransferase secretion: Alzheimer’s beta-secretase-dependent cleavage and a following processing by an aminopeptidase. Glycoconj. J., 2004, 21(1-2), 25-29.
[http://dx.doi.org/10.1023/B:GLYC.0000043743.21735.ff] [PMID: 15467394]
[101]
Kitazume, S.; Oka, R.; Ogawa, K.; Futakawa, S.; Hagiwara, Y.; Takikawa, H.; Kato, M.; Kasahara, A.; Miyoshi, E.; Taniguchi, N.; Hashimoto, Y. Molecular insights into β-galactoside alpha2,6-sialyltransferase secretion in vivo. Glycobiology, 2009, 19(5), 479-487.
[http://dx.doi.org/10.1093/glycob/cwp003] [PMID: 19150807]
[102]
Deng, X.; Zhang, J.; Liu, Y.; Chen, L.; Yu, C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci. Rep., 2017, 7, 40256.
[http://dx.doi.org/10.1038/srep40256] [PMID: 28091531]
[103]
Sugimoto, I.; Futakawa, S.; Oka, R.; Ogawa, K.; Marth, J.D.; Miyoshi, E.; Taniguchi, N.; Hashimoto, Y.; Kitazume, S. β-galactoside alpha2,6-sialyltransferase I cleavage by BACE1 enhances the sialylation of soluble glycoproteins. A novel regulatory mechanism for alpha2,6-sialylation. J. Biol. Chem., 2007, 282(48), 34896-34903.
[http://dx.doi.org/10.1074/jbc.M704766200] [PMID: 17897958]
[104]
von Arnim, C.A.F.; Kinoshita, A.; Peltan, I.D.; Tangredi, M.M.; Herl, L.; Lee, B.M.; Spoelgen, R.; Hshieh, T.T.; Ranganathan, S.; Battey, F.D.; Liu, C-X.; Bacskai, B.J.; Sever, S.; Irizarry, M.C.; Strickland, D.K.; Hyman, B.T. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem., 2005, 280(18), 17777-17785.
[http://dx.doi.org/10.1074/jbc.M414248200] [PMID: 15749709]
[105]
Jaeger, S.; Pietrzik, C.U. Functional role of lipoprotein receptors in Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(1), 15-25.
[http://dx.doi.org/10.2174/156720508783884675] [PMID: 18288927]
[106]
Ulery, P.G.; Strickland, D.K. LRP in Alzheimer’s disease: friend or foe? J. Clin. Invest., 2000, 106(9), 1077-1079.
[http://dx.doi.org/10.1172/JCI11455] [PMID: 11067860]
[107]
Tanokashira, D.; Motoki, K.; Minegishi, S.; Hosaka, A.; Mamada, N.; Tamaoka, A.; Okada, T.; Lakshmana, M.K.; Araki, W. .LRP1 Downregulates the Alzheimer’s β-Secretase BACE1 by modulating its intraneuronal trafficking. eNeuro, 2015, 2, 0006-0015 .
[http://dx.doi.org/10.1523/ENEURO.0006-15.2015]
[108]
Shinohara, M.; Tachibana, M.; Kanekiyo, T.; Bu, G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J. Lipid Res., 2017, 58(7), 1267-1281.
[http://dx.doi.org/10.1194/jlr.R075796] [PMID: 28381441]
[109]
Ohno, M. PERK as a hub of multiple pathogenic pathways leading to memory deficits and neurodegeneration in Alzheimer’s disease. Brain Res. Bull., 2018, 141, 72-78.
[http://dx.doi.org/10.1016/j.brainresbull.2017.08.007] [PMID: 28804008]
[110]
Hashimoto, S.; Saido, T.C. Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol., 2018, 8(4)180024
[http://dx.doi.org/10.1098/rsob.180024]] [PMID: 29695619]
[111]
Southan, C.; Hancock, J.M. A tale of two drug targets: the evolutionary history of BACE1 and BACE2. Front. Genet., 2013, 4, 293.
[http://dx.doi.org/10.3389/fgene.2013.00293] [PMID: 24381583]
[112]
Mullard, A. BACE inhibitor bust in Alzheimer trial. Nat. Rev. Drug Discov., 2017, 16(3), 155.
[PMID: 28248932]
[113]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[114]
Fluhrer, R.; Capell, A.; Westmeyer, G.; Willem, M.; Hartung, B.; Condron, M.M.; Teplow, D.B.; Haass, C.; Walter, J. A non-amyloidogenic function of BACE-2 in the secretory pathway. J. Neurochem., 2002, 81(5), 1011-1020.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00908.x] [PMID: 12065613]
[115]
Yan, R.; Munzner, J.B.; Shuck, M.E.; Bienkowski, M.J. BACE2 functions as an alternative α-secretase in cells. J. Biol. Chem., 2001, 276(36), 34019-34027.
[http://dx.doi.org/10.1074/jbc.M105583200] [PMID: 11423558]
[116]
Sun, X.; He, G.; Song, W. BACE2, as a novel APP θ-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J., 2006, 20(9), 1369-1376.
[http://dx.doi.org/10.1096/fj.05-5632com] [PMID: 16816112]
[117]
Wang, Z.; Xu, Q.; Cai, F.; Liu, X.; Wu, Y.; Song, W. BACE2, a conditional β-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight, 2019, 4(1)e123431
[http://dx.doi.org/10.1172/jci.insight.123431]] [PMID: 30626751]
[118]
Fukumoto, H.; Rosene, D.L.; Moss, M.B.; Raju, S.; Hyman, B.T.; Irizarry, M.C. β-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol., 2004, 164(2), 719-725.
[http://dx.doi.org/10.1016/S0002-9440(10)63159-8] [PMID: 14742275]
[119]
Voytyuk, I.; Mueller, S.A.; Herber, J.; Snellinx, A.; Moechars, D.; van Loo, G.; Lichtenthaler, S.F.; De Strooper, B. BACE2 distribution in major brain cell types and identification of novel substrates. Life Sci Alliance, 2018, 1(1)e201800026
[http://dx.doi.org/10.26508/lsa.201800026]] [PMID: 30456346]
[120]
Esterházy, D.; Stützer, I.; Wang, H.; Rechsteiner, M.P.; Beauchamp, J.; Döbeli, H.; Hilpert, H.; Matile, H.; Prummer, M.; Schmidt, A.; Lieske, N.; Boehm, B.; Marselli, L.; Bosco, D.; Kerr-Conte, J.; Aebersold, R.; Spinas, G.A.; Moch, H.; Migliorini, C.; Stoffel, M. Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab., 2011, 14(3), 365-377.
[http://dx.doi.org/10.1016/j.cmet.2011.06.018] [PMID: 21907142]
[121]
Stützer, I.; Selevsek, N.; Esterházy, D.; Schmidt, A.; Aebersold, R.; Stoffel, M. Systematic proteomic analysis identifies β-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic β-cells. J. Biol. Chem., 2013, 288(15), 10536-10547.
[http://dx.doi.org/10.1074/jbc.M112.444703] [PMID: 23430253]
[122]
Shimshek, D.R.; Jacobson, L.H.; Kolly, C.; Zamurovic, N.; Balavenkatraman, K.K.; Morawiec, L.; Kreutzer, R.; Schelle, J.; Jucker, M.; Bertschi, B.; Theil, D.; Heier, A.; Bigot, K.; Beltz, K.; Machauer, R.; Brzak, I.; Perrot, L.; Neumann, U. Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice. Sci. Rep., 2016, 6, 21917.
[http://dx.doi.org/10.1038/srep21917] [PMID: 26912421]
[123]
Jamieson, C.; Moir, E.M.; Rankovic, Z.; Wishart, G. Medicinal chemistry of hERG optimizations: Highlights and hang-ups. J. Med. Chem., 2006, 49(17), 5029-5046.
[http://dx.doi.org/10.1021/jm060379l] [PMID: 16913693]
[124]
Ginman, T.; Viklund, J.; Malmström, J.; Blid, J.; Emond, R.; Forsblom, R.; Johansson, A.; Kers, A.; Lake, F.; Sehgelmeble, F.; Sterky, K.J.; Bergh, M.; Lindgren, A.; Johansson, P.; Jeppsson, F.; Fälting, J.; Gravenfors, Y.; Rahm, F. Core refinement toward permeable β-secretase (BACE-1) inhibitors with low hERG activity. J. Med. Chem., 2013, 56(11), 4181-4205.
[http://dx.doi.org/10.1021/jm3011349] [PMID: 23126626]
[125]
Dineen, T.A.; Chen, K.; Cheng, A.C.; Derakhchan, K.; Epstein, O.; Esmay, J.; Hickman, D.; Kreiman, C.E.; Marx, I.E.; Wahl, R.C.; Wen, P.H.; Weiss, M.M.; Whittington, D.A.; Wood, S.; Fremeau, R.T., Jr; White, R.D.; Patel, V.F. Inhibitors of β-site amyloid precursor protein cleaving enzyme (BACE1): identification of (S)-7-(2-fluoropyridin-3-yl)-3-((3-methyloxetan-3-yl)ethynyl)-5‘H-spiro[chromeno[2,3-b]pyridine-5,4’-oxazol]-2′-amine (AMG-8718). J. Med. Chem., 2014, 57(23), 9811-9831.
[http://dx.doi.org/10.1021/jm5012676] [PMID: 25363711]
[126]
Rampe, D.; Brown, A.M. A history of the role of the hERG channel in cardiac risk assessment. J. Pharmacol. Toxicol. Methods, 2013, 68(1), 13-22.
[http://dx.doi.org/10.1016/j.vascn.2013.03.005] [PMID: 23538024]
[127]
Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; Gaetano, C.; Menicanti, L.; Martelli, F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res., 2017, 113(5), 453-463.
[http://dx.doi.org/10.1093/cvr/cvx013] [PMID: 28158647]
[128]
Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C-Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; Del Monte, F. Aβ Amyloid pathology affects the hearts of patients with alzheimer’s disease: mind the heart. J. Am. Coll. Cardiol., 2016, 68(22), 2395-2407.
[http://dx.doi.org/10.1016/j.jacc.2016.08.073] [PMID: 27908343]
[129]
Zuhl, A.M.; Nolan, C.E.; Brodney, M.A.; Niessen, S.; Atchison, K.; Houle, C.; Karanian, D.A.; Ambroise, C.; Brulet, J.W.; Beck, E.M.; Doran, S.D.; O’Neill, B.T.; Am Ende, C.W.; Chang, C.; Geoghegan, K.F.; West, G.M.; Judkins, J.C.; Hou, X.; Riddell, D.R.; Johnson, D.S. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors. Nat. Commun., 2016, 7, 13042.
[http://dx.doi.org/10.1038/ncomms13042] [PMID: 27727204]
[130]
Koike, M.; Nakanishi, H.; Saftig, P.; Ezaki, J.; Isahara, K.; Ohsawa, Y.; Schulz-Schaeffer, W.; Watanabe, T.; Waguri, S.; Kametaka, S.; Shibata, M.; Yamamoto, K.; Kominami, E.; Peters, C.; von Figura, K.; Uchiyama, Y. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J. Neurosci., 2000, 20(18), 6898-6906.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06898.2000] [PMID: 10995834]
[131]
Steinfeld, R.; Reinhardt, K.; Schreiber, K.; Hillebrand, M.; Kraetzner, R.; Brück, W.; Saftig, P.; Gärtner, J.; Cathepsin, D. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am. J. Hum. Genet., 2006, 78(6), 988-998.
[http://dx.doi.org/10.1086/504159] [PMID: 16685649]
[132]
Tsukuba, T.; Okamoto, K.; Okamoto, Y.; Yanagawa, M.; Kohmura, K.; Yasuda, Y.; Uchi, H.; Nakahara, T.; Furue, M.; Nakayama, K.; Kadowaki, T.; Yamamoto, K.; Nakayama, K.I. Association of cathepsin E deficiency with development of atopic dermatitis. J. Biochem., 2003, 134(6), 893-902.
[http://dx.doi.org/10.1093/jb/mvg216] [PMID: 14769879]
[133]
Alzforum. Picking Through the Rubble, Field Tries to Salvage BACE Inhibitors.,; www.alzforum.org/news/conference-coverage/picking-through-rubble-field-tries-salvage-bace-inhibitors[Apr 15, 2020];.
[134]
U. S. National Library of Medicine. A Two-Part, Single-Dose Study of the Pharmacokinetics of MK-8931 in Subjects With Renal Insufficiency (MK-8931-009 [P08535]).,; https://clinicaltrials.gov/ct2/show/NCT01537757 [Apr 15, 2020];.
[135]
Hansen, R.A.; Gartlehner, G.; Webb, A.P.; Morgan, L.C.; Moore, C.G.; Jonas, D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin. Interv. Aging, 2008, 3(2), 211-225.
[PMID: 18686744]
[136]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[137]
Canter, R.G.; Penney, J.; Tsai, L-H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature, 2016, 539(7628), 187-196.
[http://dx.doi.org/10.1038/nature20412] [PMID: 27830780]
[138]
de Miranda, L.F.J.R.; Barbosa, M.D.A.; Peles, P.R.H.; Pôças, P.H.; Tito, P.A.L.; Matoso, R.O.; de Lima, T.O.L.; de Moraes, E.N.; Caramelli, P. Good rate of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer’s disease after three months of treatment: An open-label study. Dement. Neuropsychol., 2013, 7(2), 190-196.
[http://dx.doi.org/10.1590/S1980-57642013DN70200009] [PMID: 29213839]
[139]
Bray, S.J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 678-689.
[http://dx.doi.org/10.1038/nrm2009] [PMID: 16921404]
[140]
Bray, S.J. Notch signalling in context. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 722-735.
[http://dx.doi.org/10.1038/nrm.2016.94] [PMID: 27507209]
[141]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[142]
Basi, G.; Frigon, N.; Barbour, R.; Doan, T.; Gordon, G.; McConlogue, L.; Sinha, S.; Zeller, M. Antagonistic effects of β-site amyloid precursor protein-cleaving enzymes 1 and 2 on β-amyloid peptide production in cells. J. Biol. Chem., 2003, 278(34), 31512-31520.
[http://dx.doi.org/10.1074/jbc.M300169200] [PMID: 12801932]
[143]
Vassar, R.; Kuhn, P-H.; Haass, C.; Kennedy, M.E.; Rajendran, L.; Wong, P.C.; Lichtenthaler, S.F. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J. Neurochem., 2014, 130(1), 4-28.
[http://dx.doi.org/10.1111/jnc.12715] [PMID: 24646365]
[144]
Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front Chem., 2018, 6, 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[145]
Chang, W-P.; Koelsch, G.; Wong, S.; Downs, D.; Da, H.; Weerasena, V.; Gordon, B.; Devasamudram, T.; Bilcer, G.; Ghosh, A.K.; Tang, J. In vivo inhibition of Abeta production by memapsin 2 (β-secretase) inhibitors. J. Neurochem., 2004, 89(6), 1409-1416.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02452.x] [PMID: 15189343]
[146]
Luo, X.; Yan, R. Inhibition of BACE1 for therapeutic use in Alzheimer’s disease. Int. J. Clin. Exp. Pathol., 2010, 3(6), 618-628.
[PMID: 20661410]
[147]
Yuan, J.; Venkatraman, S.; Zheng, Y.; McKeever, B.M.; Dillard, L.W.; Singh, S.B. Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(11), 4156-4180.
[http://dx.doi.org/10.1021/jm301659n] [PMID: 23509904]
[148]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[149]
Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol. Cell. Biol., 2008, 28(11), 3663-3671.
[http://dx.doi.org/10.1128/MCB.02185-07] [PMID: 18378702]
[150]
Hu, B.; Xiong, B.; Qiu, B.Y.; Li, X.; Yu, H.P.; Xiao, K.; Wang, X.; Li, J.; Shen, J.K. Construction of a small peptide library related to inhibitor OM99-2 and its structure-activity relationship to β-secretase. Acta Pharmacol. Sin., 2006, 27(12), 1586-1593.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00432.x] [PMID: 17112413]
[151]
Ghosh, A.K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.; Ermolieff, J.; Tang, J. Design of potent inhibitors for human brain memapsin 2 (β-Secretase). J. Am. Chem. Soc., 2000, 122(14), 3522-3523.
[http://dx.doi.org/10.1021/ja000300g] [PMID: 30443047]
[152]
Ben Halima, S.; Mishra, S.; Raja, K.M.P.; Willem, M.; Baici, A.; Simons, K.; Brüstle, O.; Koch, P.; Haass, C.; Caflisch, A.; Rajendran, L. Specific inhibition of β-Secretase processing of the Alzheimer Disease amyloid precursor protein. Cell Rep., 2016, 14(9), 2127-2141.
[http://dx.doi.org/10.1016/j.celrep.2016.01.076] [PMID: 26923602]
[153]
Hernández-Rodríguez, M.; Correa-Basurto, J.; Martínez-Ramos, F.; Padilla-Martínez, I.I.; Benítez-Cardoza, C.G.; Mera-Jiménez, E.; Rosales-Hernández, M.C. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies. J. Alzheimers Dis., 2014, 41(4), 1073-1085.
[http://dx.doi.org/10.3233/JAD-140471] [PMID: 24762947]
[154]
Qu, F.; Yang, M.; Rasooly, A. Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s Related Protease β-Secretase. Anal. Chem., 2016, 88(21), 10559-10565.
[http://dx.doi.org/10.1021/acs.analchem.6b02659] [PMID: 27650354]
[155]
Ellis, C.R.; Tsai, C-C.; Lin, F-Y.; Shen, J. Conformational dynamics of cathepsin D and binding to a small-molecule BACE1 inhibitor. J. Comput. Chem., 2017, 38(15), 1260-1269.
[http://dx.doi.org/10.1002/jcc.24719] [PMID: 28370344]
[156]
May, P.C.; Dean, R.A.; Lowe, S.L.; Martenyi, F.; Sheehan, S.M.; Boggs, L.N.; Monk, S.A.; Mathes, B.M.; Mergott, D.J.; Watson, B.M.; Stout, S.L.; Timm, D.E.; Smith Labell, E.; Gonzales, C.R.; Nakano, M.; Jhee, S.S.; Yen, M.; Ereshefsky, L.; Lindstrom, T.D.; Calligaro, D.O.; Cocke, P.J.; Greg Hall, D.; Friedrich, S.; Citron, M.; Audia, J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci., 2011, 31(46), 16507-16516.
[http://dx.doi.org/10.1523/JNEUROSCI.3647-11.2011] [PMID: 22090477]
[157]
Fielden, M.R.; Werner, J.; Jamison, J.A.; Coppi, A.; Hickman, D.; Dunn, R.T., II; Trueblood, E.; Zhou, L.; Afshari, C.A.; Lightfoot-Dunn, R. Retinal Toxicity Induced by a Novel β-secretase Inhibitor in the Sprague-Dawley Rat. Toxicol. Pathol., 2015, 43(4), 581-592.
[http://dx.doi.org/10.1177/0192623314553804] [PMID: 25361751]
[158]
Yan, R. Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl. Neurodegener., 2016, 5, 13.
[http://dx.doi.org/10.1186/s40035-016-0061-5] [PMID: 27418961]
[159]
Maia, M.A.; Sousa, E. BACE-1 and γ-Secretase as therapeutic targets for Alzheimer’s Disease. Pharmaceuticals (Basel), 2019, 12(1), 41.
[http://dx.doi.org/10.3390/ph12010041] [PMID: 30893882]
[160]
Egan, M.F.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P.S.; Cummings, J.L.; Tariot, P.N.; Vellas, B.; van Dyck, C.H.; Boada, M.; Zhang, Y.; Li, W.; Furtek, C.; Mahoney, E.; Harper, M.L.; Mo, Y.; Sur, C.; Michelson, D. Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease. N. Engl. J. Med., 2019, 380(15), 1408-1420.
[http://dx.doi.org/10.1056/NEJMoa1812840] [PMID: 30970186]
[161]
Das, B.; Yan, R. A Close Look at BACE1 Inhibitors for Alzheimer’s Disease treatment. CNS Drugs, 2019, 33(3), 251-263.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[162]
Wessels, A.M.; Tariot, P.N.; Zimmer, J.A.; Selzler, K.J.; Bragg, S.M.; Andersen, S.W.; Landry, J.; Krull, J.H.; Downing, A.M.; Willis, B.A.; Shcherbinin, S.; Mullen, J.; Barker, P.; Schumi, J.; Shering, C.; Matthews, B.R.; Stern, R.A.; Vellas, B.; Cohen, S.; MacSweeney, E.; Boada, M.; Sims, J.R. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer Disease: The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials. JAMA Neurol., 2019, 77, 199-209.
[http://dx.doi.org/10.1001/jamaneurol.2019.3988] [PMID: 31764959]
[163]
Timmers, M.; Van Broeck, B.; Ramael, S.; Slemmon, J.; De Waepenaert, K.; Russu, A.; Bogert, J.; Stieltjes, H.; Shaw, L.M.; Engelborghs, S.; Moechars, D.; Mercken, M.; Liu, E.; Sinha, V.; Kemp, J.; Van Nueten, L.; Tritsmans, L.; Streffer, J.R. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. Alzheimers Dement. (N. Y.), 2016, 2(3), 202-212.
[http://dx.doi.org/10.1016/j.trci.2016.08.001] [PMID: 29067308]
[164]
Henley, D.; Raghavan, N.; Sperling, R.; Aisen, P.; Raman, R.; Romano, G. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s Disease. N. Engl. J. Med., 2019, 380(15), 1483-1485.
[http://dx.doi.org/10.1056/NEJMc1813435] [PMID: 30970197]
[165]
Lahiri, D.K.; Maloney, B.; Long, J.M.; Greig, N.H. Lessons from a BACE1 inhibitor trial: off-site but not off base. Alzheimers Dement., 2014, 10(5)(Suppl.), S411-S419.
[http://dx.doi.org/10.1016/j.jalz.2013.11.004] [PMID: 24530026]
[166]
Kennedy, M.E.; Wang, W.; Song, L.; Lee, J.; Zhang, L.; Wong, G.; Wang, L.; Parker, E. Measuring human beta-secretase (BACE1) activity using homogeneous time-resolved fluorescence. Anal. Biochem., 2003, 319(1), 49-55.
[http://dx.doi.org/10.1016/S0003-2697(03)00253-7] [PMID: 12842106]
[167]
Eketjäll, S.; Janson, J.; Kaspersson, K.; Bogstedt, A.; Jeppsson, F.; Fälting, J.; Haeberlein, S.B.; Kugler, A.R.; Alexander, R.C.; Cebers, G. AZD3293: A novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis., 2016, 50(4), 1109-1123.
[http://dx.doi.org/10.3233/JAD-150834] [PMID: 26890753]
[168]
InvivoChem. Atabecestat (JNJ-54861911).,; www.invivochem.com/atabecestat-jnj-54861911.html[Apr 15, 2020];.
[169]
Neumann, U.; Ufer, M.; Jacobson, L.H.; Rouzade-Dominguez, M.L.; Huledal, G.; Kolly, C.; Lüönd, R.M.; Machauer, R.; Veenstra, S.J.; Hurth, K.; Rueeger, H.; Tintelnot-Blomley, M.; Staufenbiel, M.; Shimshek, D.R.; Perrot, L.; Frieauff, W.; Dubost, V.; Schiller, H.; Vogg, B.; Beltz, K.; Avrameas, A.; Kretz, S.; Pezous, N.; Rondeau, J.M.; Beckmann, N.; Hartmann, A.; Vormfelde, S.; David, O.J.; Galli, B.; Ramos, R.; Graf, A.; Lopez, L.C. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med., 2018, 10(11)e9316
[http://dx.doi.org/10.15252/emmm.201809316]] [PMID: 30224383]
[170]
Ufer, M.; Rouzade-Dominguez, M-L.; Huledal, G.; Pezous, N.; Avrameas, A.; David, O.; Kretz, S.; Kucher, K.; Neumann, U.; Cha, J-H.; Graf, A.; Lopez-Lopez, C. Results from a first-in-human study with the bace inhibitor cnp520. Alzheimers Dement. J. Alzheimers Assoc., 2016, 12, 200.
[http://dx.doi.org/10.1016/j.jalz.2016.06.351]
[171]
Dobrowolska, Z.J.A.; Vassar, R.J.A. A promising, novel, and unique BACE1 inhibitor emerges in the quest to prevent Alzheimer’s disease. EMBO Mol. Med., 2018, 10(11)e9717
[http://dx.doi.org/10.15252/emmm.201809717]] [PMID: 30322841]
[172]
Alzforum. Cognitive decline trips up api trials of bace inhibitor.; www.alzforum.org/news/research-news/cognitive-decline-trips-api-trials-bace-inhibitor [Apr 15, 2020];.
[173]
Lynch, S.Y.; Kaplow, J.; Zhao, J.; Dhadda, S.; Luthman, J.; Albala, B. elenbecestat, e2609, a bace inhibitor: results from a phase-2 study in subjects with mild cognitive impairment and mild-to-moderate dementia due to alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc., 2018, 14, 1623.
[http://dx.doi.org/10.1016/j.jalz.2018.07.213]
[174]
Alzforum. Elenbecestat.,; www.alzforum.org/therapeutics/elenbecestat [Apr 15, 2020];.
[175]
Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Piccininni, C.; Dibello, V.; Stallone, R.; Giannelli, G.; Bellomo, A.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Imbimbo, B.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2018, 18(11), 847-857.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[176]
Eisai. eisai and biogen to discontinue phase iii clinical studies of bace inhibitor elenbecestat in early Alzheimer’s Disease.,; http://eisai.mediaroom.com/2019-09-13- [Apr 15, 2020];.
[177]
O’Neill, B.T.; Beck, E.M.; Butler, C.R.; Nolan, C.E.; Gonzales, C.; Zhang, L.; Doran, S.D.; Lapham, K.; Buzon, L.M.; Dutra, J.K.; Barreiro, G.; Hou, X.; Martinez-Alsina, L.A.; Rogers, B.N.; Villalobos, A.; Murray, J.C.; Ogilvie, K.; LaChapelle, E.A.; Chang, C.; Lanyon, L.F.; Steppan, C.M.; Robshaw, A.; Hales, K.; Boucher, G.G.; Pandher, K.; Houle, C.; Ambroise, C.W.; Karanian, D.; Riddell, D.; Bales, K.R.; Brodney, M.A. Design and Synthesis of Clinical Candidate PF-06751979: A potent, brain penetrant, β-site amyloid precursor protein cleaving enzyme 1 (bace1) inhibitor lacking hypopigmentation. J. Med. Chem., 2018, 61(10), 4476-4504.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00246] [PMID: 29613789]
[178]
McKinzie, D.L.; May, P.C.; Boggs, L.N.; Yang, Z.; Brier, R.A.; Monk, S.A.; Willis, B.A.; Borders, A.R.; Winneroski, L.L.; Green, S.J.; Mergott, D.J. Nonclinical pharmacological characterization of the bace1 inhibitor ly3202626. Alzheimers Dement., 2016, 12, 432-P433.
[http://dx.doi.org/10.1016/j.jalz.2016.06.828]
[179]
Willis, B.A.; Lowe, S.L.; Daugherty, L.L.; Dean, R.A.; English, B.; Ereshefsky, L.; Gevorkyan, H.; James, D.E.; Jhee, S.; Lin, Q.; Lo, A.; Mergott, D.J.; Monk, S.A.; Nakano, M.; Zimmer, J.A.; Irizarry, M.C. Pharmacokinetics, pharmacodynamics, safety, and tolerability of ly3202626, a novel bace1 inhibitor, in healthy subjects and patients with Alzheimer’s Disease. Alzheimers Dement., 2016, 12, 418-P418.
[http://dx.doi.org/10.1016/j.jalz.2016.06.791]
[180]
Gardner, J. Eli Lilly backs away from Bace but not from novel Alzheimer’s targets | Evaluate., ; www.evaluate.com/vantage/articles/analysis/spotlight/eli-lilly-backs-away-bace-not-novel-alzheimers-targets[Apr 15, 2020];.
[181]
McElrath, K.J. Why has pfizer discontinued research on neurodegenerative diseases?, https://drugsafetynews.com/2018/03/13/why-has-pfizer-discontinued-research-on-neurodegenerative-diseases/[Apr 15, 2020];.
[182]
Ali, M.Y.; Jannat, S.; Edraki, N.; Das, S.; Chang, W.K.; Kim, H.C.; Park, S.K.; Chang, M.S. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem. Biol. Interact., 2019, 309108707
[http://dx.doi.org/10.1016/j.cbi.2019.06.020]] [PMID: 31194956]
[183]
Mezeiova, E.; Spilovska, K.; Nepovimova, E.; Gorecki, L.; Soukup, O.; Dolezal, R.; Malinak, D.; Janockova, J.; Jun, D.; Kuca, K.; Korabecny, J. Profiling donepezil template into multipotent hybrids with antioxidant properties. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 583-606.
[http://dx.doi.org/10.1080/14756366.2018.1443326] [PMID: 29529892]
[184]
Ghobadian, R.; Mahdavi, M.; Nadri, H.; Moradi, A.; Edraki, N.; Akbarzadeh, T.; Sharifzadeh, M.; Bukhari, S.N.A.; Amini, M. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities. Eur. J. Med. Chem., 2018, 155, 49-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.031] [PMID: 29857276]
[185]
Neumann, U.; Machauer, R.; Shimshek, D.R. The β-secretase (BACE) inhibitor NB-360 in preclinical models: From amyloid-β reduction to downstream disease-relevant effects. Br. J. Pharmacol., 2019, 176(18), 3435-3446.
[http://dx.doi.org/10.1111/bph.14582] [PMID: 30657591]
[186]
Winneroski, L.L.; Erickson, J.A.; Green, S.J.; Lopez, J.E.; Stout, S.L.; Porter, W.J.; Timm, D.E.; Audia, J.E.; Barberis, M.; Beck, J.P.; Boggs, L.N.; Borders, A.R.; Boyer, R.D.; Brier, R.A.; Hembre, E.J.; Hendle, J.; Garcia-Losada, P.; Minguez, J.M.; Mathes, B.M.; May, P.C.; Monk, S.A.; Rankovic, Z.; Shi, Y.; Watson, B.M.; Yang, Z.; Mergott, D.J. Preparation and biological evaluation of BACE1 inhibitors: Leveraging trans-cyclopropyl moieties as ligand efficient conformational constraints. Bioorg. Med. Chem., 2020, 28(1)115194
[http://dx.doi.org/10.1016/j.bmc.2019.115194]] [PMID: 31786008]
[187]
Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q-X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[188]
Albala, B.; Kaplow, J.M.; Lai, R.; Matijevic, M.; Aluri, J.; Satlin, A. CSF amyloid lowering in human volunteers after 14 days’ oral administration of the novel bace1 inhibitor e2609. Alzheimers Dement. J. Alzheimers Assoc., 2012, 8, S743.
[http://dx.doi.org/10.1016/j.jalz.2013.08.023]
[189]
Kennedy, M.E.; Stamford, A.W.; Chen, X.; Cox, K.; Cumming, J.N.; Dockendorf, M.F.; Egan, M.; Ereshefsky, L.; Hodgson, R.A.; Hyde, L.A.; Jhee, S.; Kleijn, H.J.; Kuvelkar, R.; Li, W.; Mattson, B.A.; Mei, H.; Palcza, J.; Scott, J.D.; Tanen, M.; Troyer, M.D.; Tseng, J.L.; Stone, J.A.; Parker, E.M.; Forman, M.S. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl. Med., 2016, 8(363)363ra150
[http://dx.doi.org/10.1126/scitranslmed.aad9704]] [PMID: 27807285]
[190]
Sakamoto, K.; Matsuki, S.; Matsuguma, K.; Yoshihara, T.; Uchida, N.; Azuma, F.; Russell, M.; Hughes, G.; Haeberlein, S.B.; Alexander, R.C.; Eketjäll, S.; Kugler, A.R. BACE1 inhibitor lanabecestat (azd3293) in a phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J. Clin. Pharmacol., 2017, 57(11), 1460-1471.
[http://dx.doi.org/10.1002/jcph.950] [PMID: 28618005]
[191]
Lopez Lopez, C.; Tariot, P.N.; Caputo, A.; Langbaum, J.B.; Liu, F.; Riviere, M-E.; Langlois, C.; Rouzade-Dominguez, M-L.; Zalesak, M.; Hendrix, S.; Thomas, R.G.; Viglietta, V.; Lenz, R.; Ryan, J.M.; Graf, A.; Reiman, E.M. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2019, 5, 216-227.
[http://dx.doi.org/10.1016/j.trci.2019.02.005] [PMID: 31211217]
[192]
Li, H-W.; Zhang, L.; Qin, C. Current state of research on non-human primate models of Alzheimer’s disease. Animal. Model. Exp. Med., 2019, 2(4), 227-238.
[http://dx.doi.org/10.1002/ame2.12092] [PMID: 31942555]
[193]
King, A. The search for better animal models of Alzheimer’s disease. Nature, 2018, 559(7715), S13-S15.
[http://dx.doi.org/10.1038/d41586-018-05722-9] [PMID: 30046083]
[194]
Neuhaus, C.P. Ethical issues when modelling brain disorders innon-human primates. J. Med. Ethics, 2018, 44(5), 323-327.
[http://dx.doi.org/10.1136/medethics-2016-104088] [PMID: 28801311]
[195]
Newman, M.; Kretzschmar, D.; Khan, I.; Chen, M.; Verdile, G.; Lardelli, M. Animal Models of Alzheimer’s Disease. Animal Models for the Study of Human Disease, 2nd ed; Conn, P.M., Ed.; Academic Press: Cambridge, Massachusetts, 2017, pp. 1031-1085.
[http://dx.doi.org/10.1016/B978-0-12-809468-6.00040-1]
[196]
Drummond, E.; Wisniewski, T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol., 2017, 133(2), 155-175.
[http://dx.doi.org/10.1007/s00401-016-1662-x] [PMID: 28025715]
[197]
Sasaguri, H.; Nilsson, P.; Hashimoto, S.; Nagata, K.; Saito, T.; De Strooper, B.; Hardy, J.; Vassar, R.; Winblad, B.; Saido, T.C. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J., 2017, 36(17), 2473-2487.
[http://dx.doi.org/10.15252/embj.201797397] [PMID: 28768718]
[198]
Devi, L.; Ohno, M. Mechanisms that lessen benefits of β-secretase reduction in a mouse model of Alzheimer’s disease. Transl. Psychiatry, 2013, 3, e284-e284.
[http://dx.doi.org/10.1038/tp.2013.59] [PMID: 23880880]
[199]
Hu, X.; Das, B.; Hou, H.; He, W.; Yan, R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J. Exp. Med., 2018, 215(3), 927-940.
[http://dx.doi.org/10.1084/jem.20171831] [PMID: 29444819]
[200]
Bennett, B.D.; Denis, P.; Haniu, M.; Teplow, D.B.; Kahn, S.; Louis, J-C.; Citron, M.; Vassar, R. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s β -secretase. J. Biol. Chem., 2000, 275(48), 37712-37717.
[http://dx.doi.org/10.1074/jbc.M005339200] [PMID: 10956649]
[201]
Ding, Y.; Ko, M.H.; Pehar, M.; Kotch, F.; Peters, N.R.; Luo, Y.; Salamat, S.M.; Puglielli, L. Biochemical inhibition of the acetyltransferases ATase1 and ATase2 reduces β-secretase (BACE1) levels and Aβ generation. J. Biol. Chem., 2012, 287(11), 8424-8433.
[http://dx.doi.org/10.1074/jbc.M111.310136] [PMID: 22267734]
[202]
Mak, A.B.; Pehar, M.; Nixon, A.M.L.; Williams, R.A.; Uetrecht, A.C.; Puglielli, L.; Moffat, J. Post-translational regulation of CD133 by ATase1/ATase2-mediated lysine acetylation. J. Mol. Biol., 2014, 426(11), 2175-2182.
[http://dx.doi.org/10.1016/j.jmb.2014.02.012] [PMID: 24556617]
[203]
John, B.A.; Meister, M.; Banning, A.; Tikkanen, R. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting. FEBS J., 2014, 281(8), 2074-2087.
[http://dx.doi.org/10.1111/febs.12763] [PMID: 24612608]
[204]
Puzzo, D.; Privitera, L.; Leznik, E.; Fà, M.; Staniszewski, A.; Palmeri, A.; Arancio, O. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci., 2008, 28(53), 14537-14545.
[http://dx.doi.org/10.1523/JNEUROSCI.2692-08.2008] [PMID: 19118188]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy