Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Review: Studies on the Synthesis of Quinolone Derivatives with Their Antibacterial Activity (Part 1)

Author(s): Anil Kumar, Nishtha Saxena, Arti Mehrotra and Nivedita Srivastava*

Volume 24, Issue 8, 2020

Page: [817 - 854] Pages: 38

DOI: 10.2174/1385272824999200427082108

Price: $65

conference banner
Abstract

Quinolone derivatives have attracted considerable attention due to their medicinal properties. This review covers many synthetic routes of quinolones preparation with their antibacterial properties. Detailed study with structure-activity relationship among quinolone derivatives will be helpful in designing new drugs in this field.

Keywords: Quinolones, fluoroquinolones, antibacterial, biological activity, naphthyridine, synthesis.

Graphical Abstract

[1]
Catherine, M.O.; Pharm, D.; Gary, M.D. Quinolones: a comprehensive review. Am. Fam. Physician, 2002, 65(3), 455-465.
[PMID: 11858629]
[2]
Monk, J.P.; Richards, D.M.C. Ofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1987, 33(4), 346-391.
[http://dx.doi.org/10.2165/00003495-198733040-00003] [PMID: 3297617]
[3]
Saito, H.; Tomioka, H.; Sato, K.; Dekio, S. In vitro and in vivo antimycobacterial activities of a new quinolone, DU-6859a. Antimicrob. Agents Chemother., 1994, 38(12), 2877-2882.
[http://dx.doi.org/10.1128/AAC.38.12.2877] [PMID: 7695276]
[4]
Price, J.R. Alkaloids of the Australian Rutaceae: Melicope fareana. IV. Some reactions of 1-methyl-4-quinolone-3-carboxyic acid, a degradation product of the alkaloids. Aust. J. Sci. Res., 1949, 2, 272-281.
[http://dx.doi.org/10.1071/PH490272]
[5]
Giguere, R.J.; Bray, T.L.; Duncan, S.M. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27, 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[6]
Mogilaiah, K.; Srinivas, K.; Sudhakar, G.R. Chloramine-T mediated synthesis of 1,8-naphthyridinyl-1,3,4-oxadiazoles. Indian J. Chem., 2004, 43B, 2014-2017.
[http://dx.doi.org/10.1071/PH490272]
[7]
Irikura, T. Pyrazolo 1, 5-a! pyridines. U.S. Patent, 4,097,483. June 27;1978
[8]
Lesher, G.Y.; Froelich, E.D.; Grant, M.D.; Bailey, J.H.; Brundage, R.P. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Chem., 1962, 5(5), 1063-1065.
[http://dx.doi.org/10.1021/jm01240a021] [PMID: 14056431]
[9]
Gootz, T.D.; Brighty, K.E. Fluoroquinolone antibacterials: SAR mechanism of action, resistance, and clinical aspects. Med. Res. Rev., 1996, 16(5), 433-486.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199609)16:5<433:AID-MED3>3.0.CO;2-W] [PMID: 8865150]
[10]
Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J. Med. Chem., 1980, 23(12), 1358-1363.
[http://dx.doi.org/10.1021/jm00186a014] [PMID: 7452690]
[11]
(a)Sanjay, K.S.; Chauhan, P.M.S.; Bhaduri, A.P.; Fatima, N.; Chatterjee, R.K. Quinolones: novel probes in antifilarial chemotheraphy. J. Med. Chem., 2000, 43, 2275-2279.
[http://dx.doi.org/10.1021/jm990438d] [PMID: 10841806]
(b)Krishnan, R.; Lang, S.A. Antibacterial activity of 6,8-disubstituted-quinolone-3-carboxylic acids. J. Pharm. Sci., 1986, 75(12), 1185-1187.
[http://dx.doi.org/10.1002/jps.2600751214] [PMID: 3104580]
(c)Sanna, P.; Sequi, P.A.; Piras, S.; Paglietti, G. Reaction of 5-aminobenzotriazoles with methyl propiolate. formation of triazolo[4,5-f]quinolines and related compounds. Unusual products in the Michael addition reaction of 2-methyl-2h-5-aminobenzotriazole. Heterocycles, 1995, 45, 2459-2474.
[http://dx.doi.org/10.3987/COM-95-7145]
[12]
Hermecz, I.; Keresztúri, G.; Debreczy, L.V. Aminomethylenemalonates and Their Use in Heterocyclic Synthesis, Chapter 5: Cyclization of 1- Aminoalkylidene malonates In: Advances in Heterocyclic Chemistry; Alan, R.K., Ed.; Academic Press, Inc. Harcourt Brace Jovanovich, Publishers,, 1992; Vol. 54, pp. 137-293.
[http://dx.doi.org/10.1016/S0065-2725(08)60667-4]
[13]
Gould, J.; Jacobs, W.A. The synthesis of certain substituted quinolines and 5,6-benzoquinolines. J. Am. Chem. Soc., 1939, 61, 2890-2895.
[http://dx.doi.org/10.1021/ja01265a088]
[14]
Hayashi, K.; Todo, Y.; Hamamato, S.; Ojima, K.; Yamada, M.; Kito, T.; Takahata, M.; Watanabe, Y.; Narita, H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother., 1999, 43(5), 1077-1084.
[http://dx.doi.org/10.1128/aac.43.5.1077] [PMID: 10223917]
[15]
Minami, T.; Shono, T.; Matsumoto, J. Pyrido [2, 3-d] pyrimidine antibacterial agents. II. Piromidic acid and related compounds. Chem. Pharm. Bull., 1971, 19, 1426-1482.
[http://dx.doi.org/10.1248/cpb.19.1426]
[16]
Matsumoto, J.; Minami, S. Pyrido(2,3-d)pyrimidine antibacterial agents. 3. 8-Alkyl- and 8-vinyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)pyrido(2,3-d)pyrimidine-6-carboxylic acids and their derivatives. J. Med. Chem., 1975, 18(1), 74-79.
[http://dx.doi.org/10.1021/jm00235a017] [PMID: 803246]
[17]
Chu, D.T.W. A regiospecific synthesis of 1-methylamino-6-fluoro-7- (4-methylpiperazin-1-yl)- 1,4-dihydro-4-oxoquinoline-3-carboxylic acid. J. Heterocycl. Chem., 1985, 22, 1033.
[http://dx.doi.org/10.1002/jhet.5570220421]
[18]
Sanchez, J.P.; Domagala, J.M.; Hagen, S.E.; Heifetz, C.L.; Hutt, M.P.; Nichols, J.B.; Trehan, A.K. Quinolone antibacterial agents. Synthesis and structure-activity relationships of 8-substituted quinoline-3-carboxylic acids and 1,8-naphthyridine-3-carboxylic acids. J. Med. Chem., 1988, 31(5), 983-991.
[http://dx.doi.org/10.1021/jm00400a016] [PMID: 3361584]
[19]
Wise, R.; Andrews, J.M.; Brenwald, N. The in-vitro activity of Bay y 3118, a new chlorofluoroquinolone. J. Antimicrob. Chemother., 1993, 31(1), 73-80.
[http://dx.doi.org/10.1093/jac/31.1.73] [PMID: 8383104]
[20]
Bauernfeind, A. Comparative in-vitro activities of the new quinolone, Bay y 3118, and ciprofloxacin, sparfloxacin, tosufloxacin, CI-960 and CI-990. J. Antimicrob. Chemother., 1993, 31(4), 505-522.
[http://dx.doi.org/10.1093/jac/31.4.505] [PMID: 7605398]
[21]
Takahata, M.; Mitsuyama, J.; Yamashiro, Y.; Yonezawa, M.; Araki, H.; Todo, Y.; Minami, S.; Watanabe, Y.; Narita, H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother., 1999, 43(5), 1077-1084.
[http://dx.doi.org/10.1128/AAC.43.5.1077] [PMID: 10223917]
[22]
Wise, R.; Andrews, J.M.; Edwards, L. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. J. Antimicrob. Agents Chemother, 1983, 23, 559-564.
[http://dx.doi.org/10.1128/AAC.23.4.559]
[23]
Caekenberghe, D.L.V.; Pattyn, S.R. In vitro activity of ciprofloxacin compared with those of other new fluorinated piperazinyl-substituted quinoline derivatives. Antimicrob. Agents Chemother., 1984, 25, 518-521.
[http://dx.doi.org/10.1128/AAC.25.4.518] [PMID: 6732221]
[24]
Nakamurra, S.; Kuurobe, N.; Kashimoto, S.; Ohue, T.; Takase, Y.; Shimizu, M. Pharmacokinetics of AT-2266 administered orally to mice, rats, dogs, and monkeys. Antimicrob. Agents Chemother., 1983, 24, 54-60.
[http://dx.doi.org/10.1128/aac.24.1.54] [PMID: 6226241]
[25]
Hirose, T.; Mishio, S.; Matsumoto, J.; Minami, S. Pyridone-carboxylic acids as antibacterial agents. I. Synthesis and antibacterial activity of 1-alkyl-1,4-dihydro-4-oxo-1,8- and 1,6-naphthyridine-3-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1982, 30(7), 2399-2409.
[http://dx.doi.org/10.1248/cpb.30.2399] [PMID: 7139814]
[26]
Matsumoto, J.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Egawa, H.; Nishimura, H. Pyridonecarboxylic acids as antibacterial agents. 2. Synthesis and structure-activity relationships of 1,6,7-trisubstituted 1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids, including enoxacin, a new antibacterial agent. J. Med. Chem., 1984, 27(3), 292-301.
[http://dx.doi.org/10.1021/jm00369a011] [PMID: 6422043]
[27]
Roe, A. Preparation of aromatic fluorine compounds from diazonium fluoborates: the Schiemann reaction. Org. React., 2004, 5, 193-228.
[http://dx.doi.org/10.1002/0471264180.or005.04]
[28]
Turner, F.J.; Ringel, S.M.J.F.; Storino, P.J.; Daly, J.M.; Schwatz, B.S. Oxolinic acid, a new synthetic antimicrobial agent. I. In vitro and in vivo activity. Antimicrob. Agents Chemother., 1967, 7, 475-479.
[PMID: 5596176]
[29]
Peterson, L.R. Quinolone molecular structure-activity relationships: What we have learned about improving antimicrobial activity. Clin. Infect. Dis., 2001, 33, 180-186.
[http://dx.doi.org/10.1086/321846]
[30]
Nakamura, S.; Minami, A.; Katae, H.; Inoue, S.; Yamagishi, J.; Takase, Y.; Shimizu, M. In vitro antibacterial properties of AT-2266, a new pyridonecarboxylic acid. Antimicrob. Agents Chemother., 1983, 23(5), 641-648.
[http://dx.doi.org/10.1128/AAC.23.5.641] [PMID: 6575721]
[31]
Albrecht, R. Development of antibacterial agents of the nalidixic acid type. Prog. Drug Res., 1977, 21, 9-104.
[http://dx.doi.org/10.1007/978-3-0348-7098-6_1] [PMID: 339272]
[32]
Chu, D.T.W.; Prabhavathi, B.; Fernandes, A.K.; Pihuleac, C.E.; Carl, W.; Nordeen, , Robert, E.; Maleczka, J.; Penent, A.G. Synthesis and structure-activity relationships of novel arylfluoroquinolone antibacterial agents. J. Med. Chem., 1985, 28, 1558-1564.
[http://dx.doi.org/10.1021/jm00149a003] [PMID: 3934382]
[33]
Agui, H.; Mitani, T.; Izawa, A.; Komatsu, T.; Nakagome, T. Studies on quinoline derivatives and related compounds. 5. Synthesis and antimicrobial activity of novel 1-alkoxy-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. J. Med. Chem., 1977, 20(6), 791-796.
[http://dx.doi.org/10.1021/jm00216a010] [PMID: 406396]
[34]
Chu, D.T.W.; Fernandes, P.B.; Pernet, A.G. Synthesis and biological activity of benzothiazolo[3,2-a]quinolone antibacterial agents. J. Med. Chem., 1986, 29(8), 1531-1534.
[http://dx.doi.org/10.1021/jm00158a037] [PMID: 3090265]
[35]
Matsumoto, J.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Egawa, H.; Nishimura, H. Synthesis of fluorinated pyridines by the Balz‐Schiemann reaction. An alternative route to enoxacin, a new antibacterial pyridonecarboxylic acid. J. Heterocycl. Chem., 1984, 21, 673-679.
[http://dx.doi.org/10.1002/jhet.5570210309]
[36]
Wierenga, W.; Skulnick, H.I. General, efficient, one-step synthesis of beta.-keto esters. J. Org. Chem., 1979, 44, 310-311.
[http://dx.doi.org/10.1021/jo01316a039]
[37]
Chu, D.T.W.; Fernandes, P.B.; Claiborne, A.K.; Gracey, E.H.; Pernet, A.G. Synthesis and structure-activity relationships of new arylfluoronaphthyridine antibacterial agents. J. Med. Chem., 1986, 29(11), 2363-2369.
[http://dx.doi.org/10.1021/jm00161a036] [PMID: 3783594]
[38]
Belf, J.L.; Buxton, M.W.; Bassett, J.F.T. Some reactions of 1,2,3,4-tetrafluorobenzene and derived compounds. Tetrahedran, 1967, 23, 4719.
[http://dx.doi.org/10.1016/S0040-4020(01)92570-0]
[39]
Harper, R.J.; Soloski, E.J.; Tamborski, C. Reactions of organometallics with fluoroaromatic compounds. J. Org. Chem., 1964, 29, 2385-2389.
[http://dx.doi.org/10.1021/jo01031a067]
[40]
Barnick, J.W.F.K.; Baan, J.L.V.D.; Bickelhaupt, F. A convenient direct method for the preparation of ß-keto-acids. Synthesis, 1979, 787-788
[http://dx.doi.org/10.1055/s-1979-28830]
[41]
Domagala, J.M.; Heifetz, C.L.; Hutt, M.P.; Mich, T.F.; Nichols, J.B.; Solomon, M.; Worth, D.F. 1-Substituted 7-[3-[(ethylamino)methyl]-1-pyrrolidinyl]-6,8- difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. New quantitative structure-activity relationships at N1 for the quinolone antibacterials. J. Med. Chem., 1988, 31(5), 991-1001.
[http://dx.doi.org/10.1021/jm00400a017] [PMID: 2834557]
[42]
Chu, D.T.W.; Fernandes, P.B.; Pernet, A.G. Synthesis and biological activity of benzothiazolo[3,2-a]quinolone antibacterial agents. J. Med. Chem., 1986, 29(8), 1531-1534.
[http://dx.doi.org/10. 1021/jm00158a037]
[43]
Bergmann, M.; Zervas, L. Über ein allgemeines verfahren der peptid‐synthese. Chem. Ber., 1932, 65, 1192-1201.
[http://dx.doi.org/10.1002/cber.19320650722]
[44]
Daignault, R.; Eliel, E. Organic Synthesis; Wiley: New york, 1973.
[45]
Cooper, C.S.; Klock, P.L.; Chu, D.T.W.; Hardy, D.J.; Swanson, R.N.; Plattner, J.J. Preparation and in vitro and in vivo evaluation of quinolones with selective activity against gram-positive organisms. J. Med. Chem., 1992, 35(8), 1392-1398.
[http://dx.doi.org/10.1021/jm00086a007] [PMID: 1573632]
[46]
Gorzynski, E.A. Interactions between microorganisms, antimicrobics, and cells. Antimicrob. News Lett., 1989, 6, 45-48.
[47]
Leysen, D.C.; Haemers, A.; Pattyn, S.R. Mycobacteria and the new quinolones. Antimicrob. Agents Chemother., 1989, 33(1), 1-5.
[http://dx.doi.org/10.1128/AAC.33.1.1] [PMID: 2540705]
[48]
Caekenberghe, D.V. Comparative in-vitro activities of ten fluoroquinolones and fusidic acid against Mycobacterium spp. J. Antimicrob. Chemother., 1990, 26, 381-386.
[http://dx.doi.org/10.1093/jac/26.3.381] [PMID: 2228828]
[49]
Berlin, O.G.W.; Young, L.S.; Brukner, D.A. In-vitro activity of six fluorinated quinolones against Mycobacterium tuberculosis. J. Antimicrob. Chemother., 1987, 19, 605-609.
[http://dx.doi.org/10.1093/jac/19.5.611] [PMID: 3112094]
[50]
Karak, K.; De, P.K. Comparative in vitro activity of fluoroquinolones against Mycobacterium tuberculosis. Indian J. Med. Res., 1995, 101, 147-149.
[PMID: 7751043]
[51]
Davies, S.; Sparham, P.D.; Spencer, R.C. Comparative in-vitro activity of five fluoroquinolones against mycobacteria. J. Med. Chem., 1987, 19(5), 605-609.
[http://dx.doi.org/10.1093/jac/19.5.605]
[52]
Lane, C.F. Sodium cyanoborohydride - a highly selective reducing agent for organic functional groups. Synthesis, 1975, 135-146.
[http://dx.doi.org/10.1055/s-1975-23685]
[53]
Yung, D.K.; Chatten, L.G.; MacLeod, D.P. Potential antiarrhythmic agents. I. Synthesis and pharmacological evaluation of some piperazine and ethylenediamine analogs of procaine amide. J. Pharm. Sci., 1968, 57(12), 2073-2080.
[http://dx.doi.org/10.1002/jps.2600571210] [PMID: 5708346]
[54]
Marsella, J.A. Ruthenium catalyzed reactions of ethylene glycol with primary amines: steric factors and selectivity control. J. Organomet, 1991, 407, 97-105.
[http://dx.doi.org/10.1016/0022-328X(91)83143-R]
[55]
Yamane, T.; Hashizume, T.; Yamashita, K.; Konishi, E.; Hosoe, K.; Hidaka, T.; Watanabe, K.; Kawaharada, H.; Yamamoto, T.; Kuze, F. Synthesis and biological activity of 3′-hydroxy-5′-aminobenzoxazinorifamycin derivatives. Chem. Pharm. Bull. (Tokyo), 1993, 41(1), 148-155.
[http://dx.doi.org/10.1248/cpb.41.148] [PMID: 8448815]
[56]
Renau, T.E.; Sanchez, J.P.; Gage, J.W.; Dever, J.A.; Shapiro, M.A.; Gracheck, S.J.; Domagala, J.M. Structure-activity relationships of the quinolone antibacterials against mycobacteria: effect of structural changes at N-1 and C-7. J. Med. Chem., 1996, 39(3), 729-735.
[http://dx.doi.org/10.1021/jm9507082] [PMID: 8576916]
[57]
Besra, G.S.; Chatterjee, D. Lipids and carbohydrates of Mycobacterium tuberculosis. In: Tuberculosis; American Society for Microbiology: Washington, DC, 1994; pp. 285-306.
[58]
Chu, D.T.W.; Fernandes, P.B. Advances in Drug Research; Testa, B., Ed.; Academic Press: New york, 1991, pp. 39-144.
[59]
Michael, E.; Jung, E.C.; Yang, B.T.; Kiankarimi, V.M.; Emmanouil, S.; Kaunitz, J. Glycosylation of fluoroquinolones through direct and oxygenated polymethylene linkages as a sugar-mediated active transport system for antimicrobials. J. Med. Chem., 1999, 42(19), 3899-3909.
[http://dx.doi.org/10.1021/jm990015b]
[60]
(a)Amadori, M. The product of the condensation of glucose and p-phenetidine. Atti Reale Accad. Nazl Lincei, 1929, 9, 68-73.
(b)Simon, H.; Kraus, A. Mechanistische Untersuchungen über Glykosylamine, Zuckerhydrazone, Amadori-Umlagerungsprodukte und Osazone. Fortschr. Chem. Forsch., 1970, 14, 430-471.
[http://dx.doi.org/10.1007/BFb0050813]
[61]
Michael, E.; Jung, E.C.; Yang, B.T.; Kiankarimi, V.M.; Emmanouil, S.; Kaunitz, J. J. Med. Chem., 1999, 42(19), 3899-3909.
[http://dx.doi.org/10.1021/jm990015b] [PMID: 10508438]
[62]
(a)Gervay, J.; Nguyen, T.N.; Hadd, M.J. Mechanistic studies on the stereoselective formation of glycosyl iodides: first characterization of β-d-glycosyl iodides. Carbohydr. Res., 1997, 300, 119-125.
[http://dx.doi.org/10.1016/S0008-6215(96)00321-7]
(b)Gervay, J.; Hadd, M.J. Anionic additions to glycosyl iodides: highly stereoselective syntheses of β C-, N-, and O-glycosides. J. Org. Chem., 1997, 62, 6961-6967.
[http://dx.doi.org/10.1021/jo970922t]
[63]
Hodge, J.E. The Amadori rearrangement. Adv. Carbohydr. Chem., 1955, 10, 169-205.
[http://dx.doi.org/10.1016/S0096-5332(08)60392-6] [PMID: 13292324]
[64]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[65]
Fang, K.C.; Chen, Y.L.; Sheu, J.Y.; Wang, T.C.; Tzeng, C.C. Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives. J. Med. Chem., 2000, 43, 3809-3812.
[http://dx.doi.org/10.1021/jm000153x] [PMID: 11020298]
[66]
Sheu, J.Y.; Chen, L.; Fang, K.C.; Wang, T.C.; Peng, C.F.; Tzeng, C.C. Synthesis and antibacterial activity of 1-(substituted-benzyl)-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids and their 6,8-difluoro analogs. J. Heterocycl. Chem., 1998, 35, 955-964.
[http://dx.doi.org/10.1002/jhet.5570350429]
[67]
Hong, C.Y.; Kim, Y.K.; Chang, J.H.; Kim, S.H.; Choi, H.; Nam, D.H.; Kim, Y.Z.; Kwak, J.H. Novel fluoroquinolone antibacterial agents containing oxime-substituted (aminomethyl)pyrrolidines: synthesis and antibacterial activity of 7-(4-(aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid (LB20304). J. Med. Chem., 1997, 40, 3584-3593.
[http://dx.doi.org/10.1021/jm970202e] [PMID: 9357525]
[68]
Ma, Z.; Chu, D.T.W.; Cooper, C.S.; Li, Q.; Fung, A.K.L.; Wang, S.; Shen, L.L.; Flamm, R.K.; Nilius, A.M.; Alder, J.D.; Meulbroek, J.A.; Or, Y.S. Synthesis and antimicrobial activity of 4H-4-oxoquinolizine derivatives: consequences of structural modification at the C-8 position. J. Med. Chem., 1999, 42, 4202-4213.
[http://dx.doi.org/10.1021/jm990191k] [PMID: 10514290]
[69]
Rádl, S.; Zikán, V. Synthesis of some 1-aryl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids and their antibacterial activity. Collect. Czech. Chem. Commun., 1989, 54(8), 2181-2189.
[http://dx.doi.org/10.1135/cccc19892181]
[70]
Juergens, J.; Schedletzky, H.; Heising, P.; Seydel, J.K.; Widemann, B.; Holzgrabe, U. Syntheses and biological activities of new N1-aryl substituted quinolone antibacterials. Arch. Pharm. (Weinheim), 1996, 329, 179-190.
[http://dx.doi.org/10.1002/ardp.19963290403] [PMID: 8669982]
[71]
Yoshida, T.; Yamamoto, Y.; Orita, H.; Kakiuchi, M.; Takahashi, Y.; Itakura, M.; Kado, N.; Mitani, K.; Yasuda, S.; Kato, H.; Itoh, Y. Studies on quinolone antibacterials. IV. Structure-activity relationships of antibacterial activity and side effects for 5- or 8-substituted and 5,8-disubstituted-7-(3-amino-1-pyrrolidinyl)-1-cyclopropyl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1996, 44(5), 1074-1085.
[http://dx.doi.org/10.1248/cpb.44.1074] [PMID: 8689718]
[72]
Inagaki, H.; Miyauchi, S.; Miyauchi, R.N.; Kawato, H.C.; Ohki, H.; Matsuhashi, N.; Kawakami, K.; Takahashi, H.; Takemura, M. Synthesis and structure-activity relationships of 5-amino-6-fluoro-1-[(1R,2S)-2-fluorocyclopropan-1-yl]-8-methylquinolonecarboxylic acid antibacterials having fluorinated 7-[(3R)-3-(1-aminocyclopropan-1-yl)pyrrolidin-1-yl] substituents. J. Med. Chem., 2003, 46(6), 1005-1015.
[http://dx.doi.org/10.1021/jm020328y] [PMID: 12620077]
[73]
Matsumoto, T.; Shirahama, H.; Ichihara, A.; Shin, H.; Kagawa, S.; Hisamitsu, T.; Kamada, T.; Saken, F. Synthesis and conformation of cyclopropane intermediates in the total synthesis of Illudin M and S. Bull. Chem. Soc. Jpn., 1972, 45, 1136-1139.
[74]
Domagala, J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother., 1994, 33(4), 685-706.
[http://dx.doi.org/10.1093/jac/33.4.685] [PMID: 8056688]
[75]
Atarashi, S.; Imamura, M.; Kimura, Y.; Yoshida, A.; Hayakawa, I. Fluorocyclopropyl quinolones. 1. Synthesis and structure-activity relationships of 1-(2-fluorocyclopropyl)-3-pyridonecarboxylic acid antibacterial agents. J. Med. Chem., 1993, 36(22), 3444-3448.
[http://dx.doi.org/10.1021/jm00074a027] [PMID: 8230135]
[76]
Kimura, Y.; Atarashi, S.; Kawakami, K.; Sato, K.; Hayakawa, I. (Fluorocyclopropyl)quinolones. 2. Synthesis and Stereochemical structure-activity relationships of chiral 7-(7-amino-5-azaspiro[2.4]heptan-5-yl)-1-(2-fluorocyclopropyl)quinolone antibacterial agents. J. Med. Chem., 1994, 37(20), 3344-3352.
[http://dx.doi.org/10.1021/jm00046a019] [PMID: 7932562]
[77]
Hoshino, K.; Sato, K.; Kitamura, A.; Hayakawa, I.; Sato, M.; Osada, Y. In: Inhibitory effects of DU-6859, a new fluorinated quinolone, on type-2 topoisomerases,; Abstracts of 31st International Conference on Antimicrobial Agents and Chemotherapy, Chicago, Illionois, Abstract 1506..
[78]
Yoshida, T.; Yamamoto, Y.; Orita, H.; Kakiuchi, M.; Takahashi, Y.; Itakura, M.; Kado, N.; Yasuda, S.; Kato, H.; Itoh, Y. Studies on quinolone antibacterials. V. Synthesis and antibacterial activity of chiral 5-amino-7-(4-substituted-3-amino-1-pyrrolidinyl)-6- fluoro-1,4-dihydro-8-methyl-4-oxoquinoline-3-carboxylic acids and derivatives. Chem. Pharm. Bull. (Tokyo), 1996, 44(7), 1376-1386.
[http://dx.doi.org/10.1248/cpb.44.1376] [PMID: 8706143]
[79]
Kawakami, K.; Takahashi, H.; Ohki, H.; Kimura, K.; Miyauchi, S.; Miyauchi, R.; Takemura, M. Studies on 8-methoxyquinolones: synthesis and antibacterial activity of 7-(3-amino-4-substituted)pyrrolidinyl derivatives. Chem. Pharm. Bull. (Tokyo), 2000, 48(11), 1667-1672.
[http://dx.doi.org/10.1248/cpb.48.1667] [PMID: 11086894]
[80]
Wise, R.; Andrews, J.M.; Edwards, L.J. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob. Agents Chemother., 1983, 23(4), 559-564.
[http://dx.doi.org/10.1128/AAC.23.4.559] [PMID: 6222695]
[81]
Fukuyama, T.; Cheung, M.; Jow, C.K.; Hidai, Y.; Kan, T. 2,4-Dinitrobenzenesulfonamides: a simple and practical method for the preparation of a variety of secondary amines and diamines. Tetrahedron Lett., 1997, 38, 5831-5834.
[http://dx.doi.org/10.1016/S0040-4039(97)01334-8]
[82]
Rutjes, F.P.J.T.; Schoemaker, H.E. Ruthenium-catalyzed ring closing olefin metathesis of non-natural α-amino acids. Tetrahedron Lett., 1997, 38, 677-680.
[http://dx.doi.org/10.1016/S0040-4039(96)02390-8]
[83]
Phillip, A.J.; Abell, A.D. Ring-closing metathesis of nitrogen-containing compounds: applications to heterocycles, alkaloids, and peptidomimetics. Aldrichim Acta, 1999, 32, 75-90.
[http://dx.doi.org/10.1002/chin.200027259]
[84]
Hu, X.E.; Kim, N.K.; Gray, J.L.; Almstead, J.I.; Seibel, W.L.; Ledoussal, B. Discovery of (3S)-amino-(4R)-ethylpiperidinyl quinolones as potent antibacterial agents with a broad spectrum of activity and activity against resistant pathogens. J. Med. Chem., 2003, 46(17), 3655-3661.
[http://dx.doi.org/10.1021/jm030272n] [PMID: 12904069]
[85]
Domagala, J.M.; Hagen, S.E.; Heifetz, C.L.; Hutt, M.P.; Mich, T.F.; Sanchez, J.P.; Trehan, A.K. 7-substituted 5-amino-1-cyclopropyl-6,8-difluoro-1,4-dihydro-4-oxo-3- quinolinecarboxylic acids: synthesis and biological activity of a new class of quinolone antibacterials. J. Med. Chem., 1988, 31(3), 503-506.
[http://dx.doi.org/10.1021/jm00398a003] [PMID: 3346869]
[86]
Cecchetti, V.; Clementi, S.; Cruciani, G.; Fravolini, A.; Pagella, P.G.; Savino, A.; Tabarrini, O. 6-Aminoquinolones: a new class of quinolone antibacterials? J. Med. Chem., 1995, 38(6), 973-982.
[http://dx.doi.org/10.1021/jm00006a017] [PMID: 7699714]
[87]
Cecchetti, V.; Fravolini, A.; Lorenzini, M.C.; Tabarrini, O.; Terni, P.; Xin, T. Studies on 6-aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8-methylquinolones. J. Med. Chem., 1996, 39(2), 436-445.
[http://dx.doi.org/10.1021/jm950558v] [PMID: 8558512]
[88]
Maple, P.A.C.; Miller, J.M.T.; Brumfitt, W. Differing activities of quinolones against ciprofloxacin-susceptible and ciprofloxacin-resistant, methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1991, 35, 345-350.
[http://dx.doi.org/10.1128/AAC.35.2.345] [PMID: 1827242]
[89]
Piddok, L.J.V. New quinolones and gram-positive bacteria. Antimicrob. Agents Chemother., 1994, 38, 164-169.
[http://dx.doi.org/10.1128/AAC.38.2.163]
[90]
Frostall, G.J.; Knapp, C.C. Activity of new quinolones against ciprofloxacin-resistant staphylococci. Antimicrob. Agents Chemother., 1991, 35, 1679-1681.
[http://dx.doi.org/10.1128/AAC.35.8.1679] [PMID: 1656873]
[91]
Bonelli, D.; Cecchetti, V.; Clementi, S.; Cruciani, G.; Fravolini, A.; Savino, A.F. The antibacterial activity of quinolones against Escherichia coli: a chemometric study. Mol. Inform., 1991, 10, 333-343.
[http://dx.doi.org/10.1002/qsar.19910100405]
[92]
Parika, J.; Doering, W. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc., 1967, 87, 5505-5507.
[http://dx.doi.org/10.1021/ja00997a067]
[93]
Cecchetti, V.; Fravolini, A.; Palumbo, M.; Sissi, C.; Tabarrini, O.; Terni, P.; Xin, T. Potent 6-desfluoro-8-methylquinolones as new lead compounds in antibacterial chemotherapy. J. Med. Chem., 1996, 39(25), 4952-4957.
[http://dx.doi.org/10.1021/jm960414w] [PMID: 8960555]
[94]
Eliopoulus, G.M. In vitro activity of fluoroquinolones against gram-positive bacteria. Drugs, 1995, 49(Suppl. 2), 48-57.
[http://dx.doi.org/10.2165/00003495-199500492-00009] [PMID: 8549407]
[95]
Sesnie, J.C.; Hefietz, C.L.; Jonnides, E.T.; Malta, T.E.; Shapiro, M.A. In: A Mouse Photolerance Model; Proceedings of the 30th Interscience Conference on Antimicrobial Agents and Chemotherapy. , 1990.
[96]
Bijma, J.; Spero, H.J.; Lea, D.W. Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system. In: Use of proxies in paleoceanography; Springer: Berlin, 1999; pp. 489-512.
[97]
Baba, M.; Okamoto, M.; Makino, M.; Kimura, Y.; Ikeuchi, T.; Sakaguchi, T.; Okamoto, T. Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives. Antimicrob. Agents Chemother., 1997, 41(6), 1250-1255.
[http://dx.doi.org/10.1128/AAC.41.6.1250] [PMID: 9174179]
[98]
Witvurouv, M.; Daelemans, D.; Pannecouque, C.; Neyts, J.; Anderi, G.; Snoeck, R.; Vandamme, A.; Balzarini, J.; Desmyter, J.; Baba, M.; De Clercq, E. Antivir. Chem. Chemother., 1988, 5, 403-411.
[99]
Baba, M.; Okamoto, M.; Kawamura, M.; Makino, M.; Higashida, T.; Takashi, T.; Kimura, Y.; Ikeuchi, T.; Tetsuka, T.; Okamoto, T. Inhibition of human immunodeficiency virus type 1 replication and cytokine production by fluoroquinoline derivatives. Mol. Pharmacol., 1998, 53(6), 1097-1103.
[PMID: 9614214]
[100]
Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu’, G. 6-Aminoquinolones as new potential anti-HIV agents. J. Med. Chem., 2000, 43(20), 3799-3802.
[http://dx.doi.org/10.1021/jm9903390] [PMID: 11020296]
[101]
Tabarrini, O.; Stevens, M.; Cecchetti, V.; Sabatini, S.; Uomo, M.D.; Manfroni, G.; Palumbo, M.; Pannecouque, C.; Clercq, E.D.; Fravolini, A. Structure modifications of 6-aminoquinolones with potent anti-HIV activity. J. Med. Chem., 2004, 47(22), 5567-5578.
[http://dx.doi.org/10.1021/jm049721p]
[102]
Edelson, J.; Davison, C.; Benziger, D.P. Quinolone and “azaquinolone” antimicrobial agents. Drug Metab. Rev., 1977, 6, 105-148.
[http://dx.doi.org/10.3109/03602537708993766]
[103]
Alexander, J.; Fromtling, R.A.; Bland, J.A.; Pelak, B.A.; Gilfillan, E.C. (Acyloxy)alkyl carbamate prodrugs of norfloxacin. J. Med. Chem., 1991, 34(1), 78-81.
[http://dx.doi.org/10.1021/jm00105a013] [PMID: 1992156]
[104]
Alex, R.R.; Kulkarni, V.M. Design and synthesis of penicilloyl oxymethyl quinolone carbamates as a new class of dual-acting antibacterials. Eur. J. Med. Chem., 1995, 30, 815-818.
[http://dx.doi.org/10.1016/0223-5234(96)88301-2]
[105]
Shen, L.L.; Mitscher, L.A.; Sharma, P.N.; O’Donnell, T.J.; Chu, D.T.W.; Cooper, C.S.; Rosen, T.; Pernet, A.G. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug--DNA binding model. Biochemistry, 1989, 28, 3886-3894.
[http://dx.doi.org/10.1021/bi00435a039]
[106]
Hanessian, S.; Saladino, R.; Nunez, J.C. On the binding site of quinolone antibacterials. An attempt to probe the shen model. Bioorg. Med. Chem. Lett., 1996, 6, 2333-2338.
[http://dx.doi.org/10.1016/0960-894X(96)00430-1]
[107]
Ambrose, R.; Ribera, S.G.; Munoz, A.S.; Barenys, J.M.C.; Hernandez, J.A.O. U.S. patent 20003196, 1989.
[108]
Singh, R.; Afshar, R.F.; Thomas, G.; Singh, M.P.; Higashitani, F.; Hyodo, A.; Unemi, N.; Micetich, R.G. Synthesis and antibacterial activity of 7-hydrazinoquinolones. Eur. J. Med. Chem., 1998, 33, 697-703.
[http://dx.doi.org/10.1016/S0223-5234(98)80028-7]
[109]
Fleisch, H.A. Bisphosphonates: preclinical aspects and use in osteoporosis. Ann. Med., 1997, 29(1), 55-62.
[http://dx.doi.org/10.3109/07853899708998743] [PMID: 9073324]
[110]
Sedghizadeh, P.P.; Sun, S.; Junka, A.F.; Richard, E.; Sadrerafi, K.; Mahabady, S.; Bakhshalian, N.; Tjokro, N.; Bartoszewicz, M.; Oleksy, M.; Szymczyk, P.; Lundy, M.W.; Neighbors, J.D.; Russell, R.G.G.; McKenna, C.E.; Ebetino, F.H. Design, synthesis, and antimicrobial evaluation of a novel bone targeting bisphosphonate-ciprofloxacin conjugate for the treatment of osteomyelitis biofilms. J. Med. Chem., 2017, 60, 2326-2343.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01615]
[111]
Lew, D.P.; Waldvogel, F.A. Quinolones and osteomyelitis: state-of-the-art. Drugs, 1995, 49(Suppl. 2), 100-111.
[http://dx.doi.org/10.2165/00003495-199500492-00016] [PMID: 8549277]
[112]
Degenhardt, C.R.; Burdsall, D.C. Synthesis of ethenylidene bis(phosphonic acid) and its tetraalkyl esters. J. Org. Chem., 1986, 51, 3488-3490.
[http://dx.doi.org/10.1021/jo00368a017]
[113]
Herczeg, P.; Buxon, T.B.; Pherson, J.M.C.; Kulyassa, A.K.; Brewer, P.D.; Sztaricskai, F.; Stroebel, G.G.; Plowman, K.M.; Farcasiu, D.; Hartmann, J.F. Osteoadsorptive bisphosphonate derivatives of fluoroquinolone antibacterials. J. Med. Chem., 2002, 45, 2338-2341.
[http://dx.doi.org/10.1021/jm0105326] [PMID: 12014972]
[114]
Ledoussal, B.; Bouzard, D.; Coroneos, Potent non-6-fluoro-substituted quinolone antibacterials: synthesis and biological activity. Eur. J. Med. Chem., 1992, 35, 198-200.
[http://dx.doi.org/10.1021/jm00079a028]
[115]
Gray, J.L.; Almstead, J.I.; Gallagher, C.P.; Hu, X.E.; Kim, N.K.; Taylor, C.J.; Twinem, T.L.; Wallace, C.D.; Ledoussal, B. Synthesis and biological testing of non-fluorinated analogues of levofloxacin. Bioorg. Med. Chem. Lett., 2003, 13(14), 2373-2375.
[http://dx.doi.org/10.1016/S0960-894X(03)00399-8] [PMID: 12824037]
[116]
German, N.; Wei, P.; Kaatz, G.W.; Kerns, R.J. Synthesis and evaluation of fluoroquinolones derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur. J. Med. Chem., 2008, 43, 2453-2463.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.042]
[117]
Verling, P.; Anquetin, G.; Griener, J.; Mahmoudi, N.; Gozalbes, R. Design, synthesis and activity against Toxoplasma gondii, Plasmodium spp., and Mycobacterium tuberculosis of new 6-fluoroquinolones. Eur. J. Med. Chem., 2006, 41, 1478-1493.
[118]
Ginsburg, A.S.; Sun, R.; Calamita, H.; Scott, C.P.; Bishai, W.R.; Grosset, J.H. Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. Antimicrob. Agents Chemother., 2005, 49(9), 3977-3979.
[http://dx.doi.org/10.1128/AAC.49.9.3977-3979.2005] [PMID: 16127087]
[119]
Jube, S.; Kumar, R.R.; Reddy, Y.B.; Siddhartha, G.; Sandeep, M.; Reddy, S.K.; Dushyanth, H.S.; Elango, K. Microwave assisted synthesis of some novel benzimidazole substituted fluoroquinolones and their antimicrobial evaluation. J. Pharm. Sci. Res., 2010, 2, 69-76.
[120]
Shashikant, R.P.; Nachiket, S.D.; Hariprasad, C.K.; Jayshari, S.P.; Daithankar, A.V.; Gaware, V.M.; Hole, M.B. Synthesis and evaluation of some new 6-fluro-quinolin-4 (1H)-one derivatives for their anti-microbial activities. J. Pharm. Sci. Res., 2009, 1(4), 55-60.
[121]
Srivastava, N.; Kumar, A. Synthesis of substituted-4-oxo-1, 4-dihydro-3-[1-oxo-2-hydrazino-3-p-toluenesulfon]quinoline derivatives and their biological activity against bacterial infections. Orient. J. Chem., 2013, 29(2), 507-511.
[http://dx.doi.org/10.13005/ojc/290216]
[122]
Srivastava, N.; Kumar, A. Synthesis and study of 1-ethyl-3-carbohydrazide and 3-[1-oxo-2-hydrazino-3-p-toluenesulfon]quinolone derivatives against bacterial infections. Eur. J. Med. Chem., 2013, 67, 464-468.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.056] [PMID: 23933534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy