Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Small Molecule Inhibitors Targeting Key Proteins in the DNA Damage Response for Cancer Therapy

Author(s): Lulu Li, Alagamuthu Karthick Kumar, Zhigang Hu* and Zhigang Guo*

Volume 28, Issue 5, 2021

Published on: 24 February, 2020

Page: [963 - 985] Pages: 23

DOI: 10.2174/0929867327666200224102309

Price: $65

Abstract

DNA damage response (DDR) is a complicated interactional pathway. Defects that occur in subordinate pathways of the DDR pathway can lead to genomic instability and cancer susceptibility. Abnormal expression of some proteins in DDR, especially in the DNA repair pathway, are associated with the subsistence and resistance of cancer cells. Therefore, the development of small molecule inhibitors targeting the chief proteins in the DDR pathway is an effective strategy for cancer therapy. In this review, we summarize the development of small molecule inhibitors targeting chief proteins in the DDR pathway, particularly focusing on their implications for cancer therapy. We present the action mode of DDR molecule inhibitors in preclinical studies and clinical cancer therapy, including monotherapy and combination therapy with chemotherapeutic drugs or checkpoint suppression therapy.

Keywords: DNA damage response (DDR), DNA repair, small molecule inhibitor, cancer therapy, monotherapy, combination therapy, synthetic lethal (SL), drug repurposing.

« Previous
[1]
Purchase, I.F. Current knowledge of mechanisms of carcinogenicity: genotoxins versus non-genotoxins. Hum. Exp. Toxicol., 1994, 13(1), 17-28.
[http://dx.doi.org/10.1177/096032719401300104] [PMID: 8198825]
[2]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078.
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[3]
Houtgraaf, J.H.; Versmissen, J.; van der Giessen, W.J. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc. Revasc. Med., 2006, 7(3), 165-172.
[http://dx.doi.org/10.1016/j.carrev.2006.02.002] [PMID: 16945824]
[4]
Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kaçmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 2004, 73, 39-85.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723] [PMID: 15189136]
[5]
Zhou, B.B.; Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature, 2000, 408(6811), 433-439.
[http://dx.doi.org/10.1038/35044005] [PMID: 11100718]
[6]
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med., 2006, 12(9), 440-450.
[http://dx.doi.org/10.1016/j.molmed.2006.07.007] [PMID: 16899408]
[7]
Shibata, Y.; Morimoto, R.I. How the nucleus copes with proteotoxic stress? Curr. Biol., 2014, 24(10), R463-R474.
[http://dx.doi.org/10.1016/j.cub.2014.03.033] [PMID: 24845679]
[8]
Powers, E.T.; Morimoto, R.I.; Dillin, A.; Kelly, J.W.; Balch, W.E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem., 2009, 78, 959-991.
[http://dx.doi.org/10.1146/annurev.biochem.052308.114844] [PMID: 19298183]
[9]
Jeggo, P.A.; Pearl, L.H.; Carr, A.M. DNA repair, genome stability and cancer: a historical perspective. Nat. Rev. Cancer, 2016, 16(1), 35-42.
[http://dx.doi.org/10.1038/nrc.2015.4] [PMID: 26667849]
[10]
O’Connor, M.J. Targeting the DNA Damage Response in Cancer. Mol. Cell, 2015, 60(4), 547-560.
[http://dx.doi.org/10.1016/j.molcel.2015.10.040] [PMID: 26590714]
[11]
Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med., 2009, 361(15), 1475-1485.
[http://dx.doi.org/10.1056/NEJMra0804615] [PMID: 19812404]
[12]
Lord, C.J.; Ashworth, A. The DNA damage response and cancer therapy. Nature, 2012, 481(7381), 287-294.
[http://dx.doi.org/10.1038/nature10760] [PMID: 22258607]
[13]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434(7035), 917-921.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[14]
Lord, C.J.; Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science, 2017, 355(6330), 1152-1158.
[http://dx.doi.org/10.1126/science.aam7344] [PMID: 28302823]
[15]
Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; Reinacher-Schick, A.; Tortora, G.; Algül, H.; O’Reilly, E.M.; McGuinness, D.; Cui, K.Y.; Schlienger, K.; Locker, G.Y.; Kindler, H.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med., 2019, 381(4), 317-327.
[http://dx.doi.org/10.1056/NEJMoa1903387] [PMID: 31157963]
[16]
Wang, M.; Li, E.; Lin, L.; Kumar, A.K.; Pan, F.; He, L.; Zhang, J.; Hu, Z.; Guo, Z. Enhanced activity of variant DNA Polymerase β (D160G) contributes to cisplatin therapy by impeding the efficiency of NER. Mol. Cancer Res., 2019, 17(10), 2077-2088.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0482] [PMID: 31350308]
[17]
Nikolova, T.; Christmann, M.; Kaina, B. FEN1 is overexpressed in testis, lung and brain tumors. Anticancer Res., 2009, 29(7), 2453-2459.
[PMID: 19596913]
[18]
Maacke, H.; Jost, K.; Opitz, S.; Miska, S.; Yuan, Y.; Hasselbach, L.; Lüttges, J.; Kalthoff, H.; Stürzbecher, H.W. DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene, 2000, 19(23), 2791-2795.
[http://dx.doi.org/10.1038/sj.onc.1203578] [PMID: 10851081]
[19]
He, L.; Luo, L.; Zhu, H.; Yang, H.; Zhang, Y.; Wu, H.; Sun, H.; Jiang, F.; Kathera, C.S.; Liu, L.; Zhuang, Z.; Chen, H.; Pan, F.; Hu, Z.; Zhang, J.; Guo, Z. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer. Mol. Oncol., 2017, 11(6), 640-654.
[http://dx.doi.org/10.1002/1878-0261.12058] [PMID: 28371273]
[20]
Foote, K.M.; Nissink, J.W.M.; McGuire, T.; Turner, P.; Guichard, S.; Yates, J.W.T.; Lau, A.; Blades, K.; Heathcote, D.; Odedra, R.; Wilkinson, G.; Wilson, Z.; Wood, C.M.; Jewsbury, P.J. Discovery and characterization of AZD6738, a potent inhibitor of Ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem., 2018, 61(22), 9889-9907.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01187] [PMID: 30346772]
[21]
Eom, Y.W.; Kim, M.A.; Park, S.S.; Goo, M.J.; Kwon, H.J.; Sohn, S.; Kim, W.H.; Yoon, G.; Choi, K.S. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene, 2005, 24(30), 4765-4777.
[http://dx.doi.org/10.1038/sj.onc.1208627] [PMID: 15870702]
[22]
Bang, Y.J.; Xu, R.H.; Chin, K.; Lee, K.W.; Park, S.H.; Rha, S.Y.; Shen, L.; Qin, S.; Xu, N.; Im, S.A.; Locker, G.; Rowe, P.; Shi, X.; Hodgson, D.; Liu, Y.Z.; Boku, N. Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol., 2017, 18(12), 1637-1651.
[http://dx.doi.org/10.1016/S1470-2045(17)30682-4] [PMID: 29103871]
[23]
Friedman, A.A.; Letai, A.; Fisher, D.E.; Flaherty, K.T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer, 2015, 15(12), 747-756.
[http://dx.doi.org/10.1038/nrc4015] [PMID: 26536825]
[24]
Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer, 2017, 17(2), 79-92.
[http://dx.doi.org/10.1038/nrc.2016.126] [PMID: 28050011]
[25]
Politi, K.; Herbst, R.S. Lung cancer in the era of precision medicine. Clin. Cancer Res., 2015, 21(10), 2213-2220.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2748] [PMID: 25979927]
[26]
Lyman, G.H.; Moses, H.L. Biomarker tests for molecularly targeted therapies--the key to unlocking precision medicine. N. Engl. J. Med., 2016, 375(1), 4-6.
[http://dx.doi.org/10.1056/NEJMp1604033] [PMID: 27353537]
[27]
Tuli, R.; Shiao, S.L.; Nissen, N.; Tighiouart, M.; Kim, S.; Osipov, A.; Bryant, M.; Ristow, L.; Placencio-Hickok, V.; Hoffman, D.; Rokhsar, S.; Scher, K.; Klempner, S.J.; Noe, P.; Davis, M.J.; Wachsman, A.; Lo, S.; Jamil, L.; Sandler, H.; Piantadosi, S.; Hendifar, A. A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. EBioMedicine, 2019, 40, 375-381.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.060] [PMID: 30635165]
[28]
Imai, K.; Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer, 2006, 6(9), 714-727.
[http://dx.doi.org/10.1038/nrc1913] [PMID: 16929325]
[29]
Lowndes, N.F.; Murguia, J.R. Sensing and responding to DNA damage. Curr. Opin. Genet. Dev., 2000, 10(1), 17-25.
[http://dx.doi.org/10.1016/S0959-437X(99)00050-7] [PMID: 10679395]
[30]
Hickson, I.; Zhao, Y.; Richardson, C.J.; Green, S.J.; Martin, N.M.; Orr, A.I.; Reaper, P.M.; Jackson, S.P.; Curtin, N.J.; Smith, G.C. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res., 2004, 64(24), 9152-9159.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2727] [PMID: 15604286]
[31]
Amé, J.C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. BioEssays, 2004, 26(8), 882-893.
[http://dx.doi.org/10.1002/bies.20085] [PMID: 15273990]
[32]
Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr., 2014, 24(1), 15-28.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875] [PMID: 24579667]
[33]
Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther., 2016, 160, 65-83.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[34]
Kummar, S.; Chen, A.; Parchment, R.E.; Kinders, R.J.; Ji, J.; Tomaszewski, J.E.; Doroshow, J.H. Advances in using PARP inhibitors to treat cancer. BMC Med., 2012, 10, 25.
[http://dx.doi.org/10.1186/1741-7015-10-25] [PMID: 22401667]
[35]
Robert, I.; Dantzer, F.; Reina-San-Martin, B. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J. Exp. Med., 2009, 206(5), 1047-1056.
[http://dx.doi.org/10.1084/jem.20082468] [PMID: 19364882]
[36]
Rodler, E.T.; Kurland, B.F.; Griffin, M.; Gralow, J.R.; Porter, P.; Yeh, R.F.; Gadi, V.K.; Guenthoer, J.; Beumer, J.H.; Korde, L.; Strychor, S.; Kiesel, B.F.; Linden, H.M.; Thompson, J.A.; Swisher, E.; Chai, X.; Shepherd, S.; Giranda, V.; Specht, J.M.; Phase, I.; Phase, I. Study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin. Cancer Res., 2016, 22(12), 2855-2864.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2137] [PMID: 26801247]
[37]
Moore, K.N.; Secord, A.A.; Geller, M.A.; Miller, D.S.; Cloven, N.; Fleming, G.F.; Wahner Hendrickson, A.E.; Azodi, M.; DiSilvestro, P.; Oza, A.M.; Cristea, M.; Berek, J.S.; Chan, J.K.; Rimel, B.J.; Matei, D.E.; Li, Y.; Sun, K.; Luptakova, K.; Matulonis, U.A.; Monk, B.J. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol., 2019, 20(5), 636-648.
[http://dx.doi.org/10.1016/S1470-2045(19)30029-4] [PMID: 30948273]
[38]
Roviello, G.; Milani, M.; Gobbi, A.; Dester, M.; Cappelletti, M.R.; Allevi, G.; Aguggini, S.; Ravelli, A.; Gussago, F.; Cocconi, A.; Zanotti, L.; Senti, C.; Strina, C.; Bottini, A.; Generali, D. A Phase II study of olaparib in breast cancer patients: biological evaluation from a ‘window of opportunity’ trial. Future Oncol., 2016, 12(19), 2189-2193.
[http://dx.doi.org/10.2217/fon-2016-0116] [PMID: 27324108]
[39]
Ettl, J.; Quek, R.G.W.; Lee, K.H.; Rugo, H.S.; Hurvitz, S.; Gonçalves, A.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; Roché, H.; Im, Y.H.; Markova, D.; Bhattacharyya, H.; Hannah, A.L.; Eiermann, W.; Blum, J.L.; Litton, J.K. Quality of life with talazoparib versus physician’s choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase III trial. Ann. Oncol., 2018, 29(9), 1939-1947.
[http://dx.doi.org/10.1093/annonc/mdy257] [PMID: 30124753]
[40]
Shirley, M. Rucaparib: a review in ovarian cancer. Target. Oncol., 2019, 14(2), 237-246.
[http://dx.doi.org/10.1007/s11523-019-00629-5] [PMID: 30830551]
[41]
Wilson, R.H.; Evans, T.J.; Middleton, M.R.; Molife, L.R.; Spicer, J.; Dieras, V.; Roxburgh, P.; Giordano, H.; Jaw-Tsai, S.; Goble, S.; Plummer, R. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br. J. Cancer, 2017, 116(7), 884-892.
[http://dx.doi.org/10.1038/bjc.2017.36] [PMID: 28222073]
[42]
Turk, A.A.; Wisinski, K.B. PARP inhibitors in breast cancer: bringing synthetic lethality to the bedside. Cancer, 2018, 124(12), 2498-2506.
[http://dx.doi.org/10.1002/cncr.31307] [PMID: 29660759]
[43]
Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434(7035), 913-917.
[http://dx.doi.org/10.1038/nature03443] [PMID: 15829966]
[44]
Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; Ashworth, A.; Carmichael, J.; Kaye, S.B.; Schellens, J.H.; de Bono, J.S. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med., 2009, 361(2), 123-134.
[http://dx.doi.org/10.1056/NEJMoa0900212] [PMID: 19553641]
[45]
Ashworth, A.; Lord, C.J.; Reis-Filho, J.S. Genetic interactions in cancer progression and treatment. Cell, 2011, 145(1), 30-38.
[http://dx.doi.org/10.1016/j.cell.2011.03.020] [PMID: 21458666]
[46]
Chan, D.A.; Giaccia, A.J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat. Rev. Drug Discov., 2011, 10(5), 351-364.
[http://dx.doi.org/10.1038/nrd3374] [PMID: 21532565]
[47]
Aly, A.; Ganesan, S. BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability. J. Mol. Cell Biol., 2011, 3(1), 66-74.
[http://dx.doi.org/10.1093/jmcb/mjq055] [PMID: 21278454]
[48]
Meghani, K.; Fuchs, W.; Detappe, A.; Drané, P.; Gogola, E.; Rottenberg, S.; Jonkers, J.; Matulonis, U.; Swisher, E.M.; Konstantinopoulos, P.A.; Chowdhury, D. Multifaceted impact of MicroRNA 493-5p on genome-stabilizing pathways induces platinum and PARP inhibitor resistance in BRCA2-mutated carcinomas. Cell Rep., 2018, 23(1), 100-111.
[http://dx.doi.org/10.1016/j.celrep.2018.03.038] [PMID: 29617652]
[49]
Fukumoto, T.; Zhu, H.; Nacarelli, T.; Karakashev, S.; Fatkhutdinov, N.; Wu, S.; Liu, P.; Kossenkov, A.V.; Showe, L.C.; Jean, S.; Zhang, L.; Zhang, RN (6)-methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance. Cancer Res., 2019.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3592] [PMID: 30967398]
[50]
Lee, J.H.; Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 2005, 308(5721), 551-554.
[http://dx.doi.org/10.1126/science.1108297] [PMID: 15790808]
[51]
Bakkenist, C.J.; Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003, 421(6922), 499-506.
[http://dx.doi.org/10.1038/nature01368] [PMID: 12556884]
[52]
Scully, R.; Xie, A. Double strand break repair functions of histone H2AX. Mutat. Res., 2013, 750(1-2), 5-14.
[http://dx.doi.org/10.1016/j.mrfmmm.2013.07.007] [PMID: 23916969]
[53]
Burma, S.; Chen, B.P.; Murphy, M.; Kurimasa, A.; Chen, D.J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem., 2001, 276(45), 42462-42467.
[http://dx.doi.org/10.1074/jbc.C100466200] [PMID: 11571274]
[54]
Falck, J.; Mailand, N.; Syljuåsen, R.G.; Bartek, J.; Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 2001, 410(6830), 842-847.
[http://dx.doi.org/10.1038/35071124] [PMID: 11298456]
[55]
Barlow, C.; Brown, K.D.; Deng, C.X.; Tagle, D.A.; Wynshaw-Boris, A. ATM selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nat. Genet., 1997, 17(4), 453-456.
[http://dx.doi.org/10.1038/ng1297-453] [PMID: 9398849]
[56]
Cortez, D.; Wang, Y.; Qin, J.; Elledge, S.J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science, 1999, 286(5442), 1162-1166.
[http://dx.doi.org/10.1126/science.286.5442.1162] [PMID: 10550055]
[57]
Tribius, S.; Pidel, A.; Casper, D. ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int. J. Radiat. Oncol. Biol. Phys., 2001, 50(2), 511-523.
[http://dx.doi.org/10.1016/S0360-3016(01)01489-4] [PMID: 11380241]
[58]
Weber, A.M.; Ryan, A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther., 2015, 149, 124-138.
[http://dx.doi.org/10.1016/j.pharmthera.2014.12.001] [PMID: 25512053]
[59]
Barlaam, B.; Pike, K. Identifying high quality, potent and selective inhibitors of ATM kinase: discovery of AZD0156. Eur. J. Cancer, 2016, 61, S118-S118.
[http://dx.doi.org/10.1016/S0959-8049(16)61417-X]
[60]
Pike, K.G.; Barlaam, B.; Cadogan, E.; Campbell, A.; Chen, Y.; Colclough, N.; Davies, N.L.; de-Almeida, C.; Degorce, S.L.; Didelot, M.; Dishington, A.; Ducray, R.; Durant, S.T.; Hassall, L.A.; Holmes, J.; Hughes, G.D.; MacFaul, P.A.; Mulholland, K.R.; McGuire, T.M.; Ouvry, G.; Pass, M.; Robb, G.; Stratton, N.; Wang, Z.; Wilson, J.; Zhai, B.; Zhao, K.; Al-Huniti, N. The identification of potent, selective, and orally available inhibitors of ataxia telangiectasia mutated (ATM) kinase: The discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2H-pyran-4-yl)-1,3-dihydro-2 H-imidazo[4,5- c]quinolin-2-one). J. Med. Chem., 2018, 61(9), 3823-3841.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01896] [PMID: 29683659]
[61]
Pike, K.G.J.C.M.C.I. 8.07 – Discovery of AZD0156: The First Potent and Selective Inhibitor of ATM Kinase for Clinical Evaluation., 2017.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.13801-6]
[62]
Karlin, J.; Allen, J.; Ahmad, S.F.; Hughes, G.; Sheridan, V.; Odedra, R.; Farrington, P.; Cadogan, E.B.; Riches, L.C.; Garcia-Trinidad, A.; Thomason, A.G.; Patel, B.; Vincent, J.; Lau, A.; Pike, K.G.; Hunt, T.A.; Sule, A.; Valerie, N.C.K.; Biddlestone-Thorpe, L.; Kahn, J.; Beckta, J.M.; Mukhopadhyay, N.; Barlaam, B.; Degorce, S.L.; Kettle, J.; Colclough, N.; Wilson, J.; Smith, A.; Barrett, I.P.; Zheng, L.; Zhang, T.; Wang, Y.; Chen, K.; Pass, M.; Durant, S.T.; Valerie, K. Orally bioavailable and blood-brain barrier-penetrating ATM inhibitor (AZ32) radiosensitizes intracranial gliomas in mice. Mol. Cancer Ther., 2018, 17(8), 1637-1647.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0975] [PMID: 29769307]
[63]
Fuchss, T.; Mederski, W.W.; Zenke, F.T.; Dahmen, H.; Zimmermann, A.; Blaukat, A. Highly potent and selective ATM kinase inhibitor M3541: A clinical candidate drug with strong antitumor activity in combination with radiotherapy. Cancer Res., 2018, 78(13)
[http://dx.doi.org/10.1158/1538-7445.AM2018-329]
[64]
Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev., 2001, 11(1), 71-77.
[http://dx.doi.org/10.1016/S0959-437X(00)00159-3] [PMID: 11163154]
[65]
Ammazzalorso, F.; Pirzio, L.M.; Bignami, M.; Franchitto, A.; Pichierri, P. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J., 2010, 29(18), 3156-3169.
[http://dx.doi.org/10.1038/emboj.2010.205] [PMID: 20802463]
[66]
Smith, J.; Tho, L.M.; Xu, N.H.; Gillespie, D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advan. Cancer Res., 2010, 108, 73-112.
[http://dx.doi.org/10.1016/B978-0-12-380888-2.00003-0]
[67]
Schoppy, D.W.; Ragland, R.L.; Gilad, O.; Shastri, N.; Peters, A.A.; Murga, M.; Fernandez-Capetillo, O.; Diehl, J.A.; Brown, E.J. Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J. Clin. Invest., 2012, 122(1), 241-252.
[http://dx.doi.org/10.1172/JCI58928] [PMID: 22133876]
[68]
He, G.; Siddik, Z.H.; Huang, Z.; Wang, R.; Koomen, J.; Kobayashi, R.; Khokhar, A.R.; Kuang, J. Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene, 2005, 24(18), 2929-2943.
[http://dx.doi.org/10.1038/sj.onc.1208474] [PMID: 15735718]
[69]
Taylor, W.R.; Stark, G.R. Regulation of the G2/M transition by p53. Oncogene, 2001, 20(15), 1803-1815.
[http://dx.doi.org/10.1038/sj.onc.1204252] [PMID: 11313928]
[70]
Fokas, E.; Prevo, R.; Pollard, J.R.; Reaper, P.M.; Charlton, P.A.; Cornelissen, B.; Vallis, K.A.; Hammond, E.M.; Olcina, M.M.; Gillies McKenna, W.; Muschel, R.J.; Brunner, T.B. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis., 2012, 3e441
[http://dx.doi.org/10.1038/cddis.2012.181] [PMID: 23222511]
[71]
Foote, K.M.; Blades, K.; Cronin, A.; Fillery, S.; Guichard, S.S.; Hassall, L.; Hickson, I.; Jacq, X.; Jewsbury, P.J.; McGuire, T.M.; Nissink, J.W.; Odedra, R.; Page, K.; Perkins, P.; Suleman, A.; Tam, K.; Thommes, P.; Broadhurst, R.; Wood, C. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J. Med. Chem., 2013, 56(5), 2125-2138.
[http://dx.doi.org/10.1021/jm301859s] [PMID: 23394205]
[72]
Mei, L.; Zhang, J.; He, K.; Zhang, J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. J. Hematol. Oncol., 2019, 12(1), 43.
[http://dx.doi.org/10.1186/s13045-019-0733-6] [PMID: 31018854]
[73]
Yoshida, G.J. Emerging roles of Myc in stem cell biology and novel tumor therapies. J. Exp. Clin. Cancer Res., 2018, 37(1), 173.
[http://dx.doi.org/10.1186/s13046-018-0835-y] [PMID: 30053872]
[74]
Wengner, A.M.; Siemeister, G.; Luecking, U.; Lefranc, J.; Lienau, P.; Deeg, G.; Lagkadinou, E.; Liu, L.; Golfier, S.; Schatz, C.; Scholz, A.; von Nussbaum, F.; Brands, M.; Mumberg, D.; Ziegelbauer, K. ATR inhibitor BAY 1895344 shows potent anti-tumor efficacy in monotherapy and strong combination potential with the targeted alpha therapy Radium-223 dichloride in preclinical tumor models. Cancer Res., 2017, 77(13), 836.
[http://dx.doi.org/10.1158/1538-7445.AM2017-836]
[75]
Uto, K.; Inoue, D.; Shimuta, K.; Nakajo, N.; Sagata, N. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J., 2004, 23(16), 3386-3396.
[http://dx.doi.org/10.1038/sj.emboj.7600328] [PMID: 15272308]
[76]
Rundle, S.; Bradbury, A.; Drew, Y.; Curtin, N.J. Targeting the ATR-CHK1 axis in cancer therapy. Cancers (Basel), 2017, 9(5)E41
[http://dx.doi.org/10.3390/cancers9050041] [PMID: 28448462]
[77]
Italiano, A.; Infante, J.R.; Shapiro, G.I.; Moore, K.N.; LoRusso, P.M.; Hamilton, E.; Cousin, S.; Toulmonde, M.; Postel-Vinay, S.; Tolaney, S.; Blackwood, E.M.; Mahrus, S.; Peale, F.V.; Lu, X.; Moein, A.; Epler, J.; DuPree, K.; Tagen, M.; Murray, E.R.; Schutzman, J.L.; Lauchle, J.O.; Hollebecque, A.; Soria, J.C. Phase I study of the checkpoint kinase 1 inhibitor GDC-0575 in combination with gemcitabine in patients with refractory solid tumors. Ann. Oncol., 2018, 29(5), 1304-1311.
[http://dx.doi.org/10.1093/annonc/mdy076] [PMID: 29788155]
[78]
King, C.; Diaz, H.B.; McNeely, S.; Barnard, D.; Dempsey, J.; Blosser, W.; Beckmann, R.; Barda, D.; Marshall, M.S. LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol. Cancer Ther., 2015, 14(9), 2004-2013.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1037] [PMID: 26141948]
[79]
Hong, D.; Infante, J.; Janku, F.; Jones, S.; Nguyen, L.M.; Burris, H.; Naing, A.; Bauer, T.M.; Piha-Paul, S.; Johnson, F.M.; Kurzrock, R.; Golden, L.; Hynes, S.; Lin, J.; Lin, A.B.; Bendell, J.; Phase, I. Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J. Clin. Oncol., 2016, 34(15), 1764-1771.
[http://dx.doi.org/10.1200/JCO.2015.64.5788] [PMID: 27044938]
[80]
Calvo, E.; Braiteh, F.; Von Hoff, D.; McWilliams, R.; Becerra, C.; Galsky, M.D.; Jameson, G.; Lin, J.; McKane, S.; Wickremsinhe, E.R.; Hynes, S.M.; Bence; Lin, A.; Hurt, K.; Richards, D. Phase I study of CHK1 inhibitor LY2603618 in combination with gemcitabine in patients with solid tumors. Oncology, 2016, 91(5), 251-260.
[http://dx.doi.org/10.1159/000448621] [PMID: 27598338]
[81]
Scagliotti, G.; Kang, J.H.; Smith, D.; Rosenberg, R.; Park, K.; Kim, S.W.; Su, W.C.; Boyd, T.E.; Richards, D.A.; Novello, S.; Hynes, S.M.; Myrand, S.P.; Lin, J.; Smyth, E.N.; Wijayawardana, S.; Lin, A.B.; Pinder-Schenck, M. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest. New Drugs, 2016, 34(5), 625-635.
[http://dx.doi.org/10.1007/s10637-016-0368-1] [PMID: 27350064]
[82]
Booth, L.; Roberts, J.; Poklepovic, A.; Dent, P. The CHK1 inhibitor SRA737 synergizes with PARP1 inhibitors to kill carcinoma cells. Cancer Biol. Ther., 2018, 19(9), 786-796.
[http://dx.doi.org/10.1080/15384047.2018.1472189] [PMID: 30024813]
[83]
Dent, P. Investigational CHK1 inhibitors in early phase clinical trials for the treatment of cancer. Expert Opin. Investig. Drugs, 2019, 28(12), 1095-1100.
[http://dx.doi.org/10.1080/13543784.2019.1694661] [PMID: 31783714]
[84]
Chenard-Poirier, M.; Garces, A.H.I.; Jones, R.H.; Quinton, A.; Plummer, E.R.; Drew, Y.; Kowalski, M.M.; Klencke, B.J.; Banerji, U. A phase I study of SRA737 (formerly known as CCT245737) administered orally in patients with advanced cancer. J. Clin. Oncol., 2017, TPS2607-TPS2607.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.TPS2607]
[85]
Aparicio, T.; Baer, R.; Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst.), 2014, 19, 169-175.
[http://dx.doi.org/10.1016/j.dnarep.2014.03.014] [PMID: 24746645]
[86]
Kakarougkas, A.; Jeggo, P.A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol., 2014, 87(1035)20130685
[http://dx.doi.org/10.1259/bjr.20130685] [PMID: 24363387]
[87]
Memisoglu, A.; Samson, L. Base excision repair in yeast and mammals. Mutat. Res., 2000, 451(1-2), 39-51.
[http://dx.doi.org/10.1016/S0027-5107(00)00039-7] [PMID: 10915864]
[88]
Li, W.; Liu, W.; Kakoki, A.; Wang, R.; Adebali, O.; Jiang, Y.; Sancar, A. Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells. J. Biol. Chem., 2019, 294(15), 5914-5922.
[http://dx.doi.org/10.1074/jbc.RA119.007861] [PMID: 30808711]
[89]
Khanna, K.K.; Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet., 2001, 27(3), 247-254.
[http://dx.doi.org/10.1038/85798] [PMID: 11242102]
[90]
Li, X.; Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res., 2008, 18(1), 99-113.
[http://dx.doi.org/10.1038/cr.2008.1] [PMID: 18166982]
[91]
San Filippo, J.; Sung, P.; Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem., 2008, 77, 229-257.
[http://dx.doi.org/10.1146/annurev.biochem.77.061306.125255] [PMID: 18275380]
[92]
Budke, B.; Tueckmantel, W.; Miles, K.; Kozikowski, A.P.; Connell, P.P. Optimization of drug candidates that inhibit the D-Loop activity of RAD51. ChemMedChem, 2019, 14(10), 1031-1040.
[http://dx.doi.org/10.1002/cmdc.201900075] [PMID: 30957434]
[93]
Takaku, M.; Kainuma, T.; Ishida-Takaku, T.; Ishigami, S.; Suzuki, H.; Tashiro, S.; van Soest, R.W.; Nakao, Y.; Kurumizaka, H. Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51. Genes Cells, 2011, 16(4), 427-436.
[http://dx.doi.org/10.1111/j.1365-2443.2011.01494.x] [PMID: 21375680]
[94]
Richardson, C. RAD51, genomic stability, and tumorigenesis. Cancer Lett., 2005, 218(2), 127-139.
[http://dx.doi.org/10.1016/j.canlet.2004.08.009] [PMID: 15670890]
[95]
Adam-Zahir, S.; Plowman, P.N.; Bourton, E.C.; Sharif, F.; Parris, C.N. Increased γ-H2AX and Rad51 DNA repair biomarker expression in human cell lines resistant to the chemotherapeutic agents nitrogen mustard and cisplatin. Chemotherapy, 2014, 60(5-6), 310-320.
[http://dx.doi.org/10.1159/000430086] [PMID: 26138778]
[96]
Huang, F.; Mazin, A.V. A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PLoS One, 2014, 9(6)e100993
[http://dx.doi.org/10.1371/journal.pone.0100993] [PMID: 24971740]
[97]
Budke, B.; Logan, H.L.; Kalin, J.H.; Zelivianskaia, A.S.; Cameron McGuire, W.; Miller, L.L.; Stark, J.M.; Kozikowski, A.P.; Bishop, D.K.; Connell, P.P. RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res., 2012, 40(15), 7347-7357.
[http://dx.doi.org/10.1093/nar/gks353] [PMID: 22573178]
[98]
Ishida, T.; Takizawa, Y.; Kainuma, T.; Inoue, J.; Mikawa, T.; Shibata, T.; Suzuki, H.; Tashiro, S.; Kurumizaka, H. DIDS, a chemical compound that inhibits RAD51-mediated homologous pairing and strand exchange. Nucleic Acids Res., 2009, 37(10), 3367-3376.
[http://dx.doi.org/10.1093/nar/gkp200] [PMID: 19336413]
[99]
Budke, B.; Lv, W.; Kozikowski, A.P.; Connell, P.P. Recent developments using small molecules to target RAD51: how to best modulate RAD51 for anticancer therapy? ChemMedChem, 2016, 11(22), 2468-2473.
[http://dx.doi.org/10.1002/cmdc.201600426] [PMID: 27781374]
[100]
Normand, A.; Rivière, E.; Renodon-Cornière, A. Identification and characterization of human Rad51 inhibitors by screening of an existing drug library. Biochem. Pharmacol., 2014, 91(3), 293-300.
[http://dx.doi.org/10.1016/j.bcp.2014.07.033] [PMID: 25124703]
[101]
Burma, S.; Chen, B.P.; Chen, D.J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst.), 2006, 5(9-10), 1042-1048.
[http://dx.doi.org/10.1016/j.dnarep.2006.05.026] [PMID: 16822724]
[102]
Ceccaldi, R.; Rondinelli, B.; D’Andrea, A.D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol., 2016, 26(1), 52-64.
[http://dx.doi.org/10.1016/j.tcb.2015.07.009] [PMID: 26437586]
[103]
Nick McElhinny, S.A.; Havener, J.M.; Garcia-Diaz, M.; Juárez, R.; Bebenek, K.; Kee, B.L.; Blanco, L.; Kunkel, T.A.; Ramsden, D.A. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol. Cell, 2005, 19(3), 357-366.
[http://dx.doi.org/10.1016/j.molcel.2005.06.012] [PMID: 16061182]
[104]
Ahnesorg, P.; Smith, P.; Jackson, S.P. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell, 2006, 124(2), 301-313.
[http://dx.doi.org/10.1016/j.cell.2005.12.031] [PMID: 16439205]
[105]
Beskow, C.; Skikuniene, J.; Holgersson, A.; Nilsson, B.; Lewensohn, R.; Kanter, L.; Viktorsson, K. Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. Br. J. Cancer, 2009, 101(5), 816-821.
[http://dx.doi.org/10.1038/sj.bjc.6605201] [PMID: 19672258]
[106]
Munster, P.N.; Mahipal, A.; Nemunaitis, J.J.; Mita, M.M.; Paz-Ares, L.G.; Massard, C.; Mikkelsen, T.; Cruz, C.; Rathkopf, D.E.; Blumenschein, G.R.; Hidalgo, M.; Smith, D.C.; Eichhorst, B.; Cloughesy, T.F.; Garrick, B.; Trowe, T.; Filvaroff, E.; Hege, K.; Bendell, J.C. Phase I trial of a dual TOR kinase and DNA-PK inhibitor (CC-115) in advanced solid and hematologic cancers. J. Clin. Oncol., 2016, 34(15), 2505-2505.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.2505]
[107]
Mortensen, D.S.; Perrin-Ninkovic, S.M.; Shevlin, G.; Elsner, J.; Zhao, J.; Whitefield, B.; Tehrani, L.; Sapienza, J.; Riggs, J.R.; Parnes, J.S.; Papa, P.; Packard, G.; Lee, B.G.; Harris, R.; Correa, M.; Bahmanyar, S.; Richardson, S.J.; Peng, S.X.; Leisten, J.; Khambatta, G.; Hickman, M.; Gamez, J.C.; Bisonette, R.R.; Apuy, J.; Cathers, B.E.; Canan, S.S.; Moghaddam, M.F.; Raymon, H.K.; Worland, P.; Narla, R.K.; Fultz, K.E.; Sankar, S. Optimization of a series of triazole containing mammalian target of rapamycin (Mtor) kinase inhibitors and the discovery of CC-115. J. Med. Chem., 2015, 58(14), 5599-5608.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00627] [PMID: 26102506]
[108]
Damstrup, L.; Zimmerman, A.; Sirrenberg, C.; Zenke, F.; Vassilev, L. M3814, a DNA-dependent protein kinase inhibitor (DNA-PKi), potentiates the effect of ionizing radiation (IR) in xenotransplanted tumors in nude mice. Int. J. Radiat. Oncol. Biol. Phys., 2016, 94(4), 940-941.
[http://dx.doi.org/10.1016/j.ijrobp.2015.12.268]
[109]
van Bussel, M.; Mau-Soerensen, M.; Damstrup, L.; Nielsen, D.; Verheul, H.M.W.; Aftimos, P.G.; De Jonge, M.J.; Berghoff, K.; Schellens, J.H.M. A multicenter phase I trial of the DNA-dependent protein kinase (DNA-PK) inhibitor M3814 in patients with solid tumors. J. Clin. Oncol., 2017, 2556.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2556]
[110]
Timme, C.R.; Rath, B.H.; O’Neill, J.W.; Camphausen, K.; Tofilon, P.J. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol. Cancer Ther., 2018, 17(6), 1207-1216.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1267] [PMID: 29549168]
[111]
Boucher, D.; Newsome, D.; Takemoto, D.; Hillier, S.; Wang, Y.; Arimoto, R.; Maxwell, J.; Charifson, P.; Fields, S.Z.; Tanner, K.; Penney, M.S. Preclinical characterization of VX-984, a selective DNA-dependent protein kinase (DNA-PK) inhibitor in combination with doxorubicin in breast and ovarian cancers. Cancer Res., 2017, 77.
[http://dx.doi.org/10.1158/1538-7445.SABCS16-P5-06-05]
[112]
Fu, D.; Calvo, J.A.; Samson, L.D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer, 2012, 12(2), 104-120.
[http://dx.doi.org/10.1038/nrc3185] [PMID: 22237395]
[113]
David, S.S.; O’Shea, V.L.; Kundu, S. Base-excision repair of oxidative DNA damage. Nature, 2007, 447(7147), 941-950.
[http://dx.doi.org/10.1038/nature05978] [PMID: 17581577]
[114]
Fortini, P.; Pascucci, B.; Parlanti, E.; D’Errico, M.; Simonelli, V.; Dogliotti, E. The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie, 2003, 85(11), 1053-1071.
[http://dx.doi.org/10.1016/j.biochi.2003.11.003] [PMID: 14726013]
[115]
Zharkov, D.O.; Grollman, A.P. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Mutat. Res., 2005, 577(1-2), 24-54.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.03.011] [PMID: 15939442]
[116]
Prasad, R.; Dianov, G.L.; Bohr, V.A.; Wilson, S.H. FEN1 stimulation of DNA polymerase beta mediates an excision step in mammalian long patch base excision repair. J. Biol. Chem., 2000, 275(6), 4460-4466.
[http://dx.doi.org/10.1074/jbc.275.6.4460] [PMID: 10660619]
[117]
Hosfield, D.J.; Mol, C.D.; Shen, B.; Tainer, J.A. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell, 1998, 95(1), 135-146.
[http://dx.doi.org/10.1016/S0092-8674(00)81789-4] [PMID: 9778254]
[118]
Chapados, B.R.; Hosfield, D.J.; Han, S.; Qiu, J.; Yelent, B.; Shen, B.; Tainer, J.A. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell, 2004, 116(1), 39-50.
[http://dx.doi.org/10.1016/S0092-8674(03)01036-5] [PMID: 14718165]
[119]
He, L.; Zhang, Y.; Sun, H.; Jiang, F.; Yang, H.; Wu, H.; Zhou, T.; Hu, S.; Kathera, C.S.; Wang, X.; Chen, H.; Li, H.; Shen, B.; Zhu, Y.; Guo, Z. Targeting DNA flap endonuclease 1 to impede breast cancer progression. EBioMedicine, 2016, 14, 32-43.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.012] [PMID: 27852524]
[120]
Singh, P.; Yang, M.; Dai, H.; Yu, D.; Huang, Q.; Tan, W.; Kernstine, K.H.; Lin, D.; Shen, B. Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol. Cancer Res., 2008, 6(11), 1710-1717.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0269] [PMID: 19010819]
[121]
Lam, J.S.; Seligson, D.B.; Yu, H.; Li, A.; Eeva, M.; Pantuck, A.J.; Zeng, G.; Horvath, S.; Belldegrun, A.S. Flap endonuclease 1 is overexpressed in prostate cancer and is associated with a high Gleason score. BJU Int., 2006, 98(2), 445-451.
[http://dx.doi.org/10.1111/j.1464-410X.2006.06224.x] [PMID: 16879693]
[122]
Lu, X.; Liu, R.; Wang, M.; Kumar, A.K.; Pan, F.; He, L.; Hu, Z.; Guo, Z. MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene, 2020, 39(1), 234-247.
[http://dx.doi.org/10.1038/s41388-019-0986-0] [PMID: 31471584]
[123]
Exell, J.C.; Thompson, M.J.; Finger, L.D.; Shaw, S.J.; Debreczeni, J.; Ward, T.A.; McWhirter, C.; Siöberg, C.L.B.; Martinez Molina, D.; Abbott, W.M.; Jones, C.D.; Nissink, J.W.M.; Durant, S.T.; Grasby, J.A. Cellularly active N-hydroxyurea FEN1 inhibitors block substrate entry to the active site. Nat. Chem. Biol., 2016, 12(10), 815-821.
[http://dx.doi.org/10.1038/nchembio.2148] [PMID: 27526030]
[124]
Panda, H.; Jaiswal, A.S.; Corsino, P.E.; Armas, M.L.; Law, B.K.; Narayan, S. Amino acid Asp181 of 5′-flap endonuclease 1 is a useful target for chemotherapeutic development. Biochemistry, 2009, 48(42), 9952-9958.
[http://dx.doi.org/10.1021/bi9010754] [PMID: 19769410]
[125]
He, L.; Yang, H.; Zhou, S.; Zhu, H.; Mao, H.; Ma, Z.; Wu, T.; Kumar, A.K.; Kathera, C.; Janardhan, A.; Pan, F.; Hu, Z.; Yang, Y.; Luo, L.; Guo, Z. Synergistic antitumor effect of combined paclitaxel with FEN1 inhibitor in cervical cancer cells. DNA Repair (Amst.), 2018, 63, 1-9.
[http://dx.doi.org/10.1016/j.dnarep.2018.01.003] [PMID: 29358095]
[126]
van Pel, D.M.; Barrett, I.J.; Shimizu, Y.; Sajesh, B.V.; Guppy, B.J.; Pfeifer, T.; McManus, K.J.; Hieter, P. An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development. PLoS Genet., 2013, 9(1)e1003254
[http://dx.doi.org/10.1371/journal.pgen.1003254] [PMID: 23382697]
[127]
Demple, B.; Sung, J.S. Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair (Amst.), 2005, 4(12), 1442-1449.
[http://dx.doi.org/10.1016/j.dnarep.2005.09.004] [PMID: 16199212]
[128]
Marenstein, D.R.; Wilson, D.M., III; Teebor, G.W. Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA. DNA Repair (Amst.), 2004, 3(5), 527-533.
[http://dx.doi.org/10.1016/j.dnarep.2004.01.010] [PMID: 15084314]
[129]
Bobola, M.S.; Finn, L.S.; Ellenbogen, R.G.; Geyer, J.R.; Berger, M.S.; Braga, J.M.; Meade, E.H.; Gross, M.E.; Silber, J.R. Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors. Clin. Cancer Res., 2005, 11(20), 7405-7414.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1068] [PMID: 16243814]
[130]
Silber, J.R.; Bobola, M.S.; Blank, A.; Schoeler, K.D.; Haroldson, P.D.; Huynh, M.B.; Kolstoe, D.D. The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin. Cancer Res., 2002, 8(9), 3008-3018.
[PMID: 12231548]
[131]
Kumar, K.; Jackson, J.L.; Kelley, M.R.; Ivan, M.; Sandsuky, G. Significant in vivo activity of an APE1/Ref-1 redox inhibitor, E3330, alone and in combination with Bevacizumab in a glioblastoma mouse model analyzed by a whole slide digital imaging system and quantitative immunohistochemistry. Cancer Res., 2012, 1769.
[http://dx.doi.org/10.1158/1538-7445.AM2012-1769]
[132]
Madhusudan, S.; Smart, F.; Shrimpton, P.; Parsons, J.L.; Gardiner, L.; Houlbrook, S.; Talbot, D.C.; Hammonds, T.; Freemont, P.A.; Sternberg, M.J.; Dianov, G.L.; Hickson, I.D. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res., 2005, 33(15), 4711-4724.
[http://dx.doi.org/10.1093/nar/gki781] [PMID: 16113242]
[133]
Qian, C.; Li, M.; Sui, J.; Ren, T.; Li, Z.; Zhang, L.; Zhou, L.; Cheng, Y.; Wang, D. Identification of a novel potential antitumor activity of gossypol as an APE1/Ref-1 inhibitor. Drug Des. Devel. Ther., 2014, 8, 485-496.
[http://dx.doi.org/10.2147/DDDT.S62963] [PMID: 24872679]
[134]
Ren, T.; Shan, J.; Li, M.; Qing, Y.; Qian, C.; Wang, G.; Li, Q.; Lu, G.; Li, C.; Peng, Y.; Luo, H.; Zhang, S.; Yang, Y.; Cheng, Y.; Wang, D.; Zhou, S.F. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer. Drug Des. Devel. Ther., 2015, 9, 2887-2910.
[http://dx.doi.org/10.2147/DDDT.S82724] [PMID: 26089640]
[135]
Abbotts, R.M.; Sultana, R.; Seedhouse, C.; Patel, P.M.; Wilson, D.M.; Madhusudan, S. Synthetic lethal targeting of PTEN-associated homologous recombination (HR) deficient melanoma cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors. Cancer Res., 2012, 72, 615.
[http://dx.doi.org/10.1158/1538-7445.AM2012-LB-263]
[136]
Ménézo, Y.; Dale, B.; Cohen, M. DNA damage and repair in human oocytes and embryos: a review. Zygote, 2010, 18(4), 357-365.
[http://dx.doi.org/10.1017/S0967199410000286] [PMID: 20663262]
[137]
Marteijn, J.A.; Lans, H.; Vermeulen, W.; Hoeijmakers, J.H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 465-481.
[http://dx.doi.org/10.1038/nrm3822] [PMID: 24954209]
[138]
Welsh, C.; Day, R.; McGurk, C.; Masters, J.R.; Wood, R.D.; Köberle, B. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int. J. Cancer, 2004, 110(3), 352-361.
[http://dx.doi.org/10.1002/ijc.20134] [PMID: 15095299]
[139]
Köberle, B.; Masters, J.R.; Hartley, J.A.; Wood, R.D. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol., 1999, 9(5), 273-276.
[http://dx.doi.org/10.1016/S0960-9822(99)80118-3] [PMID: 10074455]
[140]
Neher, T.M.; Bodenmiller, D.; Fitch, R.W.; Jalal, S.I.; Turchi, J.J. Novel irreversible small molecule inhibitors of replication protein A display single-agent activity and synergize with cisplatin. Mol. Cancer Ther., 2011, 10(10), 1796-1806.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0303] [PMID: 21846830]
[141]
Bochkarev, A.; Bochkareva, E.; Frappier, L.; Edwards, A.M. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J., 1999, 18(16), 4498-4504.
[http://dx.doi.org/10.1093/emboj/18.16.4498] [PMID: 10449415]
[142]
Jekimovs, C.; Bolderson, E.; Suraweera, A.; Adams, M.; O’Byrne, K.J.; Richard, D.J. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front. Oncol., 2014, 4, 86.
[http://dx.doi.org/10.3389/fonc.2014.00086] [PMID: 24795863]
[143]
Glanzer, J.G.; Liu, S.; Wang, L.; Mosel, A.; Peng, A.; Oakley, G.G. RPA inhibition increases replication stress and suppresses tumor growth. Cancer Res., 2014, 74(18), 5165-5172.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0306] [PMID: 25070753]
[144]
Mishra, A.K.; Dormi, S.S.; Turchi, A.M.; Woods, D.S.; Turchi, J.J. Chemical inhibitor targeting the replication protein A-DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer. Biochem. Pharmacol., 2015, 93(1), 25-33.
[http://dx.doi.org/10.1016/j.bcp.2014.10.013] [PMID: 25449597]
[145]
Kumar, R.; Cheok, C.F. RIF1: a novel regulatory factor for DNA replication and DNA damage response signaling. DNA Repair (Amst.), 2014, 15, 54-59.
[http://dx.doi.org/10.1016/j.dnarep.2013.12.004] [PMID: 24462468]
[146]
Wang, H.; Zhao, A.; Chen, L.; Zhong, X.; Liao, J.; Gao, M.; Cai, M.; Lee, D.H.; Li, J.; Chowdhury, D.; Yang, Y.G.; Pfeifer, G.P.; Yen, Y.; Xu, X. Human RIF1 encodes an anti-apoptotic factor required for DNA repair. Carcinogenesis, 2009, 30(8), 1314-1319.
[http://dx.doi.org/10.1093/carcin/bgp136] [PMID: 19483192]
[147]
Jamil, S.; Mojtabavi, S.; Hojabrpour, P.; Cheah, S.; Duronio, V. An essential role for MCL-1 in ATR-mediated CHK1 phosphorylation. Mol. Biol. Cell, 2008, 19(8), 3212-3220.
[http://dx.doi.org/10.1091/mbc.e07-11-1171] [PMID: 18495871]
[148]
Zhang, F.; Shen, M.; Yang, L.; Yang, X.; Tsai, Y.; Keng, P.C.; Chen, Y.; Lee, S.O.; Chen, Y. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biol. Ther., 2017, 18(8), 606-615.
[http://dx.doi.org/10.1080/15384047.2017.1345391] [PMID: 28686074]
[149]
Yu, Q.; Liu, Z.Y.; Chen, Q.; Lin, J.S. Mcl-1 as a potential therapeutic target for human hepatocelluar carcinoma. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(4), 494-500.
[http://dx.doi.org/10.1007/s11596-016-1614-7] [PMID: 27465322]
[150]
Quinn, B.A.; Dash, R.; Azab, B.; Sarkar, S.; Das, S.K.; Kumar, S.; Oyesanya, R.A.; Dasgupta, S.; Dent, P.; Grant, S.; Rahmani, M.; Curiel, D.T.; Dmitriev, I.; Hedvat, M.; Wei, J.; Wu, B.; Stebbins, J.L.; Reed, J.C.; Pellecchia, M.; Sarkar, D.; Fisher, P.B. Targeting Mcl-1 for the therapy of cancer. Expert Opin. Investig. Drugs, 2011, 20(10), 1397-1411.
[http://dx.doi.org/10.1517/13543784.2011.609167] [PMID: 21851287]
[151]
Yamaguchi, R.; Lartigue, L.; Perkins, G. Targeting Mcl-1 and other Bcl-2 family member proteins in cancer therapy. Pharmacol. Ther., 2019, 195, 13-20.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.009] [PMID: 30347215]
[152]
Chen, G.; Magis, A.T.; Xu, K.; Park, D.; Yu, D.S.; Owonikoko, T.K.; Sica, G.L.; Satola, S.W.; Ramalingam, S.S.; Curran, W.J.; Doetsch, P.W.; Deng, X. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J. Clin. Invest., 2018, 128(1), 500-516.
[http://dx.doi.org/10.1172/JCI92742] [PMID: 29227281]
[153]
Guang, M.H.Z.; Kavanagh, E.L.; Dunne, L.P.; Dowling, P.; Zhang, L.; Lindsay, S.; Bazou, D.; Goh, C.Y.; Hanley, C.; Bianchi, G.; Anderson, K.C.; O’Gorman, P.; McCann, A. Targeting proteotoxic stress in cancer: a review of the role that protein quality control pathways play in oncogenesis. Cancers (Basel), 2019, 11(1)E66
[http://dx.doi.org/10.3390/cancers11010066] [PMID: 30634515]
[154]
Fu, Q.; Jiang, Y.; Zhang, D.; Liu, X.; Guo, J.; Zhao, J. Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling. Mol. Cell. Biochem., 2016, 418(1-2), 189-198.
[http://dx.doi.org/10.1007/s11010-016-2746-6] [PMID: 27344168]
[155]
Zhang, H.; Li, K.; Lin, Y.; Xing, F.; Xiao, X.; Cai, J.; Zhu, W.; Liang, J.; Tan, Y.; Fu, L.; Wang, F.; Yin, W.; Lu, B.; Qiu, P.; Su, X.; Gong, S.; Bai, X.; Hu, J.; Yan, G. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci. Transl. Med., 2017, 9(404)eaam7996
[http://dx.doi.org/10.1126/scitranslmed.aam7996] [PMID: 28835517]
[156]
Vance, R.E.; Cytosolic, D.N.A. Cytosolic DNA sensing: the field narrows. Immunity, 2016, 45(2), 227-228.
[http://dx.doi.org/10.1016/j.immuni.2016.08.006] [PMID: 27533006]
[157]
Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149.
[http://dx.doi.org/10.1038/ni.3558] [PMID: 27648547]
[158]
Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; Cross, J.R.; Massagué, J. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533(7604), 493-498.
[http://dx.doi.org/10.1038/nature18268] [PMID: 27225120]
[159]
Lemos, H.; Mohamed, E.; Huang, L.; Ou, R.; Pacholczyk, G.; Arbab, A.S.; Munn, D.; Mellor, A.L. STING promotes the growth of tumors characterized by low Antigenicity via IDO activation. Cancer Res., 2016, 76(8), 2076-2081.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1456] [PMID: 26964621]
[160]
Feng, X.; Liu, D.; Li, Z.; Bian, J. Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discov. Today, 2019.
[http://dx.doi.org/10.1016/j.drudis.2019.11.007] [PMID: 31758915]
[161]
Sheridan, C. Drug developers switch gears to inhibit STING. Nat. Biotechnol., 2019, 37(3), 199-201.
[http://dx.doi.org/10.1038/s41587-019-0060-z] [PMID: 30833772]
[162]
Haag, S.M.; Gulen, M.F.; Reymond, L.; Gibelin, A.; Abrami, L.; Decout, A.; Heymann, M.; van der Goot, F.G.; Turcatti, G.; Behrendt, R.; Ablasser, A. Targeting STING with covalent small-molecule inhibitors. Nature, 2018, 559(7713), 269-273.
[http://dx.doi.org/10.1038/s41586-018-0287-8] [PMID: 29973723]
[163]
Kumar, S.; Peng, X.; Daley, J.; Yang, L.; Shen, J.; Nguyen, N.; Bae, G.; Niu, H.; Peng, Y.; Hsieh, H.J.; Wang, L.; Rao, C.; Stephan, C.C.; Sung, P.; Ira, G.; Peng, G. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells. Oncogenesis, 2017, 6(4)e319
[http://dx.doi.org/10.1038/oncsis.2017.15] [PMID: 28414320]
[164]
Plummer, R.; Middleton, M.; Wilson, R.; Jones, C.; Evans, J.; Robson, L.; Steinfeldt, H.; Kaufman, R.; Reich, S.; Calvert, A.H. First in human phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients (pts) with advanced solid tumors. J. Clin. Oncol., 2005, 23(16), 208s-208s.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.3065]
[165]
Papeo, G.; Posteri, H.; Borghi, D.; Busel, A.A.; Caprera, F.; Casale, E.; Ciomei, M.; Cirla, A.; Corti, E.; D’Anello, M.; Fasolini, M.; Forte, B.; Galvani, A.; Isacchi, A.; Khvat, A.; Krasavin, M.Y.; Lupi, R.; Orsini, P.; Perego, R.; Pesenti, E.; Pezzetta, D.; Rainoldi, S.; Riccardi-Sirtori, F.; Scolaro, A.; Sola, F.; Zuccotto, F.; Felder, E.R.; Donati, D.; Montagnoli, A. Discovery of 2-[1-(4,4-Difluorocyclohexyl) piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy. J. Med. Chem., 2015, 58(17), 6875-6898.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00680] [PMID: 26222319]
[166]
Sarkaria, J.N.; Tibbetts, R.S.; Busby, E.C.; Kennedy, A.P.; Hill, D.E.; Abraham, R.T. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res., 1998, 58(19), 4375-4382.
[PMID: 9766667]
[167]
Blasina, A.; Price, B.D.; Turenne, G.A.; McGowan, C.H. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol., 1999, 9(19), 1135-1138.
[http://dx.doi.org/10.1016/S0960-9822(99)80486-2] [PMID: 10531013]
[168]
Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-Echeverría, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 2008, 7(7), 1851-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0017] [PMID: 18606717]
[169]
Biddlestone-Thorpe, L.; Sajjad, M.; Rosenberg, E.; Beckta, J.M.; Valerie, N.C.; Tokarz, M.; Adams, B.R.; Wagner, A.F.; Khalil, A.; Gilfor, D.; Golding, S.E.; Deb, S.; Temesi, D.G.; Lau, A.; O’Connor, M.J.; Choe, K.S.; Parada, L.F.; Lim, S.K.; Mukhopadhyay, N.D.; Valerie, K. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res., 2013, 19(12), 3189-3200.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3408] [PMID: 23620409]
[170]
Stupp, R.; Hegi, M.E.; Gilbert, M.R.; Chakravarti, A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J. Clin. Oncol., 2007, 25(26), 4127-4136.
[http://dx.doi.org/10.1200/JCO.2007.11.8554] [PMID: 17827463]
[171]
Rainey, M.D.; Charlton, M.E.; Stanton, R.V.; Kastan, M.B. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res., 2008, 68(18), 7466-7474.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0763] [PMID: 18794134]
[172]
Min, J.; Guo, K.; Suryadevara, P.K.; Zhu, F.; Holbrook, G.; Chen, Y.; Feau, C.; Young, B.M.; Lemoff, A.; Connelly, M.C.; Kastan, M.B.; Guy, R.K. Optimization of a novel series of ataxia-telangiectasia mutated kinase inhibitors as potential radiosensitizing agents. J. Med. Chem., 2016, 59(2), 559-577.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01092] [PMID: 26632965]
[173]
Nishida, H.; Tatewaki, N.; Nakajima, Y.; Magara, T.; Ko, K.M.; Hamamori, Y.; Konishi, T. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res., 2009, 37(17), 5678-5689.
[http://dx.doi.org/10.1093/nar/gkp593] [PMID: 19625493]
[174]
Anderson, V.E.; Walton, M.I.; Eve, P.D.; Boxall, K.J.; Antoni, L.; Caldwell, J.J.; Aherne, W.; Pearl, L.H.; Oliver, A.W.; Collins, I.; Garrett, M.D. CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res., 2011, 71(2), 463-472.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1252] [PMID: 21239475]
[175]
Matthews, T.P.; Jones, A.M.; Collins, I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin. Drug Discov., 2013, 8(6), 621-640.
[http://dx.doi.org/10.1517/17460441.2013.788496] [PMID: 23594139]
[176]
Itamochi, H.; Nishimura, M.; Oumi, N.; Kato, M.; Oishi, T.; Shimada, M.; Sato, S.; Naniwa, J.; Sato, S.; Kudoh, A.; Kigawa, J.; Harada, T. Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in clear cell carcinoma of the ovary. Int. J. Gynecol. Cancer, 2014, 24(1), 61-69.
[http://dx.doi.org/10.1097/IGC.0000000000000014] [PMID: 24362713]
[177]
Daud, A.I.; Ashworth, M.T.; Strosberg, J.; Goldman, J.W.; Mendelson, D.; Springett, G.; Venook, A.P.; Loechner, S.; Rosen, L.S.; Shanahan, F.; Parry, D.; Shumway, S.; Grabowsky, J.A.; Freshwater, T.; Sorge, C.; Kang, S.P.; Isaacs, R.; Munster, P.N. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J. Clin. Oncol., 2015, 33(9), 1060-1066.
[http://dx.doi.org/10.1200/JCO.2014.57.5027] [PMID: 25605849]
[178]
Huang, F.; Motlekar, N.A.; Burgwin, C.M.; Napper, A.D.; Diamond, S.L.; Mazin, A.V. Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem. Biol., 2011, 6(6), 628-635.
[http://dx.doi.org/10.1021/cb100428c] [PMID: 21428443]
[179]
Zhu, J.; Chen, H.; Guo, X.E.; Qiu, X.L.; Hu, C.M.; Chamberlin, A.R.; Lee, W.H. Synthesis, molecular modeling, and biological evaluation of novel RAD51 inhibitors. Eur. J. Med. Chem., 2015, 96, 196-208.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.021] [PMID: 25874343]
[180]
Hirai, H.; Iwasawa, Y.; Okada, M.; Arai, T.; Nishibata, T.; Kobayashi, M.; Kimura, T.; Kaneko, N.; Ohtani, J.; Yamanaka, K.; Itadani, H.; Takahashi-Suzuki, I.; Fukasawa, K.; Oki, H.; Nambu, T.; Jiang, J.; Sakai, T.; Arakawa, H.; Sakamoto, T.; Sagara, T.; Yoshizumi, T.; Mizuarai, S.; Kotani, H. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther., 2009, 8(11), 2992-3000.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0463] [PMID: 19887545]
[181]
Leijen, S.; van Geel, R.M.; Pavlick, A.C.; Tibes, R.; Rosen, L.; Razak, A.R.; Lam, R.; Demuth, T.; Rose, S.; Lee, M.A.; Freshwater, T.; Shumway, S.; Liang, L.W.; Oza, A.M.; Schellens, J.H.; Shapiro, G.I.; Phase, I. Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J. Clin. Oncol., 2016, 34(36), 4371-4380.
[http://dx.doi.org/10.1200/JCO.2016.67.5991] [PMID: 27601554]
[182]
Liu, W.; Zhou, M.; Li, Z.; Li, H.; Polaczek, P.; Dai, H.; Wu, Q.; Liu, C.; Karanja, K.K.; Popuri, V.; Shan, S.O.; Schlacher, K.; Zheng, L.; Campbell, J.L.; Shen, B. A selective small molecule DNA2 inhibitor for sensitization of human cancer cells to chemotherapy. EBio. Med., 2016, 6, 73-86.
[http://dx.doi.org/10.1016/j.ebiom.2016.02.043] [PMID: 27211550]
[183]
Chung, J.G.; Chang, H.L.; Lin, W.C.; Wang, H.H.; Yeh, C.C.; Hung, C.F.; Li, Y.C. Inhibition of N-acetyltransferase activity and DNA-2-aminofluorene adducts by glycyrrhizic acid in human colon tumour cells. Food Chem. Toxicol., 2000, 38(2-3), 163-172.
[http://dx.doi.org/10.1016/S0278-6915(99)00151-9] [PMID: 10717356]
[184]
Vlahos, C.J.; Matter, W.F.; Hui, K.Y.; Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 1994, 269(7), 5241-5248.
[PMID: 8106507]
[185]
Tavecchio, M.; Munck, J.M.; Cano, C.; Newell, D.R.; Curtin, N.J. Further characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals potential cross-talk with homologous recombination. Cancer Chemother. Pharmacol., 2012, 69(1), 155-164.
[http://dx.doi.org/10.1007/s00280-011-1662-4] [PMID: 21630086]
[186]
Tumey, L.N.; Bom, D.; Huck, B.; Gleason, E.; Wang, J.; Silver, D.; Brunden, K.; Boozer, S.; Rundlett, S.; Sherf, B.; Murphy, S.; Dent, T.; Leventhal, C.; Bailey, A.; Harrington, J.; Bennani, Y.L. The identification and optimization of a N-hydroxy urea series of flap endonuclease 1 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(2), 277-281.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.086] [PMID: 15603939]
[187]
Rai, G.; Vyjayanti, V.N.; Dorjsuren, D.; Simeonov, A.; Jadhav, A.; Wilson, D.M., III; Maloney, D.J. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J. Med. Chem., 2012, 55(7), 3101-3112.
[http://dx.doi.org/10.1021/jm201537d] [PMID: 22455312]
[188]
Jaiswal, A.S.; Banerjee, S.; Aneja, R.; Sarkar, F.H.; Ostrov, D.A.; Narayan, S. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS One, 2011, 6(2)e16691
[http://dx.doi.org/10.1371/journal.pone.0016691] [PMID: 21311763]
[189]
Lea, M.A. Recently identified and potential targets for colon cancer treatment. Future Oncol., 2010, 6(6), 993-1002.
[http://dx.doi.org/10.2217/fon.10.53] [PMID: 20528236]
[190]
Glanzer, J.G.; Liu, S.; Oakley, G.G. Small molecule inhibitor of the RPA70 N-terminal protein interaction domain discovered using in silico and in vitro methods. Bioorg. Med. Chem., 2011, 19(8), 2589-2595.
[http://dx.doi.org/10.1016/j.bmc.2011.03.012] [PMID: 21459001]
[191]
Sierecki, E.; Newton, A.C. Biochemical characterization of the phosphatase domain of the tumor suppressor PH domain leucine-rich repeat protein phosphatase. Biochemistry, 2014, 53(24), 3971-3981.
[http://dx.doi.org/10.1021/bi500428j] [PMID: 24892992]
[192]
Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science, 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[193]
Rosenberg, S.A. Decade in review-cancer immunotherapy: entering the mainstream of cancer treatment. Nat. Rev. Clin. Oncol., 2014, 11(11), 630-632.
[http://dx.doi.org/10.1038/nrclinonc.2014.174] [PMID: 25311350]
[194]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[195]
Harding, S.M.; Benci, J.L.; Irianto, J.; Discher, D.E.; Minn, A.J.; Greenberg, R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 2017, 548(7668), 466-470.
[http://dx.doi.org/10.1038/nature23470] [PMID: 28759889]
[196]
Blatter, S.; Guyader, C.; Kucukosmanoglu, A.; Freriks, S.; de Visser, K.; Borst, P.; Rottenberg, S. Combining PD1-and CTLA4-inhibiting antibodies with cisplatin or PARP inhibition in an attempt to eradicate BRCA1-deficient mouse mammary tumors. Cancer Res., 2015, 736.
[http://dx.doi.org/10.1158/1538-7445.AM2015-736]
[197]
Yap, T.A.; Krebs, M.G.; Postel-Vinay, S.; Bang, Y.J.; El-Khoueiry, A.; Abida, W.; Harrington, K.; Sundar, R.; Carter, L.; Castanon-Alvarez, E. Im, S.A.; Berges, A.; Khan, M.; Stephens, C.; Ross, G.; Soria, J.C., Phase I modular study of AZD6738, a novel oral, potent and selective ataxia telangiectasia Rad3-related (ATR) inhibitor in combination (combo) with carboplatin, olaparib or durvalumab in patients (pts) with advanced cancers. Eur. J. Cancer, 2016, 69, S2-S2.
[http://dx.doi.org/10.1016/S0959-8049(16)32607-7]
[198]
Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis, 2000, 21(3), 485-495.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[199]
Collado, M.; Blasco, M.A.; Serrano, M. Cellular senescence in cancer and aging. Cell, 2007, 130(2), 223-233.
[http://dx.doi.org/10.1016/j.cell.2007.07.003] [PMID: 17662938]
[200]
Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol., 2013, 75, 685-705.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183653] [PMID: 23140366]
[201]
Collado, M.; Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer, 2010, 10(1), 51-57.
[http://dx.doi.org/10.1038/nrc2772] [PMID: 20029423]
[202]
Larsson, L.G. Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin. Cancer Biol., 2011, 21(6), 367-376.
[http://dx.doi.org/10.1016/j.semcancer.2011.10.005] [PMID: 22037160]
[203]
Sliwinska, M.A.; Mosieniak, G.; Wolanin, K.; Babik, A.; Piwocka, K.; Magalska, A.; Szczepanowska, J.; Fronk, J.; Sikora, E. Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mech. Ageing Dev., 2009, 130(1-2), 24-32.
[http://dx.doi.org/10.1016/j.mad.2008.04.011] [PMID: 18538372]
[204]
Kasper, M.; Barth, K. Bleomycin and its role in inducing apoptosis and senescence in lung cells - modulating effects of caveolin-1. Curr. Cancer Drug Targets, 2009, 9(3), 341-353.
[http://dx.doi.org/10.2174/156800909788166501] [PMID: 19442053]
[205]
González-Billalabeitia, E.; Seitzer, N.; Song, S.J.; Song, M.S.; Patnaik, A.; Liu, X.S.; Epping, M.T.; Papa, A.; Hobbs, R.M.; Chen, M.; Lunardi, A.; Ng, C.; Webster, K.A.; Signoretti, S.; Loda, M.; Asara, J.M.; Nardella, C.; Clohessy, J.G.; Cantley, L.C.; Pandolfi, P.P. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov., 2014, 4(8), 896-904.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0230] [PMID: 24866151]
[206]
Castedo, M.; Perfettini, J.L.; Roumier, T.; Andreau, K.; Medema, R.; Kroemer, G. Cell death by mitotic catastrophe: a molecular definition. Oncogene, 2004, 23(16), 2825-2837.
[http://dx.doi.org/10.1038/sj.onc.1207528] [PMID: 15077146]
[207]
Denisenko, T.V.; Sorokina, I.V.; Gogvadze, V.; Zhivotovsky, B. Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist. Updat., 2016, 24, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.11.002] [PMID: 26830311]
[208]
Arun, B.; Akar, U.; Gutierrez-Barrera, A.M.; Hortobagyi, G.N.; Ozpolat, B. The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int. J. Oncol., 2015, 47(1), 262-268.
[http://dx.doi.org/10.3892/ijo.2015.3003] [PMID: 25975349]
[209]
Galluzzi, L.; Kroemer, G. Necroptosis: a specialized pathway of programmed necrosis. Cell, 2008, 135(7), 1161-1163.
[http://dx.doi.org/10.1016/j.cell.2008.12.004] [PMID: 19109884]
[210]
Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther., 2007, 6(5), 1641-1649.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0511] [PMID: 17513612]
[211]
Brumatti, G.; Ma, C.; Lalaoui, N.; Nguyen, N.Y.; Navarro, M.; Tanzer, M.C.; Richmond, J.; Ghisi, M.; Salmon, J.M.; Silke, N.; Pomilio, G.; Glaser, S.P.; de Valle, E.; Gugasyan, R.; Gurthridge, M.A.; Condon, S.M.; Johnstone, R.W.; Lock, R.; Salvesen, G.; Wei, A.; Vaux, D.L.; Ekert, P.G.; Silke, J. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci. Transl. Med., 2016, 8(339)339ra69
[http://dx.doi.org/10.1126/scitranslmed.aad3099] [PMID: 27194727]
[212]
Jaspers, J.E.; Sol, W.; Kersbergen, A.; Schlicker, A.; Guyader, C.; Xu, G.; Wessels, L.; Borst, P.; Jonkers, J.; Rottenberg, S. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance. Cancer Res., 2015, 75(4), 732-741.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0839] [PMID: 25511378]
[213]
Ruiz, S.; Mayor-Ruiz, C.; Lafarga, V.; Murga, M.; Vega-Sendino, M.; Ortega, S.; Fernandez-Capetillo, O. A Genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol. Cell, 2016, 62(2), 307-313.
[http://dx.doi.org/10.1016/j.molcel.2016.03.006] [PMID: 27067599]
[214]
Brown, J.S.; O’Carrigan, B.; Jackson, S.P.; Yap, T.A. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov., 2017, 7(1), 20-37.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0860] [PMID: 28003236]
[215]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[216]
Graziani, G.; Szabó, C. Clinical perspectives of PARP inhibitors. Pharmacol. Res., 2005, 52(1), 109-118.
[http://dx.doi.org/10.1016/j.phrs.2005.02.013] [PMID: 15911339]
[217]
Livraghi, L.; Garber, J.E. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med., 2015, 13, 188.
[http://dx.doi.org/10.1186/s12916-015-0425-1] [PMID: 26268938]
[218]
Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol., 2011, 5(4), 387-393.
[http://dx.doi.org/10.1016/j.molonc.2011.07.001] [PMID: 21821475]
[219]
Chan, D.A.; Giaccia, A.J. Targeting cancer cells by synthetic lethality: autophagy and VHL in cancer therapeutics. Cell Cycle, 2008, 7(19), 2987-2990.
[http://dx.doi.org/10.4161/cc.7.19.6776] [PMID: 18818511]
[220]
Nijman, S.M. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett., 2011, 585(1), 1-6.
[http://dx.doi.org/10.1016/j.febslet.2010.11.024] [PMID: 21094158]
[221]
Feng, Z.; Scott, S.P.; Bussen, W.; Sharma, G.G.; Guo, G.; Pandita, T.K.; Powell, S.N. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 686-691.
[http://dx.doi.org/10.1073/pnas.1010959107] [PMID: 21148102]
[222]
McManus, K.J.; Barrett, I.J.; Nouhi, Y.; Hieter, P. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3276-3281.
[http://dx.doi.org/10.1073/pnas.0813414106] [PMID: 19218431]
[223]
Mengwasser, K.E.; Adeyemi, R.O.; Leng, Y.; Choi, M.Y.; Clairmont, C.; D’Andrea, A.D.; Elledge, S.J. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets. Mol. Cell, 2019, 73(5), 885-899.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.12.008] [PMID: 30686591]
[224]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[225]
Sleire, L.; Førde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.O. Drug repurposing in cancer. Pharmacol. Res., 2017, 124, 74-91.
[http://dx.doi.org/10.1016/j.phrs.2017.07.013] [PMID: 28712971]
[226]
LaMontagne, K.R.; Butler, J.; Borowski, V.B.; Fuentes-Pesquera, A.R.; Blevitt, J.M.; Huang, S.; Li, R.; Connolly, P.J.; Greenberger, L.M. A highly selective, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor has potent activity in vitro and in vivo. Angiogenesis, 2009, 12(3), 287-296.
[http://dx.doi.org/10.1007/s10456-009-9151-7] [PMID: 19544081]
[227]
Kaplan, A.R.; Gueble, S.E.; Liu, Y.; Oeck, S.; Kim, H.; Yun, Z.; Glazer, P.M. Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci. Transl. Med., 2019, 11(492)eaav4508
[http://dx.doi.org/10.1126/scitranslmed.aav4508] [PMID: 31092693]
[228]
Lu, X.H.; Mattis, V.B.; Wang, N.; Al-Ramahi, I.; van den Berg, N.; Fratantoni, S.A.; Waldvogel, H.; Greiner, E.; Osmand, A.; Elzein, K.; Xiao, J.; Dijkstra, S.; de Pril, R.; Vinters, H.V.; Faull, R.; Signer, E.; Kwak, S.; Marugan, J.J.; Botas, J.; Fischer, D.F.; Svendsen, C.N.; Munoz-Sanjuan, I.; Yang, X.W. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington’s disease. Sci. Transl. Med., 2014, 6(268)268ra178
[http://dx.doi.org/10.1126/scitranslmed.3010523] [PMID: 25540325]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy