Review Article

Targeting Strategies in Therapeutic Applications of Toxoplasmosis: Recent Advances in Liposomal Vaccine Delivery Systems

Author(s): Yaghob Azadi, Ehsan Ahmadpour* and Amirhossein Ahmadi*

Volume 21, Issue 6, 2020

Page: [541 - 558] Pages: 18

DOI: 10.2174/1389450120666191023151423

Price: $65

Abstract

Toxoplasma gondii is a prevalent parasitic pathogen that infected over one-third of the global population. Toxoplasmosis is diagnosed by isolating the parasite and detecting host antibodies. In contrast, the main problem with diagnosis relates to the sensitivity and specificity of the tests. Currently, treatment with pyrimethamine and sulfadiazine is recommended, despite their side effects and toxicity to humans. Moreover, the absence of a vaccine to completely protect against this infection is the main obstacle to the effective treatment and prevention of toxoplasmosis. Recently, nanoparticles and nanomaterials have been studied as delivery systems for the immunization and treatment of T. gondii infections. One of the most important applications of liposomes is drug and vaccine delivery, due to their biodegradability, low inherent toxicity, and immunogenicity. Liposomes are flexible delivery systems and immunological adjuvants able not only to load diverse antigens, such as proteins, peptides, nucleic acids, and carbohydrates but also to combine them with immunostimulators. Liposomes have the incredible potential within the development of modern types of vaccines and numerous endeavors have been made to improve the effectiveness of vaccines in recent years. In this review, we concentrate on the viable targeting strategies of liposome-based vaccine delivery systems to prevent, control and treat toxoplasmosis.

Keywords: Nanomaterials, Toxoplasma gondii, liposome, vaccines, drug delivery, immunogenicity.

Graphical Abstract

[1]
Weiss, L.M.; Dubey, J.P. Toxoplasmosis: A history of clinical observations. Int. J. Parasitol., 2009, 39(8), 895-901.
[http://dx.doi.org/10.1016/j.ijpara.2009.02.004] [PMID: 19217908]
[2]
Tenter, A.M. Toxoplasma gondii in animals used for human consumption. Mem. Inst. Oswaldo Cruz, 2009, 104(2), 364-369.
[http://dx.doi.org/10.1590/S0074-02762009000200033] [PMID: 19430665]
[3]
Sharif, M.; Daryani, A.; Ebrahimnejad, Z. Seroprevalence of anti-Toxoplasma IgG and IgM among individuals who were referred to medical laboratories in Mazandaran province, northern Iran. J. Infect. Public Health, 2016, 9(1), 75-80.
[http://dx.doi.org/10.1016/j.jiph.2015.06.006] [PMID: 26159578]
[4]
Daryani, A.; Sarvi, S.; Aarabi, M. Seroprevalence of Toxoplasma gondii in the Iranian general population: a systematic review and meta-analysis. Acta Trop., 2014, 137, 185-194.
[http://dx.doi.org/10.1016/j.actatropica.2014.05.015] [PMID: 24887263]
[5]
Galvan-Ramirez Mde, L.; Troyo, R.; Roman, S.; Calvillo-Sanchez, C.; Bernal-Redondo, R. A systematic review and meta-analysis of Toxoplasma gondii infection among the Mexican population. Parasit. Vectors, 2012, 5(1), 271.
[http://dx.doi.org/10.1186/1756-3305-5-271] [PMID: 23181616]
[6]
Ahmadpour, E.; Daryani, A.; Sharif, M. Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis. J. Infect. Dev. Ctries., 2014, 8(12), 1503-1510.
[http://dx.doi.org/10.3855/jidc.4796] [PMID: 25500647]
[7]
Bhopale, G.M. Pathogenesis of toxoplasmosis. Comp. Immunol. Microbiol. Infect. Dis., 2003, 26(4), 213-222.
[http://dx.doi.org/10.1016/S0147-9571(02)00058-9] [PMID: 12676122]
[8]
Foroutan-Rad, M.; Majidiani, H.; Dalvand, S. Toxoplasmosis in blood donors: a systematic review and meta-analysis. Transfus. Med. Rev., 2016, 30(3), 116-122.
[http://dx.doi.org/10.1016/j.tmrv.2016.03.002] [PMID: 27145927]
[9]
Iaccheri, B.; Fiore, T.; Papadaki, T. Adverse drug reactions to treatments for ocular toxoplasmosis: a retrospective chart review. Clin. Ther., 2008, 30(11), 2069-2074.
[http://dx.doi.org/10.1016/j.clinthera.2008.10.021] [PMID: 19108794]
[10]
Rezaei, F.; Ebrahimzadeh, M.A.; Daryani, A.; Sharif, M.; Ahmadpour, E.; Sarvi, S. The inhibitory effect of cromolyn sodium and ketotifen on Toxoplasma gondii entrance into host cells in vitro and in vivo. J. Parasit. Dis., 2016, 40(3), 1001-1005.
[http://dx.doi.org/10.1007/s12639-014-0623-3] [PMID: 27605827]
[11]
Montazeri, M.; Sharif, M.; Sarvi, S.; Mehrzadi, S.; Ahmadpour, E.; Daryani, A. A systematic review of in vitro and in vivo activities of anti-Toxoplasma drugs and compounds (2006–2016). Front. Microbiol., 2017, 8, 25.
[http://dx.doi.org/10.3389/fmicb.2017.00025] [PMID: 28163699]
[12]
Nekkanti, V.; Kalepu, S. Recent advances in liposomal drug delivery: a review. Pharm. Nanotechnol., 2015, 3(1), 35-55.
[http://dx.doi.org/10.2174/2211738503666150709173905]
[13]
Hiszczyńska-Sawicka, E.; Gatkowska, J.M.; Grzybowski, M.M.; Długońska, H. Veterinary vaccines against toxoplasmosis. Parasitology, 2014, 141(11), 1365-1378.
[http://dx.doi.org/10.1017/S0031182014000481] [PMID: 24805159]
[14]
Buxton, D. Toxoplasmosis: the first commercial vaccine. Parasitol. Today [Regul Ed], 1993, 9(9), 335-337.
[http://dx.doi.org/10.1016/0169-4758(93)90236-9] [PMID: 15463799]
[15]
Dubey, J.P. Toxoplasmosis of animals and humans; CRC press, 2016.
[http://dx.doi.org/10.1201/9781420092370]
[16]
Rougier, D.; Ambroise-Thomas, P. Detection of toxoplasmic immunity by multipuncture skin test with excretory-secretory antigen. Lancet, 1985, 2(8447), 121-123.
[http://dx.doi.org/10.1016/S0140-6736(85)90226-0] [PMID: 2862318]
[17]
Daryani, A. Toxoplasma Gondii: A Review of Excretory Secretory Antigens. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2013, 22(2), 220-232.
[18]
Lekutis, C.; Ferguson, D.J.; Grigg, M.E.; Camps, M.; Boothroyd, J.C. Surface antigens of Toxoplasma gondii: variations on a theme. Int. J. Parasitol., 2001, 31(12), 1285-1292.
[http://dx.doi.org/10.1016/S0020-7519(01)00261-2] [PMID: 11566296]
[19]
Norouzpour Deilami, K.; Daryani, A.; Ahmadpour, E. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model. Comp. Immunol. Microbiol. Infect. Dis., 2014, 37(5-6), 369-374.
[http://dx.doi.org/10.1016/j.cimid.2014.10.003] [PMID: 25467037]
[20]
Costa-Silva, T.A.; Meira, C.S.; Ferreira, I.M.; Hiramoto, R.M.; Pereira-Chioccola, V.L. Evaluation of immunization with tachyzoite excreted-secreted proteins in a novel susceptible mouse model (A/Sn) for Toxoplasma gondii. Exp. Parasitol., 2008, 120(3), 227-234.
[http://dx.doi.org/10.1016/j.exppara.2008.07.015] [PMID: 18706414]
[21]
Daryani, A.; Hosseini, A.Z.; Dalimi, A. Immune responses against excreted/secreted antigens of Toxoplasma gondii tachyzoites in the murine model. Vet. Parasitol., 2003, 113(2), 123-134.
[http://dx.doi.org/10.1016/S0304-4017(03)00044-X] [PMID: 12695037]
[22]
Marasini, N. Liposomes as a vaccine delivery system.Micro and Nanotechnology in Vaccine Development; Elsevier, 2017, pp. 221-239.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00012-9]
[23]
Chauhan, N.; Tiwari, S.; Iype, T.; Jain, U. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev. Vaccines, 2017, 16(5), 491-502.
[http://dx.doi.org/10.1080/14760584.2017.1306440] [PMID: 28285554]
[24]
Yu, R.; Mai, Y.; Zhao, Y.; Hou, Y.; Liu, Y.; Yang, J. Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy. J. Drug Target., 2019, 27(7), 780-789.
[http://dx.doi.org/10.1080/1061186X.2018.1547734] [PMID: 30589361]
[25]
Shakeri-Zadeh, A.; Kamrava, S.K.; Farhadi, M.; Hajikarimi, Z.; Maleki, S.; Ahmadi, A. A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med. Sci., 2014, 29(2), 847-853.
[http://dx.doi.org/10.1007/s10103-013-1399-x] [PMID: 23917412]
[26]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[27]
Barabadi, H.; Alizadeh, Z.; Rahimi, M.T. Nanobiotechnology as an emerging approach to combat malaria: A systematic review. Nanomedicine (Lond.), 2019, 18, 221-233.
[http://dx.doi.org/10.1016/j.nano.2019.02.017] [PMID: 30904586]
[28]
Patra, J.K.; Das, G.; Fraceto, L.F. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[29]
Zasadzinski, J.A.; Wong, B.; Forbes, N.; Braun, G.; Wu, G. Novel methods of enhanced retention in and rapid, targeted release from liposomes. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 203-214.
[http://dx.doi.org/10.1016/j.cocis.2010.12.004] [PMID: 21603081]
[30]
Rahimpour, Y.; Hamishehkar, H. Liposomes in cosmeceutics. Expert Opin. Drug Deliv., 2012, 9(4), 443-455.
[http://dx.doi.org/10.1517/17425247.2012.666968] [PMID: 22413847]
[31]
Anderson, L.J.; Hansen, E.; Lukianova-Hleb, E.Y.; Hafner, J.H.; Lapotko, D.O. Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J. Control. Release, 2010, 144(2), 151-158.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.012] [PMID: 20156498]
[32]
Wu, G.; Mikhailovsky, A.; Khant, H.A.; Zasadzinski, J.A. Chapter 14 - Synthesis, characterization, and optical response of gold nanoshells used to trigger release from liposomes. Methods Enzymol., 2009, 464, 279-307.
[http://dx.doi.org/10.1016/S0076-6879(09)64014-3] [PMID: 19903560]
[33]
Mezei, M.; Gulasekharam, V. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci., 1980, 26(18), 1473-1477.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[34]
Alizadeh-Ghodsi, M.; Zavari-Nematabad, A.; Hamishehkar, H. Design and development of PCR-free highly sensitive electrochemical assay for detection of telomerase activity using Nano-based (liposomal) signal amplification platform. Biosens. Bioelectron., 2016, 80, 426-432.
[http://dx.doi.org/10.1016/j.bios.2016.01.090] [PMID: 26874110]
[35]
De Temmerman, M-L.; Rejman, J.; Demeester, J.; Irvine, D.J.; Gander, B.; De Smedt, S.C. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov. Today, 2011, 16(13-14), 569-582.
[http://dx.doi.org/10.1016/j.drudis.2011.04.006] [PMID: 21570475]
[36]
Bernasconi, V Mucosal vaccine development based on liposome technology., 2016.
[http://dx.doi.org/10.1155/2016/5482087]
[37]
Bartova, E.; Sedlak, K. Toxoplasmosis in Animals in the Czech Republic-The Last 10 Years; Toxoplasmosis-Recent Advances. InTech, 2012.
[http://dx.doi.org/10.5772/50022]
[38]
Shokri, A.; Sharif, M.; Teshnizi, S.H. Birds and poultries toxoplasmosis in Iran: A systematic review and meta-analysis. Asian Pac. J. Trop. Med., 2017, 10(7), 635-642.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.013] [PMID: 28870339]
[39]
Dubey, J.P. The history of Toxoplasma gondii--the first 100 years. J. Eukaryot. Microbiol., 2008, 55(6), 467-475.
[http://dx.doi.org/10.1111/j.1550-7408.2008.00345.x] [PMID: 19120791]
[40]
Dzierszinski, F.; Nishi, M.; Ouko, L.; Roos, D.S. Dynamics of Toxoplasma gondii differentiation. Eukaryot. Cell, 2004, 3(4), 992-1003.
[http://dx.doi.org/10.1128/EC.3.4.992-1003.2004] [PMID: 15302832]
[41]
Rahimi, MT Cats and Toxoplasma gondii: A systematic review and meta-analysis in Iran., 2015.
[http://dx.doi.org/10.4102/ojvr.v82i1.823]
[42]
Davis, S.W.; Dubey, J.P. Mediation of immunity to Toxoplasma gondii oocyst shedding in cats. J. Parasitol., 1995, 81(6), 882-886.
[http://dx.doi.org/10.2307/3284034] [PMID: 8544058]
[43]
Dubey, J.P. Toxoplasmosis - a waterborne zoonosis. Vet. Parasitol., 2004, 126(1-2), 57-72.
[http://dx.doi.org/10.1016/j.vetpar.2004.09.005] [PMID: 15567579]
[44]
Blader, I.J.; Saeij, J.P. Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS, 2009, 117(5-6), 458-476.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02453.x] [PMID: 19400868]
[45]
Kim, K.; Weiss, L.M. Toxoplasma gondii: the model apicomplexan. Int. J. Parasitol., 2004, 34(3), 423-432.
[http://dx.doi.org/10.1016/j.ijpara.2003.12.009] [PMID: 15003501]
[46]
Dubey, J.P.; Lindsay, D.S.; Speer, C.A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin. Microbiol. Rev., 1998, 11(2), 267-299.
[http://dx.doi.org/10.1128/CMR.11.2.267] [PMID: 9564564]
[47]
Webster, J.P. Dubey, JP Toxoplasmosis of Animals and Humans; BioMed Central, 2010.
[48]
Sroka, S.; Bartelheimer, N.; Winter, A. Prevalence and risk factors of toxoplasmosis among pregnant women in Fortaleza, Northeastern Brazil. Am. J. Trop. Med. Hyg., 2010, 83(3), 528-533.
[http://dx.doi.org/10.4269/ajtmh.2010.10-0082] [PMID: 20810816]
[49]
Saadatnia, G.; Golkar, M. A review on human toxoplasmosis. Scand. J. Infect. Dis., 2012, 44(11), 805-814.
[http://dx.doi.org/10.3109/00365548.2012.693197] [PMID: 22831461]
[50]
Ahmadpour, E. Diagnosis of Toxoplasma gondii infection in pregnant women using automated chemiluminescence and quantitative real time PCR. Asian Pac. J. Trop. Med., 2019, 12(1), 26.
[http://dx.doi.org/10.4103/1995-7645.250341]
[51]
Fallahi, S.; Seyyed Tabaei, S.J.; Pournia, Y.; Zebardast, N.; Kazemi, B. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia. Diagn. Microbiol. Infect. Dis., 2014, 79(3), 347-354.
[http://dx.doi.org/10.1016/j.diagmicrobio.2014.02.014] [PMID: 24792838]
[52]
Meers, S.; Lagrou, K.; Theunissen, K. Myeloablative conditioning predisposes patients for Toxoplasma gondii reactivation after allogeneic stem cell transplantation. Clin. Infect. Dis., 2010, 50(8), 1127-1134.
[http://dx.doi.org/10.1086/651266] [PMID: 20218875]
[53]
Ambroise-Thomas, P.; Pelloux, H. Toxoplasmosis - congenital and in immunocompromised patients: a parallel. Parasitol. Today [Regul Ed], 1993, 9(2), 61-63.
[http://dx.doi.org/10.1016/0169-4758(93)90038-H] [PMID: 15463710]
[54]
Grant, I.H.; Gold, J.W.; Rosenblum, M.; Niedzwiecki, D.; Armstrong, D. Toxoplasma gondii serology in HIV-infected patients: the development of central nervous system toxoplasmosis in AIDS. AIDS, 1990, 4(6), 519-521.
[http://dx.doi.org/10.1097/00002030-199006000-00004] [PMID: 2386617]
[55]
Machala, L.; Malý, M.; Hrdá, S.; Rozsypal, H.; Stanková, M.; Kodym, P. Antibody response of HIV-infected patients to latent, cerebral and recently acquired toxoplasmosis. Eur. J. Clin. Microbiol. Infect. Dis., 2009, 28(2), 179-182.
[http://dx.doi.org/10.1007/s10096-008-0600-9] [PMID: 18688665]
[56]
Jones, J.L.; Lopez, A.; Wilson, M.; Schulkin, J.; Gibbs, R. Congenital toxoplasmosis: a review. Obstet. Gynecol. Surv., 2001, 56(5), 296-305.
[http://dx.doi.org/10.1097/00006254-200105000-00025] [PMID: 11333376]
[57]
Holland, G.N. Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am. J. Ophthalmol., 2003, 136(6), 973-988.
[http://dx.doi.org/10.1016/j.ajo.2003.09.040] [PMID: 14644206]
[58]
Bornand, J-E.; de Gottrau, P. Uveitis: is ocular toxoplasmosis only a clinical diagnosis? Ophthalmologica, 1997, 211(2), 87-89.
[http://dx.doi.org/10.1159/000310765] [PMID: 9097311]
[59]
Song, A.; Scott, I.U.; Davis, J.L.; Lam, B.L. Atypical anterior optic neuropathy caused by toxoplasmosis. Am. J. Ophthalmol., 2002, 133(1), 162-164.
[http://dx.doi.org/10.1016/S0002-9394(01)01211-9] [PMID: 11755864]
[60]
Moreno, R.J.; Weisman, J.; Waller, S. Neuroretinitis: an unusual presentation of ocular toxoplasmosis. Ann. Ophthalmol., 1992, 24(2), 68-70.
[PMID: 1562128]
[61]
Hayashi, S.; Kim, M.K.; Belfort, R., Jr White-centered retinal hemorrhages in ocular toxoplasmosis. Retina, 1997, 17(4), 351-352.
[http://dx.doi.org/10.1097/00006982-199717040-00013] [PMID: 9279954]
[62]
Nath, A.; Sinai, A.P. Cerebral Toxoplasmosis. Curr. Treat. Options Neurol., 2003, 5(1), 3-12.
[http://dx.doi.org/10.1007/s11940-003-0018-8] [PMID: 12521559]
[63]
Minagar, A.; Finney, G.; Heilman, K.M. Neurobehavioral manifestations of neurological diseases: diagnosis & treatment, an issue of neurologic clinics, E-Book; Elsevier Health Sciences, 2016, Vol. 34, .
[64]
Robert-Gangneux, F.; Dupretz, P.; Yvenou, C. Clinical relevance of placenta examination for the diagnosis of congenital toxoplasmosis. Pediatr. Infect. Dis. J., 2010, 29(1), 33-38.
[http://dx.doi.org/10.1097/INF.0b013e3181b20ed1] [PMID: 19858771]
[65]
Duquesne, V.; Auriault, C.; Darcy, F.; Decavel, J.P.; Capron, A. Protection of nude rats against Toxoplasma infection by excreted-secreted antigen-specific helper T cells. Infect. Immun., 1990, 58(7), 2120-2126.
[PMID: 2142137]
[66]
Carruthers, V.B. Host cell invasion by the opportunistic pathogen Toxoplasma gondii. Acta Trop., 2002, 81(2), 111-122.
[http://dx.doi.org/10.1016/S0001-706X(01)00201-7] [PMID: 11801218]
[67]
Meira, C.S.; Vidal, J.E.; Costa-Silva, T.A. IgG4 specific to Toxoplasma gondii excretory/secretory antigens in serum and/or cerebrospinal fluid support the cerebral toxoplasmosis diagnosis in HIV-infected patients. J. Immunol. Methods, 2013, 395(1-2), 21-28.
[http://dx.doi.org/10.1016/j.jim.2013.06.005] [PMID: 23811152]
[68]
Daryani, A. Protective role of antigens from peritoneal exudates of infected mice against toxoplasmosis. Iran. J. Immunol., 2006, 3(2), 78-85.
[69]
BABAEI. Bacterial production of dense granule antigen GRA8 of Toxoplasma gondii., 2009.
[70]
Nam, H-W. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean J. Parasitol., 2009, 47(Suppl.), S29-S37.
[http://dx.doi.org/10.3347/kjp.2009.47.S.S29] [PMID: 19885333]
[71]
Daryani, A.; Sharif, M.; Dadimoghaddam, Y. Determination of parasitic load in different tissues of murine toxoplasmosis after immunization by excretory-secretory antigens using Real time QPCR. Exp. Parasitol., 2014, 143, 55-59.
[http://dx.doi.org/10.1016/j.exppara.2014.05.008] [PMID: 24852216]
[72]
Jaimes-Aguirre, L.; Gibbens-Bandala, B.V.; Morales-Avila, E.; Ocampo-García, B.E.; Seyedeh-Fatemeh, M.; Amirhosein, A. Polymer-based drug delivery systems, development and pre-clinical status. Curr. Pharm. Des., 2016, 22(19), 2886-2903.
[http://dx.doi.org/10.2174/1381612822666160217125028] [PMID: 26898743]
[73]
Betz, G.; Aeppli, A.; Menshutina, N.; Leuenberger, H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm., 2005, 296(1-2), 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.032] [PMID: 15885454]
[74]
Choi, M.J.; Maibach, H.I. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol., 2005, 18(5), 209-219.
[http://dx.doi.org/10.1159/000086666] [PMID: 16015019]
[75]
Egbaria, K.; Weiner, N. Liposomes as a topical drug delivery system. Adv. Drug Deliv. Rev., 1990, 5(3), 287-300.
[http://dx.doi.org/10.1016/0169-409X(90)90021-J]
[76]
Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810.
[http://dx.doi.org/10.1007/s11095-010-0073-2] [PMID: 20204471]
[77]
Jain, B.; Singh, B.; Katare, O.P.; Vyas, S.P. Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units. J. Liposome Res., 2010, 20(2), 105-114.
[http://dx.doi.org/10.3109/08982100903161449] [PMID: 19698000]
[78]
Su, Y-H.; Fang, J-Y. Drug delivery and formulations for the topical treatment of psoriasis. Expert Opin. Drug Deliv., 2008, 5(2), 235-249.
[http://dx.doi.org/10.1517/17425247.5.2.235] [PMID: 18248321]
[79]
Sinico, C.; Manconi, M.; Peppi, M.; Lai, F.; Valenti, D.; Fadda, A.M. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-skin interaction. J. Control. Release, 2005, 103(1), 123-136.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.020] [PMID: 15710506]
[80]
Kirby, C.; Clarke, J.; Gregoriadis, G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J., 1980, 186(2), 591-598.
[http://dx.doi.org/10.1042/bj1860591] [PMID: 7378067]
[81]
Jones, M.N. The surface properties of phospholipid liposome systems and their characterisation. Adv. Colloid Interface Sci., 1995, 54, 93-128.
[http://dx.doi.org/10.1016/0001-8686(94)00223-Y] [PMID: 7832999]
[82]
Rahimpour, Y; Hamishehkar, H; Nokhodchi, A A. Lipidic micro and nano carriers for pulmonary drug delivery—a state of the art review. pulmonary drug delivery: Advances and Challenges 2015; pp. 123-42.
[83]
Souto, E.B.; Müller, R.H. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes.Drug delivery; Springer, 2010, pp. 115-141.
[http://dx.doi.org/10.1007/978-3-642-00477-3_4]
[84]
González-Rodríguez, M.L.; Rabasco, A.M. Charged liposomes as carriers to enhance the permeation through the skin. Expert Opin. Drug Deliv., 2011, 8(7), 857-871.
[http://dx.doi.org/10.1517/17425247.2011.574610] [PMID: 21557706]
[85]
Jaspart, S.; Piel, G.; Delattre, L.; Evrard, B. Solid lipid microparticles: formulation, preparation, characterisation, drug release and applications. Expert Opin. Drug Deliv., 2005, 2(1), 75-87.
[http://dx.doi.org/10.1517/17425247.2.1.75] [PMID: 16296736]
[86]
Kaur, I.P.; Kapila, M.; Agrawal, R. Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing. Ageing Res. Rev., 2007, 6(4), 271-288.
[http://dx.doi.org/10.1016/j.arr.2007.08.006] [PMID: 17933593]
[87]
Viriyaroj, A.; Ngawhirunpat, T.; Sukma, M.; Akkaramongkolporn, P.; Ruktanonchai, U.; Opanasopit, P. Physicochemical properties and antioxidant activity of gamma-oryzanol-loaded liposome formulations for topical use. Pharm. Dev. Technol., 2009, 14(6), 665-671.
[http://dx.doi.org/10.3109/10837450902911937] [PMID: 19883256]
[88]
Celia, C.; Cilurzo, F.; Trapasso, E.; Cosco, D.; Fresta, M.; Paolino, D. Ethosomes® and transfersomes® containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed. Microdevices, 2012, 14(1), 119-130.
[http://dx.doi.org/10.1007/s10544-011-9590-y] [PMID: 21960035]
[89]
Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res., 2008, 18(4), 309-327.
[http://dx.doi.org/10.1080/08982100802465941] [PMID: 18951288]
[90]
Gomez-Hens, A.; Fernandez-Romero, J. Analytical methods for the control of liposomal delivery systems. Trends Analyt. Chem., 2006, 25(2), 167-178.
[http://dx.doi.org/10.1016/j.trac.2005.07.006]
[91]
Tao, Y.; Han, J.; Dou, H. Brain-targeting gene delivery using a rabies virus glycoprotein peptide modulated hollow liposome: bio-behavioral study. J. Mater. Chem., 2012, 22(23), 11808-11815.
[http://dx.doi.org/10.1039/c2jm31675g]
[92]
Hale, A.H.; Ruebush, M.J.; Lyles, D.S.; Harris, D.T. Antigen-liposome modification of target cells as a method to alter their susceptibility to lysis by cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA, 1980, 77(10), 6105-6108.
[http://dx.doi.org/10.1073/pnas.77.10.6105] [PMID: 6255476]
[93]
Bogdanov, A.A., Jr; Gordeeva, L.V.; Torchilin, V.P.; Margolis, L.B. Lectin-bearing liposomes: differential binding to normal and to transformed mouse fibroblasts. Exp. Cell Res., 1989, 181(2), 362-374.
[http://dx.doi.org/10.1016/0014-4827(89)90094-3] [PMID: 2924795]
[94]
Zhang, N.; Ping, Q.N.; Huang, G.H.; Xu, W.F. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int. J. Pharm., 2005, 294(1-2), 247-259.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.018] [PMID: 15814248]
[95]
Yoshino, K. Novel analytical method to evaluate the surface condition of polyethylene glycol-modified liposomes. Colloids Surf. A Physicochem. Eng. Asp., 2012, 397, 73-79.
[http://dx.doi.org/10.1016/j.colsurfa.2012.01.035]
[96]
Ghafourian, T.; Zandasrar, P.; Hamishekar, H.; Nokhodchi, A. The effect of penetration enhancers on drug delivery through skin: a QSAR study. J. Control. Release, 2004, 99(1), 113-125.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.010] [PMID: 15342185]
[97]
Dua, J.; Rana, A.; Bhandari, A. Liposome: methods of preparation and applications. Int J Pharm Stud Res, 2012, 3(2), 14-20.
[98]
Riaz, M. Liposomes preparation methods. Pak. J. Pharm. Sci., 1996, 9(1), 65-77.
[PMID: 16414777]
[99]
de Leeuw, J.; de Vijlder, H.C.; Bjerring, P.; Neumann, H.A. Liposomes in dermatology today. J. Eur. Acad. Dermatol. Venereol., 2009, 23(5), 505-516.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03100.x] [PMID: 19175703]
[100]
Mishra, GP Recent applications of liposomes in ophthalmic drug delivery., 2011.
[http://dx.doi.org/10.1155/2011/863734]
[101]
Sharma, A.; Sharma, U.S. Liposomes in drug delivery: progress and limitations. Int. J. Pharm., 1997, 154(2), 123-140.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[102]
Zhang, Y. Relationship between Size and Function of Natural Substance Particles. Nano Biomed. Eng., 2011, 3(1)
[http://dx.doi.org/10.5101/nbe.v3i1.p1-16]
[103]
Mozafari, M.R. Liposomes: an overview of manufacturing techniques. Cell. Mol. Biol. Lett., 2005, 10(4), 711-719.
[PMID: 16341279]
[104]
Mayer, L.D.; Bally, M.B.; Hope, M.J.; Cullis, P.R. Techniques for encapsulating bioactive agents into liposomes. Chem. Phys. Lipids, 1986, 40(2-4), 333-345.
[http://dx.doi.org/10.1016/0009-3084(86)90077-0] [PMID: 3742676]
[105]
Gabizon, A.; Goren, D.; Cohen, R.; Barenholz, Y. Development of liposomal anthracyclines: from basics to clinical applications. J. Control. Release, 1998, 53(1-3), 275-279.
[http://dx.doi.org/10.1016/S0168-3659(97)00261-7] [PMID: 9741935]
[106]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[107]
Steger, L.D.; Desnick, R.J. Enzyme therapy. VI: Comparative in vivo fates and effects on lysosomal integrity of enzyme entrapped in negatively and positively charged liposomes. Biochim. Biophys. Acta, 1977, 464(3), 530-546.
[http://dx.doi.org/10.1016/0005-2736(77)90028-1] [PMID: 836826]
[108]
Finkelstein, M.; Weissmann, G. The introduction of enzymes into cells by means of liposomes. J. Lipid Res., 1978, 19(3), 289-303.
[PMID: 349106]
[109]
Kubo, T.; Sugita, T.; Shimose, S.; Nitta, Y.; Ikuta, Y.; Murakami, T. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int. J. Oncol., 2000, 17(2), 309-315.
[http://dx.doi.org/10.3892/ijo.17.2.309] [PMID: 10891540]
[110]
Minko, T.; Pakunlu, R.I.; Wang, Y.; Khandare, J.J.; Saad, M. New generation of liposomal drugs for cancer. Anticancer. Agents Med. Chem., 2006, 6(6), 537-552.
[http://dx.doi.org/10.2174/187152006778699095]
[111]
Dong, L.; Liu, F.; Fairman, J. Cationic liposome-DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice. Vaccine, 2012, 30(2), 254-264.
[http://dx.doi.org/10.1016/j.vaccine.2011.10.103] [PMID: 22085545]
[112]
Christensen, D.; Korsholm, K.S.; Andersen, P.; Agger, E.M. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines, 2011, 10(4), 513-521.
[http://dx.doi.org/10.1586/erv.11.17] [PMID: 21506648]
[113]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[114]
Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. Engl., 2007, 46(12), 2023-2027.
[http://dx.doi.org/10.1002/anie.200604295] [PMID: 17290476]
[115]
Kunisawa, J.; Masuda, T.; Katayama, K. Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release. J. Control. Release, 2005, 105(3), 344-353.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.020] [PMID: 15936842]
[116]
Süleymanoglu, E. A nanoscale polynucleotide-neutral liposome self-assemblies formulated for therapeutic gene delivery. Electron J Biomed, 2004, 2, 13-35.
[117]
Pal, I.; Ramsey, J.D. The role of the lymphatic system in vaccine trafficking and immune response. Adv. Drug Deliv. Rev., 2011, 63(10-11), 909-922.
[http://dx.doi.org/10.1016/j.addr.2011.05.018] [PMID: 21683103]
[118]
Ong, HX; Traini, D; Young, PM Liposomes for Inhalation.,
[119]
Zhang, X-Y.; Lu, W-Y. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol. Med., 2014, 11(4), 247-254.
[PMID: 25610710]
[120]
Da Silva, C.G.; Rueda, F.; Löwik, C.W.; Ossendorp, F.; Cruz, L.J. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials, 2016, 83, 308-320.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.006] [PMID: 26796043]
[121]
Tyagi, R.K.; Parmar, R.; Patel, N. A generic RNA pulsed DC based approach for developing therapeutic intervention against nasopharyngeal carcinoma. Hum. Vaccin. Immunother., 2017, 13(4), 854-866.
[http://dx.doi.org/10.1080/21645515.2016.1256518] [PMID: 27901642]
[122]
Riether, C; Schürch, C; Ochsenbein, AF From “magic bullets” to specific cancer immunotherapy. Swiss Med Wkly 2013; 143w13734
[http://dx.doi.org/10.4414/smw.2013.13734] [PMID: 23348718]
[123]
Joshi, M.D.; Unger, W.J.; Storm, G.; van Kooyk, Y.; Mastrobattista, E. Targeting tumor antigens to dendritic cells using particulate carriers. J. Control. Release, 2012, 161(1), 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.010] [PMID: 22580109]
[124]
Chiang, M.C.; Tullett, K.M.; Lee, Y.S. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur. J. Immunol., 2016, 46(2), 329-339.
[http://dx.doi.org/10.1002/eji.201546023] [PMID: 26542182]
[125]
Cruz, L.J.; Rueda, F.; Simón, L.; Cordobilla, B.; Albericio, F.; Domingo, J.C. Liposomes containing NY-ESO-1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines. Nanomedicine (Lond.), 2014, 9(4), 435-449.
[http://dx.doi.org/10.2217/nnm.13.66] [PMID: 24910875]
[126]
Shen, K-Y.; Liu, H.Y.; Li, H.J. A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity. J. Control. Release, 2016, 233, 57-63.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.008] [PMID: 27164542]
[127]
Varypataki, E.M.; Benne, N.; Bouwstra, J.; Jiskoot, W.; Ossendorp, F. Efficient eradication of established tumors in mice with cationic liposome-based synthetic long-peptide vaccines. Cancer Immunol. Res., 2017, 5(3), 222-233.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0283] [PMID: 28143806]
[128]
Alipour Talesh, G.; Ebrahimi, Z.; Badiee, A. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol. Lett., 2016, 176, 57-64.
[http://dx.doi.org/10.1016/j.imlet.2016.05.016] [PMID: 27260485]
[129]
Klauber, T.C.B.; Laursen, J.M.; Zucker, D.; Brix, S.; Jensen, S.S.; Andresen, T.L. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater., 2017, 53, 367-377.
[http://dx.doi.org/10.1016/j.actbio.2017.01.072] [PMID: 28153581]
[130]
Nakamura, T.; Yamazaki, D.; Yamauchi, J.; Harashima, H. The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J. Control. Release, 2013, 171(2), 216-224.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.004] [PMID: 23860186]
[131]
Comabella, M.; Montalban, X.; Münz, C.; Lünemann, J.D. Targeting dendritic cells to treat multiple sclerosis. Nat. Rev. Neurol., 2010, 6(9), 499-507.
[http://dx.doi.org/10.1038/nrneurol.2010.112] [PMID: 20717105]
[132]
Ahlers, J.D.; Belyakov, I.M. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol. Med., 2009, 15(6), 263-274.
[http://dx.doi.org/10.1016/j.molmed.2009.04.003] [PMID: 19487159]
[133]
Jeong, H.S.; Na, K.S.; Hwang, H. Effect of space length of mannose ligand on uptake of mannosylated liposome in RAW 264.7 cells: In vitro and in vivo studies. J. Biomed. Mater. Res. A, 2014, 102(12), 4545-4553.
[PMID: 24677479]
[134]
Wijagkanalan, W.; Kawakami, S.; Higuchi, Y.; Yamashita, F.; Hashida, M. Intratracheally instilled mannosylated cationic liposome/NFκB decoy complexes for effective prevention of LPS-induced lung inflammation. J. Control. Release, 2011, 149(1), 42-50.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.016] [PMID: 20035809]
[135]
Patin, E.C.; Willcocks, S.; Orr, S.; Ward, T.H.; Lang, R.; Schaible, U.E. Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 in vitro. Innate Immun., 2016, 22(3), 181-185.
[http://dx.doi.org/10.1177/1753425916636671] [PMID: 26939595]
[136]
Bogie, J.F.; Stinissen, P.; Hendriks, J.J. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol., 2014, 128(2), 191-213.
[http://dx.doi.org/10.1007/s00401-014-1310-2] [PMID: 24952885]
[137]
Bogie, J.F.; Boelen, E.; Louagie, E. CD169 is a marker for highly pathogenic phagocytes in multiple sclerosis. Mult. Scler., 2018, 24(3), 290-300.
[http://dx.doi.org/10.1177/1352458517698759] [PMID: 28277099]
[138]
Gernez, Y.; Tirouvanziam, R.; Chanez, P. Neutrophils in chronic inflammatory airway diseases: can we target them and how?; Eur Respiratory Soc., 2010.
[139]
Inoh, Y.; Tadokoro, S.; Tanabe, H. Inhibitory effects of a cationic liposome on allergic reaction mediated by mast cell activation. Biochem. Pharmacol., 2013, 86(12), 1731-1738.
[http://dx.doi.org/10.1016/j.bcp.2013.09.023] [PMID: 24099793]
[140]
Schoenen, H.; Bodendorfer, B.; Hitchens, K. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol., 2010, 184(6), 2756-2760.
[http://dx.doi.org/10.4049/jimmunol.0904013] [PMID: 20164423]
[141]
van Dissel, J.T.; Joosten, S.A.; Hoff, S.T. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine, 2014, 32(52), 7098-7107.
[http://dx.doi.org/10.1016/j.vaccine.2014.10.036] [PMID: 25454872]
[142]
Garçon, N.; Van Mechelen, M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines, 2011, 10(4), 471-486.
[http://dx.doi.org/10.1586/erv.11.29] [PMID: 21506645]
[143]
Detienne, S.; Welsby, I.; Collignon, C. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci. Rep., 2016, 6, 39475.
[http://dx.doi.org/10.1038/srep39475] [PMID: 27996000]
[144]
Chlibek, R.; Bayas, J.M.; Collins, H. Safety and immunogenicity of an AS01-adjuvanted varicella-zoster virus subunit candidate vaccine against herpes zoster in adults >=50 years of age. J. Infect. Dis., 2013, 208(12), 1953-1961.
[http://dx.doi.org/10.1093/infdis/jit365] [PMID: 23904292]
[145]
Rts, S. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet, 2015, 386(9988), 31-45.
[http://dx.doi.org/10.1016/S0140-6736(15)60721-8] [PMID: 25913272]
[146]
Regules, J.A.; Cicatelli, S.B.; Bennett, J.W. Fractional third and fourth dose of RTS, S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J. Infect. Dis., 2016, 214(5), 762-771.
[http://dx.doi.org/10.1093/infdis/jiw237] [PMID: 27296848]
[147]
McLeod, R.; Estes, R.G.; Mack, D.G. Effects of adjuvants and Toxoplasma gondii antigens on immune response and outcome of peroral T. gondii challenge. Trans. R. Soc. Trop. Med. Hyg., 1985, 79(6), 800-804.
[http://dx.doi.org/10.1016/0035-9203(85)90122-1] [PMID: 3832492]
[148]
Mellors, J.W.; Debs, R.J.; Ryan, J.L. Incorporation of recombinant gamma interferon into liposomes enhances its ability to induce peritoneal macrophage antitoxoplasma activity. Infect. Immun., 1989, 57(1), 132-137.
[PMID: 2491832]
[149]
Tachibana, H.; Yoshihara, E.; Kaneda, Y.; Nakae, T. Protection of Toxoplasma gondii-infected mice by stearylamine-bearing liposomes. J. Parasitol., 1990, 76(3), 352-355.
[http://dx.doi.org/10.2307/3282665] [PMID: 2352064]
[150]
Bülow, R.; Boothroyd, J.C. Protection of mice from fatal Toxoplasma gondii infection by immunization with p30 antigen in liposomes. J. Immunol., 1991, 147(10), 3496-3500.
[PMID: 1940349]
[151]
Elsaid, M.M.; Vitor, R.W.; Frézard, F.J.; Martins, M.S. Protection against toxoplasmosis in mice immunized with different antigens of Toxoplasma gondii incorporated into liposomes. Mem. Inst. Oswaldo Cruz, 1999, 94(4), 485-490.
[http://dx.doi.org/10.1590/S0074-02761999000400010] [PMID: 10446006]
[152]
Elsaid, M.M.; Martins, M.S.; Frézard, F.; Braga, E.M.; Vitor, R.W. Vertical toxoplasmosis in a murine model. Protection after immunization with antigens of Toxoplasma gondii incorporated into liposomes. Mem. Inst. Oswaldo Cruz, 2001, 96(1), 99-104.
[http://dx.doi.org/10.1590/S0074-02762001000100011] [PMID: 11285480]
[153]
Chen, H.; Chen, G.; Zheng, H.; Guo, H. Induction of immune responses in mice by vaccination with Liposome-entrapped DNA complexes encoding Toxoplasma gondii SAG1 and ROP1 genes. Chin. Med. J. (Engl.), 2003, 116(10), 1561-1566.
[PMID: 14570624]
[154]
Chen, R.; Lu, S.H.; Tong, Q.B. Protective effect of DNA-mediated immunization with liposome-encapsulated GRA4 against infection of Toxoplasma gondii. J. Zhejiang Univ. Sci. B, 2009, 10(7), 512-521.
[http://dx.doi.org/10.1631/jzus.B0820300] [PMID: 19585669]
[155]
Medical Helmintology; Khsravi, 2012, pp. 118-134.
[156]
Hiszczyńska-Sawicka, E.; Li, H.; Boyu Xu, J. Induction of immune responses in sheep by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii MIC3 gene. Pol. J. Vet. Sci., 2012, 15(1), 3-9.
[http://dx.doi.org/10.2478/v10181-011-0107-7] [PMID: 22708351]
[157]
Hiszczyńska-Sawicka, E.; Olędzka, G.; Holec-Gąsior, L. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet. Parasitol., 2011, 177(3-4), 281-289.
[http://dx.doi.org/10.1016/j.vetpar.2010.11.047] [PMID: 21251760]
[158]
El-Zawawy, L.A.; El-Said, D.; Mossallam, S.F.; Ramadan, H.S.; Younis, S.S. Triclosan and triclosan-loaded liposomal nanoparticles in the treatment of acute experimental toxoplasmosis. Exp. Parasitol., 2015, 149, 54-64.
[http://dx.doi.org/10.1016/j.exppara.2014.12.007] [PMID: 25499511]
[159]
El-Zawawy, LA; El-Said, D; Mossallam, SF; Ramadan, HS; Younis, SS Preventive prospective of triclosan and triclosan-liposomal nanoparticles against experimental infection with a cystogenic ME49 strain of Toxoplasma gondii., Acta Trop 2015; 141(Pt A): 103-11.
[http://dx.doi.org/10.1016/j.actatropica.2014.09.020] [PMID: 25305510]
[160]
Tanaka, S.; Kuroda, Y.; Ihara, F. Vaccination with profilin encapsulated in oligomannose-coated liposomes induces significant protective immunity against Toxoplasma gondii. Vaccine, 2014, 32(16), 1781-1785.
[http://dx.doi.org/10.1016/j.vaccine.2014.01.095] [PMID: 24530937]
[161]
Si, K.; Wei, L.; Yu, X. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp. Parasitol., 2016, 166, 68-74.
[http://dx.doi.org/10.1016/j.exppara.2016.03.021] [PMID: 27004468]
[162]
Azadi, Y.; Ahmadpour, E.; Hamishehkar, H. Quantification of Toxoplasma gondii in the tissues of BALB/c mice after immunization with nanoliposomal excretory-secretory antigens using Real-Time PCR. Comp. Immunol. Microbiol. Infect. Dis., 2018, 59, 52-56.
[http://dx.doi.org/10.1016/j.cimid.2018.09.012] [PMID: 30290888]
[163]
Tandrup Schmidt, S.; Foged, C.; Korsholm, K.S.; Rades, T.; Christensen, D. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics, 2016, 8(1), 7.
[http://dx.doi.org/10.3390/pharmaceutics8010007] [PMID: 26978390]
[164]
Frenz, T; Grabski, E; Durán, V Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers., Eur J Pharm Biopharm 2015; 95(Pt A): 13-7.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.008] [PMID: 25701806]
[165]
Ahmadi, A.; Arami, S. Potential applications of nanoshells in biomedical sciences. J. Drug Target., 2014, 22(3), 175-190.
[http://dx.doi.org/10.3109/1061186X.2013.839684] [PMID: 24099618]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy