Review Article

Cardiovascular Modulating Effects of Magnolol and Honokiol, Two Polyphenolic Compounds from Traditional Chinese Medicine-Magnolia Officinalis

Author(s): Yuan Yuan, Xiaocui Zhou, Yuanyuan Wang, Yan Wang, Xiangyan Teng* and Shuaiyu Wang*

Volume 21, Issue 6, 2020

Page: [559 - 572] Pages: 14

DOI: 10.2174/1389450120666191024175727

Price: $65

Abstract

Honokiol and its isomer magnolol are poly-phenolic compounds isolated from the Magnolia officinalis that exert cardiovascular modulating effects via a variety of mechanisms. They are used as blood-quickening and stasis-dispelling agents in Traditional Chinese Medicine and confirmed to have therapeutic potential in atherosclerosis, thrombosis, hypertension, and cardiac hypertrophy. This comprehensive review summarizes the current data regarding the cardioprotective mechanisms of those compounds and identifies areas for further research.

Keywords: Honokiol, magnolol, cardio-protection, anti-inflammatory, antioxidant, anti-proliferation, anti-apoptosis.

Graphical Abstract

[1]
Willis, A.I.; Pierre-Paul, D.; Sumpio, B.E.; Gahtan, V. Vascular smooth muscle cell migration: current research and clinical implications. Vasc. Endovascular Surg., 2004, 38(1), 11-23.
[http://dx.doi.org/10.1177/153857440403800102] [PMID: 14760473]
[2]
Félétou, M.; Vanhoutte, P.M. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H985-H1002.
[http://dx.doi.org/10.1152/ajpheart.00292.2006] [PMID: 16632549]
[3]
Bertin, R; Chen, Z; Marin, R; Donati, M; Feltrinelli, A; Montopoli, M Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2016, 82, 472-8.
[4]
Youn, U.J.; Fatima, N.; Chen, Q.C.; Chae, S.; Hung, T.M.; Min, B.S. Apoptosis-inducing and antitumor activity of neolignans isolated from Magnolia officinalis in HeLa cancer cells. Phytother. Res., 2013, 27(9), 1419-1422.
[http://dx.doi.org/10.1002/ptr.4893] [PMID: 23192855]
[5]
Yu, S.X.; Yan, R.Y.; Liang, R.X.; Wang, W.; Yang, B. Bioactive polar compounds from stem bark of Magnolia officinalis. Fitoterapia, 2012, 83(2), 356-361.
[http://dx.doi.org/10.1016/j.fitote.2011.11.020] [PMID: 22155594]
[6]
Li, C.; Li, C.J.; Ma, J. Magterpenoids A-C, Three Polycyclic Meroterpenoids with PTP1B Inhibitory Activity from the Bark of Magnolia officinalis var. biloba. Org. Lett., 2018, 20(12), 3682-3686.
[http://dx.doi.org/10.1021/acs.orglett.8b01476] [PMID: 29863363]
[7]
Shen, C.C.; Ni, C.L.; Shen, Y.C. Phenolic constituents from the stem bark of Magnolia officinalis. J. Nat. Prod., 2009, 72(1), 168-171.
[http://dx.doi.org/10.1021/np800494e] [PMID: 19086868]
[8]
Amorati, R.; Zotova, J.; Baschieri, A.; Valgimigli, L. Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. J. Org. Chem., 2015, 80(21), 10651-10659.
[http://dx.doi.org/10.1021/acs.joc.5b01772] [PMID: 26447942]
[9]
Lee, Y.M.; Hsiao, G.; Chen, H.R.; Chen, Y.C.; Sheu, J.R.; Yen, M.H. Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats. Eur. J. Pharmacol., 2001, 422(1-3), 159-167.
[http://dx.doi.org/10.1016/S0014-2999(01)01069-X] [PMID: 11430926]
[10]
Kim, H.M.; Bae, S.J.; Kim, D.W. Inhibitory role of magnolol on proliferative capacity and matrix metalloproteinase-9 expression in TNF-alpha-induced vascular smooth muscle cells. Int. Immunopharmacol., 2007, 7(8), 1083-1091.
[http://dx.doi.org/10.1016/j.intimp.2007.04.004] [PMID: 17570325]
[11]
Lo, Y.C.; Teng, C.M.; Chen, C.F.; Chen, C.C.; Hong, C.Y. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem. Pharmacol., 1994, 47(3), 549-553.
[http://dx.doi.org/10.1016/0006-2952(94)90187-2] [PMID: 8117323]
[12]
Hong, C.Y.; Huang, S.S.; Tsai, S.K. Magnolol reduces infarct size and suppresses ventricular arrhythmia in rats subjected to coronary ligation. Clin. Exp. Pharmacol. Physiol., 1996, 23(8), 660-664.
[http://dx.doi.org/10.1111/j.1440-1681.1996.tb01753.x] [PMID: 8886485]
[13]
Tsai, S.K.; Huang, S.S.; Hong, C.Y. Myocardial protective effect of honokiol: an active component in Magnolia officinalis. Planta Med., 1996, 62(6), 503-506.
[http://dx.doi.org/10.1055/s-2006-957957] [PMID: 9000881]
[14]
Huang, CH; Hong, CY; Tsai, SK; Lai, ST Effect of magnolol on coronary vascular resistance in rabbits: measurement with pulsed Doppler velocimetry., Taiwan yi zhi 2000; 99(7): 554-8.
[15]
Teng, C.M.; Chen, C.C.; Ko, F.N. Two antiplatelet agents from Magnolia officinalis. Thromb. Res., 1988, 50(6), 757-765.
[http://dx.doi.org/10.1016/0049-3848(88)90336-2] [PMID: 3413728]
[16]
Teng, C.M.; Yu, S.M.; Chen, C.C.; Huang, Y.L.; Huang, T.F. EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci., 1990, 47(13), 1153-1161.
[http://dx.doi.org/10.1016/0024-3205(90)90176-R] [PMID: 2172682]
[17]
Yang, B; Xu, Y; Yu, S; Huang, Y; Lu, L; Liang, X. Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxygen-induced retinopathy model., Inflammation research : official journal of the European Histamine Research Society [et al] 2016; 65(1): 81-93.
[http://dx.doi.org/10.1007/s00011-015-0894-x]
[18]
Tsai, S.K.; Huang, C.H.; Huang, S.S.; Hung, L.M.; Hong, C.Y. Antiarrhythmic effect of magnolol and honokiol during acute phase of coronary occlusion in anesthetized rats: influence of L-NAME and aspirin. Pharmacology, 1999, 59(5), 227-233.
[http://dx.doi.org/10.1159/000028324] [PMID: 10529654]
[19]
Wang, Y.; Zhang, Z.Z.; Wu, Y.; Zhan, J.; He, X.H.; Wang, Y.L. Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation. Exp. Ther. Med., 2013, 5(1), 315-319.
[http://dx.doi.org/10.3892/etm.2012.766] [PMID: 23251290]
[20]
Wei, X.Q.; Zhang, H.S.; Wei, G.H. Honokiol Protects against Anti-β1-Adrenergic Receptor Autoantibody-Induced Myocardial Dysfunction via Activation of Autophagy. Oxid. Med. Cell. Longev., 2018, •••20181640804
[http://dx.doi.org/10.1155/2018/1640804] [PMID: 30116474]
[21]
Wang, J.; Qi, Q.; Feng, Z. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget, 2016, 7(41), 66944-66958.
[http://dx.doi.org/10.18632/oncotarget.11396] [PMID: 27557493]
[22]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[23]
Huang, L.; Zhang, K.; Guo, Y. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci. Rep., 2017, 7(1), 11989.
[http://dx.doi.org/10.1038/s41598-017-12095-y] [PMID: 28931882]
[24]
Treviño-Saldaña, N.; García-Rivas, G. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals. Oxid. Med. Cell. Longev., 2017.20171750306
[http://dx.doi.org/10.1155/2017/1750306] [PMID: 29234485]
[25]
Pillai, V.B.; Samant, S.; Sundaresan, N.R. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat. Commun., 2015, 6, 6656.
[http://dx.doi.org/10.1038/ncomms7656] [PMID: 25871545]
[26]
Turner, N.A.; O’regan, D.J.; Ball, S.G.; Porter, K.E. Endothelin-1 is an essential co-factor for beta2-adrenergic receptor-induced proliferation of human cardiac fibroblasts. FEBS Lett., 2004, 576(1-2), 156-160.
[http://dx.doi.org/10.1016/j.febslet.2004.08.080] [PMID: 15474029]
[27]
Liou, J.Y.; Chen, Y.L.; Loh, S.H. Magnolol depresses urotensin-II-induced cell proliferation in rat cardiac fibroblasts. Clin. Exp. Pharmacol. Physiol., 2009, 36(7), 711-716.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05144.x] [PMID: 19207719]
[28]
Pillai, V.B.; Kanwal, A.; Fang, Y.H. Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 2017, 8(21), 34082-34098.
[http://dx.doi.org/10.18632/oncotarget.16133] [PMID: 28423723]
[29]
Zhang, B.; Zhai, M.; Li, B. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the sirt1-nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, •••20183159801
[http://dx.doi.org/10.1155/2018/3159801] [PMID: 29675132]
[30]
Kokubo, Y.; Kamide, K. High-normal blood pressure and the risk of cardiovascular disease. Circ. J., 2009, 73(8), 1381-1385.
[http://dx.doi.org/10.1253/circj.CJ-09-0336]
[31]
Zhang, G.S.; Wang, R.J.; Zhang, H.N.; Zhang, G.P.; Luo, M.S.; Luo, J.D. Effects of chronic treatment with honokiol in spontaneously hypertensive rats. Biol. Pharm. Bull., 2010, 33(3), 427-431.
[http://dx.doi.org/10.1248/bpb.33.427] [PMID: 20190404]
[32]
Li, R.; Zhang, H.; Wang, W. Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur. J. Pharmacol., 2010, 628(1-3), 140-147.
[http://dx.doi.org/10.1016/j.ejphar.2009.11.038] [PMID: 19944677]
[33]
Kim, Y.J.; Choi, M.S.; Cha, B.Y. Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance, and adipose inflammation in high-fat fed mice. Mol. Nutr. Food Res., 2013, 57(11), 1988-1998.
[http://dx.doi.org/10.1002/mnfr.201300113] [PMID: 23901038]
[34]
Choi, S.S.; Cha, B.Y.; Lee, Y.S. Honokiol and magnolol stimulate glucose uptake by activating PI3K-dependent Akt in L6 myotubes. Biofactors, 2012, 38(5), 372-377.
[http://dx.doi.org/10.1002/biof.1029] [PMID: 22674833]
[35]
Liang, X.; Xing, W.; He, J. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS One, 2015, 10(3)e0120366
[http://dx.doi.org/10.1371/journal.pone.0120366] [PMID: 25793876]
[36]
Xia, Y; Entman, ML; Wang, Y Critical role of CXCL16 in hypertensive kidney injury and fibrosis., Hypertension (Dallas, Tex : 1979) 2013; 62(6): 1129-37.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01837]
[37]
Li, N.; Zhang, J.; Yan, X. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension. Oncotarget, 2017, 8(24), 39592-39604.
[http://dx.doi.org/10.18632/oncotarget.17165] [PMID: 28465484]
[38]
Seok, Y.M.; Cho, H.J.; Cha, B.Y.; Woo, J.T.; Kim, I.K. Honokiol attenuates vascular contraction through the inhibition of the RhoA/Rho-kinase signalling pathway in rat aortic rings. J. Pharm. Pharmacol., 2011, 63(9), 1244-1251.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01332.x] [PMID: 21827498]
[39]
Seok, Y.M.; Kim, H.Y.; Garmaa, O.; Cha, B.Y.; Woo, J.T.; Kim, I.K. Effects of magnolol on vascular contraction in rat aortic rings. Clin. Exp. Pharmacol. Physiol., 2012, 39(1), 28-36.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05629.x] [PMID: 22004427]
[40]
Hirooka, Y.; Shimokawa, H.; Takeshita, A. Rho-kinase, a potential therapeutic target for the treatment of hypertension. Drug News Perspect., 2004, 17(8), 523-527.
[http://dx.doi.org/10.1358/dnp.2004.17.8.863696] [PMID: 15605112]
[41]
Budzyn, K.; Marley, P.D.; Sobey, C.G. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol. Sci., 2006, 27(2), 97-104.
[http://dx.doi.org/10.1016/j.tips.2005.12.002] [PMID: 16376997]
[42]
Kuk, H.; Arnold, C.; Meyer, R.; Hecker, M.; Korff, T. Magnolol inhibits venous remodeling in mice. Sci. Rep., 2017, 7(1), 17820.
[http://dx.doi.org/10.1038/s41598-017-17910-0] [PMID: 29259201]
[43]
Yu, R.; Kim, C.S.; Kawada, T. Involvement of leukotactin-1, a novel CC chemokine, in human atherosclerosis. Atherosclerosis, 2004, 174(1), 35-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2003.11.024] [PMID: 15135248]
[44]
Wang, Y.; Zhao, D.; Sheng, J.; Lu, P. Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Mol. Med. Rep., 2018, 17(1), 1683-1689.
[PMID: 29257208]
[45]
Kwon, B.M.; Kim, M.K.; Lee, S.H. Acyl-CoA: cholesterol acyltransferase inhibitors from Magnolia obovata. Planta Med., 1997, 63(6), 550-551.
[http://dx.doi.org/10.1055/s-2006-957762] [PMID: 9434609]
[46]
Chen, Y.H.; Lin, S.J.; Chen, J.W.; Ku, H.H.; Chen, Y.L. Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br. J. Pharmacol., 2002, 135(1), 37-47.
[http://dx.doi.org/10.1038/sj.bjp.0704458] [PMID: 11786478]
[47]
Lee, C.W.; Hu, S.C.; Yen, F.L. Magnolol nanoparticles exhibit improved water solubility and suppress tnf-α-induced vcam-1 expression in endothelial cells. J. Biomed. Nanotechnol., 2017, 13(3), 255-268.
[http://dx.doi.org/10.1166/jbn.2017.2342] [PMID: 29381027]
[48]
Schuringa, J.J.; Timmer, H.; Luttickhuizen, D.; Vellenga, E.; Kruijer, W. c-Jun and c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6 respone element (IRE). Cytokine, 2001, 14(2), 78-87.
[http://dx.doi.org/10.1006/cyto.2001.0856] [PMID: 11356008]
[49]
Chen, S.C.; Chang, Y.L.; Wang, D.L.; Cheng, J.J. Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br. J. Pharmacol., 2006, 148(2), 226-232.
[http://dx.doi.org/10.1038/sj.bjp.0706647] [PMID: 16520748]
[50]
Napoli, C. Oxidation of LDL, atherogenesis, and apoptosis. Ann. N. Y. Acad. Sci., 2003, 1010, 698-709.
[http://dx.doi.org/10.1196/annals.1299.127] [PMID: 15033814]
[51]
Ou, H.C.; Chou, F.P.; Sheu, W.H.; Hsu, S.L.; Lee, W.J. Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells. Arch. Toxicol., 2007, 81(6), 421-432.
[http://dx.doi.org/10.1007/s00204-006-0172-3] [PMID: 17216433]
[52]
Ou, H.C.; Chou, F.P.; Lin, T.M.; Yang, C.H.; Sheu, W.H. Protective effects of honokiol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. Chem. Biol. Interact., 2006, 161(1), 1-13.
[http://dx.doi.org/10.1016/j.cbi.2006.02.006] [PMID: 16580656]
[53]
Sheu, M.L.; Chiang, C.K.; Tsai, K.S. Inhibition of NADPH oxidase-related oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis. Free Radic. Biol. Med., 2008, 44(12), 2043-2050.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.014] [PMID: 18423412]
[54]
WHO D. nutrition and the prevention of chronic diseases- Introduction. Diet, Nutrition and the Prevention of Chronic Diseases 2003; 1-149.
[55]
Hu, J.W.; Wang, Y.; Chu, C. The responses of the inflammatory marker, pentraxin 3, to dietary sodium and potassium interventions. J. Clin. Hypertens. (Greenwich), 2018, 20(5), 925-931.
[http://dx.doi.org/10.1111/jch.13273] [PMID: 29700922]
[56]
Qiu, L; Xu, R; Wang, S et al. Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IκB/NF-κB, in atherosclerotic cell model. Exp Mol Med 2015; 47e171
[http://dx.doi.org/10.1038/emm.2015.37] [PMID: 26138903]
[57]
Pickering, J.G.; Weir, L.; Jekanowski, J.; Kearney, M.A.; Isner, J.M. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J. Clin. Invest., 1993, 91(4), 1469-1480.
[http://dx.doi.org/10.1172/JCI116352] [PMID: 8097207]
[58]
Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis., 2016, 109(12), 708-715.
[http://dx.doi.org/10.1016/j.acvd.2016.04.002] [PMID: 27595467]
[59]
Yamamoto, M.; Yamamoto, K.; Noumura, T. Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp. Cell Res., 1993, 204(1), 121-129.
[http://dx.doi.org/10.1006/excr.1993.1016] [PMID: 8416790]
[60]
Chen, J.H.; Wu, C.C.; Hsiao, G.; Yen, M.H. Magnolol induces apoptosis in vascular smooth muscle. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(2), 127-133.
[http://dx.doi.org/10.1007/s00210-003-0779-3] [PMID: 12898128]
[61]
Fan, S.; Li, X.; Lin, J.; Chen, S.; Shan, J.; Qi, G. Honokiol inhibits tumor necrosis factor-α-stimulated rat aortic smooth muscle cell proliferation via caspase- and mitochondrial-dependent apoptosis. Inflammation, 2014, 37(1), 17-26.
[http://dx.doi.org/10.1007/s10753-013-9707-y] [PMID: 23933846]
[62]
Wu, C.H.; Chen, C.W.; Chen, H.C.; Chang, W.C.; Shu, M.J.; Hung, J.S. Elucidating the inhibitory mechanisms of magnolol on rat smooth muscle cell proliferation. J. Pharmacol. Sci., 2005, 99(4), 392-399.
[http://dx.doi.org/10.1254/jphs.FP0050473] [PMID: 16340156]
[63]
Wu, L.; Zou, H.; Xia, W.; Dong, Q.; Wang, L. Role of magnolol in the proliferation of vascular smooth muscle cells. Herz, 2015, 40(3), 542-548.
[http://dx.doi.org/10.1007/s00059-014-4051-z] [PMID: 24595318]
[64]
Karki, R.; Ho, O.M.; Kim, D.W. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim. Biophys. Acta, 2013, 1830(3), 2619-2628.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.015] [PMID: 23274740]
[65]
Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm., 2013, •••2013928315
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[66]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[67]
Zhu, X.; Wang, Z.; Hu, C.; Li, Z.; Hu, J. Honokiol suppresses TNF-α-induced migration and matrix metalloproteinase expression by blocking NF-κB activation via the ERK signaling pathway in rat aortic smooth muscle cells. Acta Histochem., 2014, 116(4), 588-595.
[http://dx.doi.org/10.1016/j.acthis.2013.11.005] [PMID: 24360976]
[68]
Menezes, G.C.; Miron-Mendoza, M.; Ho, C.H.; Jiang, H.; Grinnell, F. Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices. Exp. Cell Res., 2008, 314(16), 3081-3091.
[http://dx.doi.org/10.1016/j.yexcr.2008.07.018] [PMID: 18708049]
[69]
Karki, R.; Kim, S.B.; Kim, D.W. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp. Cell Res., 2013, 319(20), 3238-3250.
[http://dx.doi.org/10.1016/j.yexcr.2013.07.016] [PMID: 23906924]
[70]
Masaki, T.; Foti, R.; Hill, P.A.; Ikezumi, Y.; Atkins, R.C.; Nikolic-Paterson, D.J. Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int., 2003, 63(4), 1256-1264.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00874.x] [PMID: 12631342]
[71]
Yoo, A.R.; Koh, S.H.; Cho, G.W.; Kim, S.H. Inhibitory effects of cilostazol on proliferation of vascular smooth muscle cells (VSMCs) through suppression of the ERK1/2 pathway. J. Atheroscler. Thromb., 2010, 17(10), 1009-1018.
[http://dx.doi.org/10.5551/jat.4309] [PMID: 20720374]
[72]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824), 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[73]
Lee, B.; Kim, C.H.; Moon, S.K. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett., 2006, 580(22), 5177-5184.
[http://dx.doi.org/10.1016/j.febslet.2006.08.064] [PMID: 16962592]
[74]
Venturinelli, M.L.; Hovnan, A.; Soeiro Ade, M. Platelet activation in different clinical forms of the coronary artery disease (role of P-selectin and others platelet markers in stable and unstable angina). Arq. Bras. Cardiol., 2006, 87(4), 446-450.
[http://dx.doi.org/10.1590/S0066-782X2006001700008] [PMID: 17128313]
[75]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[76]
Teng, C.M.; Ko, F.N.; Wang, J.P. Antihaemostatic and antithrombotic effect of some antiplatelet agents isolated from Chinese herbs. J. Pharm. Pharmacol., 1991, 43(9), 667-669.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03561.x] [PMID: 1685529]
[77]
Tsai, T.H.; Tsai, W.J.; Chou, C.J.; Chen, C.F. Magnolol inhibits collagen-induced platelet serotonin release. Thromb. Res., 1995, 78(3), 265-270.
[http://dx.doi.org/10.1016/0049-3848(95)90878-J] [PMID: 7543220]
[78]
Coughlin, S.R.; Moskowitz, M.A.; Zetter, B.R.; Antoniades, H.N.; Levine, L. Platelet-dependent stimulation of prostacyclin synthesis by platelet-derived growth factor. Nature, 1980, 288(5791), 600-602.
[http://dx.doi.org/10.1038/288600a0] [PMID: 7003399]
[79]
Hu, H.; Zhang, X.X.; Wang, Y.Y.; Chen, S.Z. Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta Pharmacol. Sin., 2005, 26(9), 1063-1068.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00164.x] [PMID: 16115372]
[80]
Zhang, X.; Chen, S.; Wang, Y. Honokiol up-regulates prostacyclin synthease protein expression and inhibits endothelial cell apoptosis. Eur. J. Pharmacol., 2007, 554(1), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.065] [PMID: 17109844]
[81]
Jennings, L.K. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost., 2009, 102(2), 248-257.
[http://dx.doi.org/10.1160/TH09-03-0192] [PMID: 19652875]
[82]
Shih, C.Y.; Chou, T.C. The antiplatelet activity of magnolol is mediated by PPAR-β/γ. Biochem. Pharmacol., 2012, 84(6), 793-803.
[http://dx.doi.org/10.1016/j.bcp.2012.06.022] [PMID: 22750553]
[83]
Chang, C.H.; Chung, C.H.; Kuo, H.L.; Hsu, C.C.; Huang, T.F. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J. Thromb. Haemost., 2008, 6(4), 669-676.
[http://dx.doi.org/10.1111/j.1538-7836.2008.02914.x] [PMID: 18221359]
[84]
Lee, T.Y.; Chang, C.C.; Lu, W.J. Honokiol as a specific collagen receptor glycoprotein VI antagonist on human platelets: Functional ex vivo and in vivo studies. Sci. Rep., 2017, 7, 40002.
[http://dx.doi.org/10.1038/srep40002] [PMID: 28054640]
[85]
Kim, J.G.; Islam, R.; Cho, J.Y. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J. Cell. Physiol., 2018, 233(9), 6381-6392.
[http://dx.doi.org/10.1002/jcp.26487] [PMID: 29377108]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy